20130922 h10 lecture1_matiyasevich

151
Что можно делать с вещественными числами и нельзя делать с целыми числами Ю. В. Матиясевич Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН http://logic.pdmi.ras.ru/~yumat

description

 

Transcript of 20130922 h10 lecture1_matiyasevich

Page 1: 20130922 h10 lecture1_matiyasevich

Что можно делатьс вещественными числамии нельзя делать с целыми

числами

Часть 2. Десятая проблема Гильберта

Ю.В.Матиясевич

Санкт-Петербургское отделениеМатематического института им. В. А. Стеклова РАН

http://logic.pdmi.ras.ru/~yumat

Page 2: 20130922 h10 lecture1_matiyasevich

Что можно делатьс вещественными числамии нельзя делать с целыми

числами

Часть 2. Десятая проблема Гильберта

Ю.В.Матиясевич

Санкт-Петербургское отделениеМатематического института им. В. А. Стеклова РАН

http://logic.pdmi.ras.ru/~yumat

Page 3: 20130922 h10 lecture1_matiyasevich

Что можно делатьс вещественными числамии нельзя делать с целыми

числамиЧасть 2. Десятая проблема Гильберта

Ю.В.Матиясевич

Санкт-Петербургское отделениеМатематического института им. В. А. Стеклова РАН

http://logic.pdmi.ras.ru/~yumat

Page 4: 20130922 h10 lecture1_matiyasevich

Давид Гильберт, “Математические проблемы” , [1900]

10. Entscheidung der Losbarkeit einer diophantischenGleichung. Eine diophantische Gleichung mit irgendwelchenUnbekannten und mit ganzen rationalen Zahlkoefficienten seivorgelegt: man soll ein Verfahren angeben, nach welchen sichmittels einer endlichen Anzahl von Operationen entscheiden lasst,ob die Gleichung in ganzen rationalen Zahlen losbar ist.

10. Решение проблемы разрешимости для произвольногодиофантова уравнения. Пусть дано произвольноедиофантово уравнение с произвольным числом неизвестных ицелыми рациональными коэффициентами; требуется указатьобщий метод, следуя которому можно было бы в конечноечисло шагов узнать, имеет ли данное уравнение решение вцелых рациональных числах или нет.

Page 5: 20130922 h10 lecture1_matiyasevich

Давид Гильберт, “Математические проблемы” , [1900]10. Entscheidung der Losbarkeit einer diophantischenGleichung. Eine diophantische Gleichung mit irgendwelchenUnbekannten und mit ganzen rationalen Zahlkoefficienten seivorgelegt: man soll ein Verfahren angeben, nach welchen sichmittels einer endlichen Anzahl von Operationen entscheiden lasst,ob die Gleichung in ganzen rationalen Zahlen losbar ist.

10. Решение проблемы разрешимости для произвольногодиофантова уравнения. Пусть дано произвольноедиофантово уравнение с произвольным числом неизвестных ицелыми рациональными коэффициентами; требуется указатьобщий метод, следуя которому можно было бы в конечноечисло шагов узнать, имеет ли данное уравнение решение вцелых рациональных числах или нет.

Page 6: 20130922 h10 lecture1_matiyasevich

Давид Гильберт, “Математические проблемы” , [1900]10. Entscheidung der Losbarkeit einer diophantischenGleichung. Eine diophantische Gleichung mit irgendwelchenUnbekannten und mit ganzen rationalen Zahlkoefficienten seivorgelegt: man soll ein Verfahren angeben, nach welchen sichmittels einer endlichen Anzahl von Operationen entscheiden lasst,ob die Gleichung in ganzen rationalen Zahlen losbar ist.

10. Решение проблемы разрешимости для произвольногодиофантова уравнения. Пусть дано произвольноедиофантово уравнение с произвольным числом неизвестных ицелыми рациональными коэффициентами; требуется указатьобщий метод, следуя которому можно было бы в конечноечисло шагов узнать, имеет ли данное уравнение решение вцелых рациональных числах или нет.

Page 7: 20130922 h10 lecture1_matiyasevich

Диофантовы уравненияОпределение. Диофантово уравнение имеет вид

M(x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами.

Греческий математик Диофант жил, скорее всего, в 3-ем векенашей эры.

Page 8: 20130922 h10 lecture1_matiyasevich

Диофантовы уравненияОпределение. Диофантово уравнение имеет вид

M(x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами.

Греческий математик Диофант жил, скорее всего, в 3-ем векенашей эры.

Page 9: 20130922 h10 lecture1_matiyasevich

Полиномиальные уравнения у древних греков

x2 = 2

1

1

������������

x

Page 10: 20130922 h10 lecture1_matiyasevich

Полиномиальные уравнения у древних греков

x2 = 2

1

1

������������

x

Page 11: 20130922 h10 lecture1_matiyasevich

Полиномиальные уравнения у древних греков

x2 = 2

1

1

������������

x

Page 12: 20130922 h10 lecture1_matiyasevich

Полиномиальные уравнения у древних греков

x2 = 2

1

1

������������

x

Page 13: 20130922 h10 lecture1_matiyasevich

Давид Гильберт, “Математические проблемы” , [1900]10. Решение проблемы разрешимости для произвольногодиофантова уравнения. Пусть дано произвольноедиофантово уравнение с произвольным числом неизвестных ицелыми рациональными коэффициентами; требуется указатьобщий метод, следуя которому можно было бы в конечноечисло шагов узнать, имеет ли данное уравнение решение вцелых рациональных числах или нет.

Целые рациональные числа – что это такое? – это числа 0,±1, ±2, ±3, . . .

Page 14: 20130922 h10 lecture1_matiyasevich

Давид Гильберт, “Математические проблемы” , [1900]10. Решение проблемы разрешимости для произвольногодиофантова уравнения. Пусть дано произвольноедиофантово уравнение с произвольным числом неизвестных ицелыми рациональными коэффициентами; требуется указатьобщий метод, следуя которому можно было бы в конечноечисло шагов узнать, имеет ли данное уравнение решение вцелых рациональных числах или нет.

Целые рациональные числа

– это числа 0, ±1, ±2, ±3, . . .

Page 15: 20130922 h10 lecture1_matiyasevich

Давид Гильберт, “Математические проблемы” , [1900]10. Решение проблемы разрешимости для произвольногодиофантова уравнения. Пусть дано произвольноедиофантово уравнение с произвольным числом неизвестных ицелыми рациональными коэффициентами; требуется указатьобщий метод, следуя которому можно было бы в конечноечисло шагов узнать, имеет ли данное уравнение решение вцелых рациональных числах или нет.

Целые рациональные числа – это числа 0, ±1, ±2, ±3, . . .

Page 16: 20130922 h10 lecture1_matiyasevich

Диофантовы уравненияОпределение. Диофантово уравнение имеет вид

M(x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами.

Диофант искал решения в (положительных) рациональныхчислах

Гильберт спрашивал про решение диофантовых уравнений вцелых числах

Можно также ограничиться только решениями вположительных целых числах или только в неотрицательныхцелых числах

Page 17: 20130922 h10 lecture1_matiyasevich

Диофантовы уравненияОпределение. Диофантово уравнение имеет вид

M(x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами.

Диофант искал решения в (положительных) рациональныхчислах

Гильберт спрашивал про решение диофантовых уравнений вцелых числах

Можно также ограничиться только решениями вположительных целых числах или только в неотрицательныхцелых числах

Page 18: 20130922 h10 lecture1_matiyasevich

Диофантовы уравненияОпределение. Диофантово уравнение имеет вид

M(x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами.

Диофант искал решения в (положительных) рациональныхчислах

Гильберт спрашивал про решение диофантовых уравнений вцелых числах

Можно также ограничиться только решениями вположительных целых числах или только в неотрицательныхцелых числах

Page 19: 20130922 h10 lecture1_matiyasevich

Диофантовы уравненияОпределение. Диофантово уравнение имеет вид

M(x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами.

Диофант искал решения в (положительных) рациональныхчислах

Гильберт спрашивал про решение диофантовых уравнений вцелых числах

Можно также ограничиться только решениями вположительных целых числах или только в неотрицательныхцелых числах

Page 20: 20130922 h10 lecture1_matiyasevich

Диофантовы уравненияОпределение. Диофантово уравнение имеет вид

M(x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами.

Диофант искал решения в (положительных) рациональныхчислах

Гильберт спрашивал про решение диофантовых уравнений вцелых числах

Можно также ограничиться только решениями вположительных целых числах или только в неотрицательныхцелых числах

Page 21: 20130922 h10 lecture1_matiyasevich

От Диофанта до ГильбертаДиофант жил – когда?

Page 22: 20130922 h10 lecture1_matiyasevich

От Диофанта до ГильбертаДиофант жил, скорее всего, в 3-ем веке нашей эры.

Page 23: 20130922 h10 lecture1_matiyasevich

От Диофанта до ГильбертаДиофант жил, скорее всего, в 3-ем веке нашей эры.

Гильберт сформулировал проблемы – когда?

Page 24: 20130922 h10 lecture1_matiyasevich

От Диофанта до ГильбертаДиофант жил, скорее всего, в 3-ем веке нашей эры.

Гильберт сформулировал проблемы в 1900 году

Page 25: 20130922 h10 lecture1_matiyasevich

Давид Гильберт, “Математические проблемы” , [1900]

10. Решение проблемы разрешимости для произвольногодиофантова уравнения. Пусть дано произвольноедиофантово уравнение с произвольным числом неизвестных ицелыми рациональными коэффициентами; требуется указатьобщий метод, следуя которому можно было бы в конечноечисло шагов узнать, имеет ли данное уравнение решение вцелых рациональных числах или нет.

Page 26: 20130922 h10 lecture1_matiyasevich

Давид Гильберт, “Математические проблемы” , [1900]10. Решение проблемы разрешимости для произвольногодиофантова уравнения. Пусть дано произвольноедиофантово уравнение с произвольным числом неизвестных ицелыми рациональными коэффициентами; требуется указатьобщий метод, следуя которому можно было бы в конечноечисло шагов узнать, имеет ли данное уравнение решение вцелых рациональных числах или нет.

Page 27: 20130922 h10 lecture1_matiyasevich

Массовые проблемыВ современной терминологии 10-я проблема Гильбертаявляется массовой проблемой, то есть проблемой, состоящейиз счетного числа вопросов, на каждый из которых требуетсядать ответ ДА или НЕТ. Суть массовой проблемы состоит втребовании найти единый универсальный метод, которыйпозволял бы ответить на любой из этих вопросов.

Среди двадцати трёх “Математических проблем” Гильберта10-я является единственной массовой проблемой и она можетрассматриваться как проблема информатики.

Page 28: 20130922 h10 lecture1_matiyasevich

Массовые проблемыВ современной терминологии 10-я проблема Гильбертаявляется массовой проблемой, то есть проблемой, состоящейиз счетного числа вопросов, на каждый из которых требуетсядать ответ ДА или НЕТ. Суть массовой проблемы состоит втребовании найти единый универсальный метод, которыйпозволял бы ответить на любой из этих вопросов.

Среди двадцати трёх “Математических проблем” Гильберта10-я является единственной массовой проблемой

и она можетрассматриваться как проблема информатики.

Page 29: 20130922 h10 lecture1_matiyasevich

Массовые проблемыВ современной терминологии 10-я проблема Гильбертаявляется массовой проблемой, то есть проблемой, состоящейиз счетного числа вопросов, на каждый из которых требуетсядать ответ ДА или НЕТ. Суть массовой проблемы состоит втребовании найти единый универсальный метод, которыйпозволял бы ответить на любой из этих вопросов.

Среди двадцати трёх “Математических проблем” Гильберта10-я является единственной массовой проблемой и она можетрассматриваться как проблема информатики.

Page 30: 20130922 h10 lecture1_matiyasevich

Массовые проблемыВ современной терминологии 10-я проблема Гильбертаявляется массовой проблемой, то есть проблемой, состоящейиз счетного числа вопросов, на каждый из которых требуетсядать ответ ДА или НЕТ. Суть массовой проблемы состоит втребовании найти единый универсальный метод, которыйпозволял бы ответить на любой из этих вопросов.

Среди двадцати трёх “Математических проблем” Гильберта10-я является единственной массовой проблемой и она можетрассматриваться как проблема информатики.

Page 31: 20130922 h10 lecture1_matiyasevich

ОтветСегодня мы знаем, что 10-я проблема Гильберта решения неимеет. Это означает, что она неразрешима как массоваяпроблема:

Теорема (Неразрешимость 10-й проблемы Гильберта) Несуществует алгоритма, который по узнавал бы попроизвольному диофантову уравнению, имеет ли оно решения.

В этом смысле говорят об отрицательном решении 10-йпроблемы Гильберта.

Page 32: 20130922 h10 lecture1_matiyasevich

ОтветСегодня мы знаем, что 10-я проблема Гильберта решения неимеет. Это означает, что она неразрешима как массоваяпроблема:

Теорема (Неразрешимость 10-й проблемы Гильберта) Несуществует алгоритма, который по узнавал бы попроизвольному диофантову уравнению, имеет ли оно решения.

В этом смысле говорят об отрицательном решении 10-йпроблемы Гильберта.

Page 33: 20130922 h10 lecture1_matiyasevich

ОтветСегодня мы знаем, что 10-я проблема Гильберта решения неимеет. Это означает, что она неразрешима как массоваяпроблема:

Теорема (Неразрешимость 10-й проблемы Гильберта) Несуществует алгоритма, который по узнавал бы попроизвольному диофантову уравнению, имеет ли оно решения.

В этом смысле говорят об отрицательном решении 10-йпроблемы Гильберта.

Page 34: 20130922 h10 lecture1_matiyasevich

Давид Гильберт, “Математические проблемы” , [1900]

10. Решение проблемы разрешимости для произвольногодиофантова уравнения. Пусть дано произвольноедиофантово уравнение с произвольным числом неизвестных ицелыми рациональными коэффициентами; требуется указатьобщий метод, следуя которому можно было бы в конечноечисло шагов узнать, имеет ли данное уравнение решение вцелых рациональных числах или нет.

Page 35: 20130922 h10 lecture1_matiyasevich

Давид Гильберт, “Математические проблемы” , [1900]10. Решение проблемы разрешимости для произвольногодиофантова уравнения. Пусть дано произвольноедиофантово уравнение с произвольным числом неизвестных ицелыми рациональными коэффициентами; требуется указатьобщий метод, следуя которому можно было бы в конечноечисло шагов узнать, имеет ли данное уравнение решение вцелых рациональных числах или нет.

Page 36: 20130922 h10 lecture1_matiyasevich

Первая неразрешимая массовая проблема в чистойматематике

A. A. Марков (сын) Emil L. Post1903–1979 1897–1954

Page 37: 20130922 h10 lecture1_matiyasevich

Recursively enumerable sets ofpositive integers and their deci-sion problems. Bulletin AMS,50, 284–316 (1944); reprintedin: The Collected Works ofE. L. Post, Davis, M. (ed),Birkhauser, Boston, 1994.

Hilbert’s 10th problem “begs foran unsolvability proof” Emil L. Post

1897–1954

Page 38: 20130922 h10 lecture1_matiyasevich

Хронология

I Начало 50-х годов: гипотеза, которую выдвинул MartinDavis.

I Начало 60-х годов: частичный прогресс, который достиглиMartin Davis, Hilary Putnam и Julia Robinson.

I 1970 год: последний шаг сделал Ю.Матиясевич.

Page 39: 20130922 h10 lecture1_matiyasevich

ХронологияI Начало 50-х годов: гипотеза, которую выдвинул Martin

Davis.

I Начало 60-х годов: частичный прогресс, который достиглиMartin Davis, Hilary Putnam и Julia Robinson.

I 1970 год: последний шаг сделал Ю.Матиясевич.

Page 40: 20130922 h10 lecture1_matiyasevich

ХронологияI Начало 50-х годов: гипотеза, которую выдвинул Martin

Davis.I Начало 60-х годов: частичный прогресс, который достигли

Martin Davis, Hilary Putnam и Julia Robinson.

I 1970 год: последний шаг сделал Ю.Матиясевич.

Page 41: 20130922 h10 lecture1_matiyasevich

ХронологияI Начало 50-х годов: гипотеза, которую выдвинул Martin

Davis.I Начало 60-х годов: частичный прогресс, который достигли

Martin Davis, Hilary Putnam и Julia Robinson.I 1970 год: последний шаг сделал Ю.Матиясевич.

Page 42: 20130922 h10 lecture1_matiyasevich

An e-mail

Dear Professor,

you are wrong. I am a brilliant young programmer andlast night I wrote a sophisticated program in Java##.My program solves Hilbert’s tenth problem in the__positive__ sense. Namely, for every Diophantineequation given as input, the program will print 1 or 0depending on whether the equation has a solution ornot.

The attachment contains my ingenious program. You canrun it on your favorite Diophantine equations and seehow fast my program works.

Have a fun, Professor!

Page 43: 20130922 h10 lecture1_matiyasevich

An e-mailDear Professor,

you are wrong. I am a brilliant young programmer andlast night I wrote a sophisticated program in Java##.My program solves Hilbert’s tenth problem in the__positive__ sense. Namely, for every Diophantineequation given as input, the program will print 1 or 0depending on whether the equation has a solution ornot.

The attachment contains my ingenious program. You canrun it on your favorite Diophantine equations and seehow fast my program works.

Have a fun, Professor!

Page 44: 20130922 h10 lecture1_matiyasevich

Точка зрения студента

Для любого многочлена M:

S

-M = 0

-1, если существует хотя бы одно

решение

0, если решений вообще не суще-ствует

Page 45: 20130922 h10 lecture1_matiyasevich

Точка зрения студента

Для любого многочлена M:

S-M = 0

-1, если существует хотя бы одно

решение

0, если решений вообще не суще-ствует

Page 46: 20130922 h10 lecture1_matiyasevich

Точка зрения студента

Для любого многочлена M:

S-M = 0

-1, если существует хотя бы одно

решение

0, если решений вообще не суще-ствует

Page 47: 20130922 h10 lecture1_matiyasevich

Точка зрения студентаДля любого многочлена M:

S-M = 0

-1, если существует хотя бы одно

решение

0, если решений вообще не суще-ствует

Page 48: 20130922 h10 lecture1_matiyasevich

Точка зрения профессора:

Существует многочлен MS такой, что

S-MS = 0

-

0, но решение существует1, но решений не существуетДРУГОЙ ОТВЕТостановка без ответане останавливаетсяи ничего не печатает

Page 49: 20130922 h10 lecture1_matiyasevich

Точка зрения профессора:Существует многочлен MS такой, что

S-MS = 0

-

0, но решение существует1, но решений не существуетДРУГОЙ ОТВЕТ

ОШИБКА

остановка без ответане останавливаетсяи ничего не печатает

Page 50: 20130922 h10 lecture1_matiyasevich

Точка зрения профессора:Существует многочлен MS такой, что

S-MS = 0

-

0, но решение существует1, но решений не существуетДРУГОЙ ОТВЕТ

ОШИБКА

остановка без ответане останавливаетсяи ничего не печатает

Page 51: 20130922 h10 lecture1_matiyasevich

Точка зрения профессора:Существует многочлен MS такой, что

S-MS = 0

-

0, но решение существует

1, но решений не существуетДРУГОЙ ОТВЕТостановка без ответане останавливаетсяи ничего не печатает

Page 52: 20130922 h10 lecture1_matiyasevich

Точка зрения профессора:Существует многочлен MS такой, что

S-MS = 0

-

0, но решение существует1, но решений не существует

ДРУГОЙ ОТВЕТостановка без ответане останавливаетсяи ничего не печатает

Page 53: 20130922 h10 lecture1_matiyasevich

Точка зрения профессора:Существует многочлен MS такой, что

S-MS = 0

-

0, но решение существует1, но решений не существуетДРУГОЙ ОТВЕТ

остановка без ответане останавливаетсяи ничего не печатает

Page 54: 20130922 h10 lecture1_matiyasevich

Точка зрения профессора:Существует многочлен MS такой, что

S-MS = 0

-

0, но решение существует1, но решений не существуетДРУГОЙ ОТВЕТостановка без ответа

не останавливаетсяи ничего не печатает

Page 55: 20130922 h10 lecture1_matiyasevich

Точка зрения профессора:Существует многочлен MS такой, что

S-MS = 0

-

0, но решение существует1, но решений не существуетДРУГОЙ ОТВЕТостановка без ответане останавливаетсяи ничего не печатает

Page 56: 20130922 h10 lecture1_matiyasevich

Программа профессора

P-S

-MS = 0

S - ОШИБКА

Page 57: 20130922 h10 lecture1_matiyasevich

Программа профессора

P

-S

-MS = 0

S - ОШИБКА

Page 58: 20130922 h10 lecture1_matiyasevich

Программа профессора

P-S

-MS = 0

S - ОШИБКА

Page 59: 20130922 h10 lecture1_matiyasevich

Программа профессора

P-S

-MS = 0

S - ОШИБКА

Page 60: 20130922 h10 lecture1_matiyasevich

Программа профессора

P-S

-MS = 0

S -

ОШИБКА

Page 61: 20130922 h10 lecture1_matiyasevich

Программа профессора

P-S

-MS = 0

S - ОШИБКА

Page 62: 20130922 h10 lecture1_matiyasevich

Усовершенствованная программа профессора

P-SS-MS = 0 - ОШИБКА

Page 63: 20130922 h10 lecture1_matiyasevich

Усовершенствованная программа профессора

P-SS-MS = 0 - ОШИБКА

Формальное доказательство того,что S ошибется на MS

-�

Page 64: 20130922 h10 lecture1_matiyasevich

Усовершенствованная программа профессора

P-SS-MS = 0 -

0, но решение существует1, но решений нетДРУГОЙ ОТВЕТостановка без ответане останавливается

Формальное доказательство того,что S ошибется на MS

-�

Page 65: 20130922 h10 lecture1_matiyasevich

Усовершенствованная программа профессора

P-SS-MS = 0 -

0, но решение существует1, но решений нетДРУГОЙ ОТВЕТостановка без ответане останавливается

Доказательство того, что:

I если S выдает 0, то уравнениеMS = 0 имеет решение

I если S выдает 1, то уравнениеMS = 0 решений не имеет

-�

Page 66: 20130922 h10 lecture1_matiyasevich

Диофантовы уравненияОпределение. Диофантово уравнение имеет вид

M(x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами.

Диофант искал решения в (положительных) рациональныхчислах

Гильберт спрашивал про решение диофантовых уравнений вцелых числах

Можно также ограничиться только решениями вположительных целых числах или только в неотрицательныхцелых числах

Page 67: 20130922 h10 lecture1_matiyasevich

Диофантовы уравненияОпределение. Диофантово уравнение имеет вид

M(x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами.

Диофант искал решения в (положительных) рациональныхчислах

Гильберт спрашивал про решение диофантовых уравнений вцелых числах

Можно также ограничиться только решениями вположительных целых числах или только в неотрицательныхцелых числах

Page 68: 20130922 h10 lecture1_matiyasevich

Диофантовы уравненияОпределение. Диофантово уравнение имеет вид

M(x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами.

Диофант искал решения в (положительных) рациональныхчислах

Гильберт спрашивал про решение диофантовых уравнений вцелых числах

Можно также ограничиться только решениями вположительных целых числах или только в неотрицательныхцелых числах

Page 69: 20130922 h10 lecture1_matiyasevich

Диофантовы уравненияОпределение. Диофантово уравнение имеет вид

M(x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами.

Диофант искал решения в (положительных) рациональныхчислах

Гильберт спрашивал про решение диофантовых уравнений вцелых числах

Можно также ограничиться только решениями вположительных целых числах или только в неотрицательныхцелых числах

Page 70: 20130922 h10 lecture1_matiyasevich

Диофантовы уравненияОпределение. Диофантово уравнение имеет вид

M(x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами.

Диофант искал решения в (положительных) рациональныхчислах

Гильберт спрашивал про решение диофантовых уравнений вцелых числах

Можно также ограничиться только решениями вположительных целых числах или только в неотрицательныхцелых числах

Page 71: 20130922 h10 lecture1_matiyasevich

Натуральные числа против целых

(x + 1)3 + (y + 1)3 = (z + 1)3

Имеет ли это уравнение решение в целых числах?Да, и это тривиально: y = −1, z = x .

Имеет ли это уравнение решение в неотрицательных целыхчислах?Нет, не имеет, но это нетривиально (частный случай Великойтеоремы Ферма).

Page 72: 20130922 h10 lecture1_matiyasevich

Натуральные числа против целых

(x + 1)3 + (y + 1)3 = (z + 1)3

Имеет ли это уравнение решение в целых числах?

Да, и это тривиально: y = −1, z = x .

Имеет ли это уравнение решение в неотрицательных целыхчислах?Нет, не имеет, но это нетривиально (частный случай Великойтеоремы Ферма).

Page 73: 20130922 h10 lecture1_matiyasevich

Натуральные числа против целых

(x + 1)3 + (y + 1)3 = (z + 1)3

Имеет ли это уравнение решение в целых числах?Да, и это тривиально: y = −1, z = x .

Имеет ли это уравнение решение в неотрицательных целыхчислах?Нет, не имеет, но это нетривиально (частный случай Великойтеоремы Ферма).

Page 74: 20130922 h10 lecture1_matiyasevich

Натуральные числа против целых

(x + 1)3 + (y + 1)3 = (z + 1)3

Имеет ли это уравнение решение в целых числах?Да, и это тривиально: y = −1, z = x .

Имеет ли это уравнение решение в неотрицательных целыхчислах?

Нет, не имеет, но это нетривиально (частный случай Великойтеоремы Ферма).

Page 75: 20130922 h10 lecture1_matiyasevich

Натуральные числа против целых

(x + 1)3 + (y + 1)3 = (z + 1)3

Имеет ли это уравнение решение в целых числах?Да, и это тривиально: y = −1, z = x .

Имеет ли это уравнение решение в неотрицательных целыхчислах?Нет, не имеет, но это нетривиально (частный случай Великойтеоремы Ферма).

Page 76: 20130922 h10 lecture1_matiyasevich

От целых чисел к натуральнымДиофантово уравнение

P(x1, . . . , xm) = 0

имеет решение в целых числах x1, . . . , xm тогда и только тогда,когда диофантово уравнение

P(p1 − q1, . . . , pm − qm) = 0.

имеет решение в натуральных числах p1, . . . , pm, q1, . . . , qm.

Говорят, что массовая проблема распознавания разрешимостидиофантовых уравнений в целых числах сводится к массовойпроблеме распознавания разрешимости диофантовыхуравнений в натуральных числах.

Page 77: 20130922 h10 lecture1_matiyasevich

От целых чисел к натуральнымДиофантово уравнение

P(x1, . . . , xm) = 0

имеет решение в целых числах x1, . . . , xm тогда и только тогда,когда диофантово уравнение

P(p1 − q1, . . . , pm − qm) = 0.

имеет решение в натуральных числах p1, . . . , pm, q1, . . . , qm.

Говорят, что массовая проблема распознавания разрешимостидиофантовых уравнений в целых числах сводится к массовойпроблеме распознавания разрешимости диофантовыхуравнений в натуральных числах.

Page 78: 20130922 h10 lecture1_matiyasevich

От натуральных чисел к целымДиофантово уравнение

P(p1, . . . , pm) = 0

имеет решение в натуральных числах тогда и только тогда,когда диофантово уравнение

P(w21 + x2

1 + y21 + z2

1 , . . . ,w2m + x2

m + y2m + z2

m) = 0.

имеет решение в целых числах.

Теорема (Joseph-Louis Lagrange [1770], знал и PierreFermat, но не опубликовал) Каждое натуральное числоявляется суммой четырех квадратов.

Таким образом, массовая проблема распознаванияразрешимости диофантовых уравнений в натуральных целыхчислах сводится к массовой проблеме распознаванияразрешимости диофантовых уравнений в целых числах.

Page 79: 20130922 h10 lecture1_matiyasevich

От натуральных чисел к целымДиофантово уравнение

P(p1, . . . , pm) = 0

имеет решение в натуральных числах тогда и только тогда,когда диофантово уравнение

P(w21 + x2

1 + y21 + z2

1 , . . . ,w2m + x2

m + y2m + z2

m) = 0.

имеет решение в целых числах.

Теорема (Joseph-Louis Lagrange [1770], знал и PierreFermat, но не опубликовал) Каждое натуральное числоявляется суммой четырех квадратов.

Таким образом, массовая проблема распознаванияразрешимости диофантовых уравнений в натуральных целыхчислах сводится к массовой проблеме распознаванияразрешимости диофантовых уравнений в целых числах.

Page 80: 20130922 h10 lecture1_matiyasevich

От натуральных чисел к целымДиофантово уравнение

P(p1, . . . , pm) = 0

имеет решение в натуральных числах тогда и только тогда,когда диофантово уравнение

P(w21 + x2

1 + y21 + z2

1 , . . . ,w2m + x2

m + y2m + z2

m) = 0.

имеет решение в целых числах.

Теорема (Joseph-Louis Lagrange [1770], знал и PierreFermat, но не опубликовал) Каждое натуральное числоявляется суммой четырех квадратов.

Таким образом, массовая проблема распознаванияразрешимости диофантовых уравнений в натуральных целыхчислах сводится к массовой проблеме распознаванияразрешимости диофантовых уравнений в целых числах.

Page 81: 20130922 h10 lecture1_matiyasevich

Натуральные числа против целыхУ нас есть два сведения:

I массовая проблема распознавания разрешимостидиофантовых уравнений в целых числах сводится кмассовой проблеме распознавания разрешимостидиофантовых уравнений в натуральных числах.

I массовая проблема распознавания разрешимостидиофантовых уравнений в натуральных целых числахсводится к массовой проблеме распознаванияразрешимости диофантовых уравнений в целых числах.

Таким образом, массовая проблема распознаванияразрешимости диофантовых уравнений в целых числахэквивалентна массовой проблеме распознавания разрешимостидиофантовых уравнений в натуральных числах.

Мы будем заниматься решением уравнений в натуральныхчислах 0, 1, 2, . . .

Page 82: 20130922 h10 lecture1_matiyasevich

Натуральные числа против целыхУ нас есть два сведения:

I массовая проблема распознавания разрешимостидиофантовых уравнений в целых числах сводится кмассовой проблеме распознавания разрешимостидиофантовых уравнений в натуральных числах.

I массовая проблема распознавания разрешимостидиофантовых уравнений в натуральных целых числахсводится к массовой проблеме распознаванияразрешимости диофантовых уравнений в целых числах.

Таким образом, массовая проблема распознаванияразрешимости диофантовых уравнений в целых числахэквивалентна массовой проблеме распознавания разрешимостидиофантовых уравнений в натуральных числах.

Мы будем заниматься решением уравнений в натуральныхчислах 0, 1, 2, . . .

Page 83: 20130922 h10 lecture1_matiyasevich

Натуральные числа против целыхУ нас есть два сведения:

I массовая проблема распознавания разрешимостидиофантовых уравнений в целых числах сводится кмассовой проблеме распознавания разрешимостидиофантовых уравнений в натуральных числах.

I массовая проблема распознавания разрешимостидиофантовых уравнений в натуральных целых числахсводится к массовой проблеме распознаванияразрешимости диофантовых уравнений в целых числах.

Таким образом, массовая проблема распознаванияразрешимости диофантовых уравнений в целых числахэквивалентна массовой проблеме распознавания разрешимостидиофантовых уравнений в натуральных числах.

Мы будем заниматься решением уравнений в натуральныхчислах 0, 1, 2, . . .

Page 84: 20130922 h10 lecture1_matiyasevich

Давид Гильберт, “Математические проблемы” , [1900]10. Решение проблемы разрешимости для произвольногодиофантова уравнения. Пусть дано произвольноедиофантово уравнение с произвольным числом неизвестных ицелыми рациональными коэффициентами; требуется указатьобщий метод, следуя которому можно было бы в конечноечисло шагов узнать, имеет ли данное уравнение решение вцелых рациональных числах или нет.

Page 85: 20130922 h10 lecture1_matiyasevich

Уравнения с параметрамиСемейство диофантовых уравнений имеет вид

M(a1, . . . , an, x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами, переменныекоторго разделены на две группы:

I параметры a1, . . . ,an;I неизвестные x1, . . . ,xm.

Рассмотрим множествоM такое, что

〈a1, . . . , an〉 ∈ M⇐⇒∃x1 . . . xm{M(a1, . . . , an, x1, . . . , xm) = 0}.

Множества, имеющие такие представления называютсядиофантовыми.

Page 86: 20130922 h10 lecture1_matiyasevich

Уравнения с параметрамиСемейство диофантовых уравнений имеет вид

M(a1, . . . , an, x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами, переменныекоторго разделены на две группы:

I параметры a1, . . . ,an;

I неизвестные x1, . . . ,xm.Рассмотрим множествоM такое, что

〈a1, . . . , an〉 ∈ M⇐⇒∃x1 . . . xm{M(a1, . . . , an, x1, . . . , xm) = 0}.

Множества, имеющие такие представления называютсядиофантовыми.

Page 87: 20130922 h10 lecture1_matiyasevich

Уравнения с параметрамиСемейство диофантовых уравнений имеет вид

M(a1, . . . , an, x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами, переменныекоторго разделены на две группы:

I параметры a1, . . . ,an;I неизвестные x1, . . . ,xm.

Рассмотрим множествоM такое, что

〈a1, . . . , an〉 ∈ M⇐⇒∃x1 . . . xm{M(a1, . . . , an, x1, . . . , xm) = 0}.

Множества, имеющие такие представления называютсядиофантовыми.

Page 88: 20130922 h10 lecture1_matiyasevich

Уравнения с параметрамиСемейство диофантовых уравнений имеет вид

M(a1, . . . , an, x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами, переменныекоторго разделены на две группы:

I параметры a1, . . . ,an;I неизвестные x1, . . . ,xm.

Рассмотрим множествоM такое, что

〈a1, . . . , an〉 ∈ M⇐⇒∃x1 . . . xm{M(a1, . . . , an, x1, . . . , xm) = 0}.

Множества, имеющие такие представления называютсядиофантовыми.

Page 89: 20130922 h10 lecture1_matiyasevich

Уравнения с параметрамиСемейство диофантовых уравнений имеет вид

M(a1, . . . , an, x1, . . . , xm) = 0,

где M – многочлен с целыми коэффициентами, переменныекоторго разделены на две группы:

I параметры a1, . . . ,an;I неизвестные x1, . . . ,xm.

Рассмотрим множествоM такое, что

〈a1, . . . , an〉 ∈ M⇐⇒∃x1 . . . xm{M(a1, . . . , an, x1, . . . , xm) = 0}.

Множества, имеющие такие представления называютсядиофантовыми.

Page 90: 20130922 h10 lecture1_matiyasevich

Примеры диофантовых множеств

I Множество всех полных квадратов, представленоуравнением

a− x2 = 0

I Множество всех составных чисел, представленоуравнением

a− (x1 + 2)(x2 + 2) = 0

I Множество всех нестепеней числа 2, представленоуравнением

a− (2x1 + 3)x2 = 0

Page 91: 20130922 h10 lecture1_matiyasevich

Примеры диофантовых множествI Множество всех полных квадратов, представлено

уравнением

a− x2 = 0

I Множество всех составных чисел, представленоуравнением

a− (x1 + 2)(x2 + 2) = 0

I Множество всех нестепеней числа 2, представленоуравнением

a− (2x1 + 3)x2 = 0

Page 92: 20130922 h10 lecture1_matiyasevich

Примеры диофантовых множествI Множество всех полных квадратов, представлено

уравнениемa− x2 = 0

I Множество всех составных чисел, представленоуравнением

a− (x1 + 2)(x2 + 2) = 0

I Множество всех нестепеней числа 2, представленоуравнением

a− (2x1 + 3)x2 = 0

Page 93: 20130922 h10 lecture1_matiyasevich

Примеры диофантовых множествI Множество всех полных квадратов, представлено

уравнениемa− x2 = 0

I Множество всех составных чисел, представленоуравнением

a− (x1 + 2)(x2 + 2) = 0

I Множество всех нестепеней числа 2, представленоуравнением

a− (2x1 + 3)x2 = 0

Page 94: 20130922 h10 lecture1_matiyasevich

Примеры диофантовых множествI Множество всех полных квадратов, представлено

уравнениемa− x2 = 0

I Множество всех составных чисел, представленоуравнением

a− (x1 + 2)(x2 + 2) = 0

I Множество всех нестепеней числа 2, представленоуравнением

a− (2x1 + 3)x2 = 0

Page 95: 20130922 h10 lecture1_matiyasevich

Примеры диофантовых множествI Множество всех полных квадратов, представлено

уравнениемa− x2 = 0

I Множество всех составных чисел, представленоуравнением

a− (x1 + 2)(x2 + 2) = 0

I Множество всех нестепеней числа 2, представленоуравнением

a− (2x1 + 3)x2 = 0

Page 96: 20130922 h10 lecture1_matiyasevich

Примеры диофантовых множествI Множество всех полных квадратов, представлено

уравнениемa− x2 = 0

I Множество всех составных чисел, представленоуравнением

a− (x1 + 2)(x2 + 2) = 0

I Множество всех нестепеней числа 2, представленоуравнением

a− (2x1 + 3)x2 = 0

Page 97: 20130922 h10 lecture1_matiyasevich

Программа Диофанта

〈a1, . . . , an〉 ∈ M⇐⇒

∃x1 . . . xm{P(a1, . . . , an, x1, . . . , xm) = 0

}

D-〈a1, . . . , an〉 -остановка, если 〈a1, . . . , an〉 ∈ M

вечная работа в противном случае

for (y=0;;y++)

for (x1=0;x1<y;x1++)........................for (xm=0;xm<y;xm++)if (P(a1,...,an,x1,...,xm)=0) STOP

Page 98: 20130922 h10 lecture1_matiyasevich

Программа Диофанта

〈a1, . . . , an〉 ∈ M⇐⇒

∃x1 . . . xm{P(a1, . . . , an, x1, . . . , xm) = 0

}

D-〈a1, . . . , an〉 -остановка, если 〈a1, . . . , an〉 ∈ M

вечная работа в противном случае

for (y=0;;y++)

for (x1=0;x1<y;x1++)........................for (xm=0;xm<y;xm++)if (P(a1,...,an,x1,...,xm)=0) STOP

Page 99: 20130922 h10 lecture1_matiyasevich

Программа Диофанта

〈a1, . . . , an〉 ∈ M⇐⇒ ∃x1 . . . xm{P(a1, . . . , an, x1, . . . , xm) = 0}

D-〈a1, . . . , an〉 -остановка, если 〈a1, . . . , an〉 ∈ M

вечная работа в противном случае

for (y=0;;y++)

for (x1=0;x1<y;x1++)........................for (xm=0;xm<y;xm++)if (P(a1,...,an,x1,...,xm)=0) STOP

Page 100: 20130922 h10 lecture1_matiyasevich

Программа Диофанта

〈a1, . . . , an〉 ∈ M⇐⇒ ∃x1 . . . xm{P(a1, . . . , an, x1, . . . , xm) = 0}

D-〈a1, . . . , an〉 -остановка, если 〈a1, . . . , an〉 ∈ M

вечная работа в противном случае

for (y=0;;y++)

for (x1=0;x1<y;x1++)........................for (xm=0;xm<y;xm++)if (P(a1,...,an,x1,...,xm)=0) STOP

Page 101: 20130922 h10 lecture1_matiyasevich

Программа Диофанта

〈a1, . . . , an〉 ∈ M⇐⇒ ∃x1 . . . xm{P(a1, . . . , an, x1, . . . , xm) = 0}

D

-〈a1, . . . , an〉 -остановка, если 〈a1, . . . , an〉 ∈ M

вечная работа в противном случае

for (y=0;;y++)

for (x1=0;x1<y;x1++)........................for (xm=0;xm<y;xm++)if (P(a1,...,an,x1,...,xm)=0) STOP

Page 102: 20130922 h10 lecture1_matiyasevich

Программа Диофанта

〈a1, . . . , an〉 ∈ M⇐⇒ ∃x1 . . . xm{P(a1, . . . , an, x1, . . . , xm) = 0}

D-〈a1, . . . , an〉

-остановка, если 〈a1, . . . , an〉 ∈ M

вечная работа в противном случае

for (y=0;;y++)

for (x1=0;x1<y;x1++)........................for (xm=0;xm<y;xm++)if (P(a1,...,an,x1,...,xm)=0) STOP

Page 103: 20130922 h10 lecture1_matiyasevich

Программа Диофанта

〈a1, . . . , an〉 ∈ M⇐⇒ ∃x1 . . . xm{P(a1, . . . , an, x1, . . . , xm) = 0}

D-〈a1, . . . , an〉 -остановка, если 〈a1, . . . , an〉 ∈ M

вечная работа в противном случае

for (y=0;;y++)for (x1=0;x1<y;x1++)........................for (xm=0;xm<y;xm++)if (P(a1,...,an,x1,...,xm)=0) STOP

Page 104: 20130922 h10 lecture1_matiyasevich

Программа Диофанта

〈a1, . . . , an〉 ∈ M⇐⇒ ∃x1 . . . xm{P(a1, . . . , an, x1, . . . , xm) = 0}

D-〈a1, . . . , an〉 -остановка, если 〈a1, . . . , an〉 ∈ M

вечная работа в противном случае

for (y=0;;y++)

for (x1=0;x1<y;x1++)........................for (xm=0;xm<y;xm++)if (P(a1,...,an,x1,...,xm)=0) STOP

Page 105: 20130922 h10 lecture1_matiyasevich

Перечислимые множества

Определение. МножествоM, состоящее из n-ок натуральныхчисел называется перечислимым, если можно написатьпрограмму R, такую что

R-〈a1, . . . , an〉 -остановка, если 〈a1, . . . , an〉 ∈ M

вечная работа в противном случае

Эквивалентное определение. МножествоM, состоящее изn-ок натуральных чисел называется перечислимым, еслиможно написать программу P которая (работая бесконечнодолго) будет печатать только элементы множестваM инапечатает каждое из них, быть может, много раз.

Page 106: 20130922 h10 lecture1_matiyasevich

Перечислимые множестваОпределение. МножествоM, состоящее из n-ок натуральныхчисел называется перечислимым, если можно написатьпрограмму R, такую что

R-〈a1, . . . , an〉 -остановка, если 〈a1, . . . , an〉 ∈ M

вечная работа в противном случае

Эквивалентное определение. МножествоM, состоящее изn-ок натуральных чисел называется перечислимым, еслиможно написать программу P которая (работая бесконечнодолго) будет печатать только элементы множестваM инапечатает каждое из них, быть может, много раз.

Page 107: 20130922 h10 lecture1_matiyasevich

Перечислимые множестваОпределение. МножествоM, состоящее из n-ок натуральныхчисел называется перечислимым, если можно написатьпрограмму R, такую что

R-〈a1, . . . , an〉 -остановка, если 〈a1, . . . , an〉 ∈ M

вечная работа в противном случае

Эквивалентное определение. МножествоM, состоящее изn-ок натуральных чисел называется перечислимым, еслиможно написать программу P которая (работая бесконечнодолго) будет печатать только элементы множестваM инапечатает каждое из них, быть может, много раз.

Page 108: 20130922 h10 lecture1_matiyasevich

Вторая программа Диофанта

〈a1, . . . , an〉 ∈ M⇐⇒∃x1 . . . xm{P(a1, . . . , an, x1, . . . , xm) = 0}

for (y=0;;y++)for (a1=0;a1<y;a1++).......................for (an=0;an<y;an++)for (x1=0;x1<y;x1++)........................for (xm=0;xm<y;xm++)if (P(a1,...,an,x1,...,xm)=0)

print(a1,...,an)

Page 109: 20130922 h10 lecture1_matiyasevich

Вторая программа Диофанта

〈a1, . . . , an〉 ∈ M⇐⇒∃x1 . . . xm{P(a1, . . . , an, x1, . . . , xm) = 0}

for (y=0;;y++)for (a1=0;a1<y;a1++).......................for (an=0;an<y;an++)for (x1=0;x1<y;x1++)........................for (xm=0;xm<y;xm++)if (P(a1,...,an,x1,...,xm)=0)

print(a1,...,an)

Page 110: 20130922 h10 lecture1_matiyasevich

Пример

P(a1, x1, x2) = a1 − (x1 + 2)(x2 + 2)

for y dofor a1 to y dofor x1 to y dofor x2 to y doif a1 - (x1 + 2)*(x2 + 2)=0 thenprint(a1) fi

od od od od

4, 4, 4, 6, 6, 4, 6, 6, 4, 6, 6, 8, 8, 4, 6, 6, 8, 8, 9, 4, 6, 6, 8, 8, 9,10, 10, 4, 6, 6, 8, 8, 9, 10, 10, 4, 6, 6, 8, 8, 9, 10, 10, 12, 12, 12,12, 4, 6, 6,. . .

Page 111: 20130922 h10 lecture1_matiyasevich

Пример

P(a1, x1, x2) = a1 − (x1 + 2)(x2 + 2)

for y dofor a1 to y dofor x1 to y dofor x2 to y doif a1 - (x1 + 2)*(x2 + 2)=0 thenprint(a1) fi

od od od od

4, 4, 4, 6, 6, 4, 6, 6, 4, 6, 6, 8, 8, 4, 6, 6, 8, 8, 9, 4, 6, 6, 8, 8, 9,10, 10, 4, 6, 6, 8, 8, 9, 10, 10, 4, 6, 6, 8, 8, 9, 10, 10, 12, 12, 12,12, 4, 6, 6,. . .

Page 112: 20130922 h10 lecture1_matiyasevich

Пример

P(a1, x1, x2) = a1 − (x1 + 2)(x2 + 2)

for y dofor a1 to y dofor x1 to y dofor x2 to y doif a1 - (x1 + 2)*(x2 + 2)=0 thenprint(a1) fi

od od od od

4, 4, 4, 6, 6, 4, 6, 6, 4, 6, 6, 8, 8, 4, 6, 6, 8, 8, 9, 4, 6, 6, 8, 8, 9,10, 10, 4, 6, 6, 8, 8, 9, 10, 10, 4, 6, 6, 8, 8, 9, 10, 10, 12, 12, 12,12, 4, 6, 6,. . .

Page 113: 20130922 h10 lecture1_matiyasevich

Перечислимые множества

Определение. МножествоM, состоящее из n-ок натуральныхчисел называется перечислимым, если можно написатьпрограмму R, такую что

R-〈a1, . . . , an〉 -остановка, если 〈a1, . . . , an〉 ∈ M

вечная работа в противном случае

Эквивалентное определение. МножествоM, состоящее изn-ок натуральных чисел называется перечислимым, еслиможно написать программу P которая (работая бесконечнодолго) будет печатать только элементы множестваM инапечатает каждое из них, быть может, много раз.

Page 114: 20130922 h10 lecture1_matiyasevich

Перечислимые множестваОпределение. МножествоM, состоящее из n-ок натуральныхчисел называется перечислимым, если можно написатьпрограмму R, такую что

R-〈a1, . . . , an〉 -остановка, если 〈a1, . . . , an〉 ∈ M

вечная работа в противном случае

Эквивалентное определение. МножествоM, состоящее изn-ок натуральных чисел называется перечислимым, еслиможно написать программу P которая (работая бесконечнодолго) будет печатать только элементы множестваM инапечатает каждое из них, быть может, много раз.

Page 115: 20130922 h10 lecture1_matiyasevich

Перечислимые множестваОпределение. МножествоM, состоящее из n-ок натуральныхчисел называется перечислимым, если можно написатьпрограмму R, такую что

R-〈a1, . . . , an〉 -остановка, если 〈a1, . . . , an〉 ∈ M

вечная работа в противном случае

Эквивалентное определение. МножествоM, состоящее изn-ок натуральных чисел называется перечислимым, еслиможно написать программу P которая (работая бесконечнодолго) будет печатать только элементы множестваM инапечатает каждое из них, быть может, много раз.

Page 116: 20130922 h10 lecture1_matiyasevich

Гипотеза Martin’a Davis’а

Тривиальный факт. Каждое диофантово множество являетсяперечислимым.

Гипотеза M. Davis’а (начало 50-х). Каждое перечислимоемножество является диофантовым.

Гипотеза M. Davis’а была доказана в 1970 году.

DPRM-теорема. Понятия перечислимое множество идиофантово множество совпадают.

Martin Davis, Hilary Putnam, Julia Robinson, Юрий Матиясевич

Page 117: 20130922 h10 lecture1_matiyasevich

Гипотеза Martin’a Davis’а

Тривиальный факт. Каждое диофантово множество являетсяперечислимым.

Гипотеза M. Davis’а (начало 50-х). Каждое перечислимоемножество является диофантовым.

Гипотеза M. Davis’а была доказана в 1970 году.

DPRM-теорема. Понятия перечислимое множество идиофантово множество совпадают.

Martin Davis, Hilary Putnam, Julia Robinson, Юрий Матиясевич

Page 118: 20130922 h10 lecture1_matiyasevich

Гипотеза Martin’a Davis’а

Тривиальный факт. Каждое диофантово множество являетсяперечислимым.

Гипотеза M. Davis’а (начало 50-х). Каждое перечислимоемножество является диофантовым.

Гипотеза M. Davis’а была доказана в 1970 году.

DPRM-теорема. Понятия перечислимое множество идиофантово множество совпадают.

Martin Davis, Hilary Putnam, Julia Robinson, Юрий Матиясевич

Page 119: 20130922 h10 lecture1_matiyasevich

Гипотеза Martin’a Davis’а

Тривиальный факт. Каждое диофантово множество являетсяперечислимым.

Гипотеза M. Davis’а (начало 50-х). Каждое перечислимоемножество является диофантовым.

Гипотеза M. Davis’а была доказана в 1970 году.

DPRM-теорема. Понятия перечислимое множество идиофантово множество совпадают.

Martin Davis, Hilary Putnam, Julia Robinson, Юрий Матиясевич

Page 120: 20130922 h10 lecture1_matiyasevich

Гипотеза Martin’a Davis’а

Тривиальный факт. Каждое диофантово множество являетсяперечислимым.

Гипотеза M. Davis’а (начало 50-х). Каждое перечислимоемножество является диофантовым.

Гипотеза M. Davis’а была доказана в 1970 году.

DPRM-теорема. Понятия перечислимое множество идиофантово множество совпадают.

Martin Davis, Hilary Putnam, Julia Robinson, Юрий Матиясевич

Page 121: 20130922 h10 lecture1_matiyasevich

Перечисление диофантовых уравнений

M1(a, x) = 0, . . . , Mk(a, x) = 0, . . .

Page 122: 20130922 h10 lecture1_matiyasevich

Программа профессора

Генератор уравнений

?

M1(a, x) = 0, . . . , Mk(a, x) = 0, . . .

Page 123: 20130922 h10 lecture1_matiyasevich

Программа профессора

Генератор уравнений

?

M1(a, x) = 0, . . . ,

?

Mk(a, x) = 0, . . .?

. . . . . .S(M1(1, x) = 0) S(Mk(k, x) = 0)

Page 124: 20130922 h10 lecture1_matiyasevich

Программа профессора

Генератор уравнений

?

M1(a, x) = 0, . . . ,

?

Mk(a, x) = 0, . . .?

. . . . . .S(M1(1, x) = 0) S(Mk(k, x) = 0)

? ?

if S outputs 0then print(1)

if S outputs 0then print(k). . . . . .

? ?

Page 125: 20130922 h10 lecture1_matiyasevich

Программа профессора

Генератор уравнений

?

M1(a, x) = 0, . . . ,

?

Mk(a, x) = 0, . . .?

. . . . . .S(M1(1, x) = 0) S(Mk(k, x) = 0)

? ?

if S outputs 0then print(1)

if S outputs 0then print(k). . . . . .

? ?

Page 126: 20130922 h10 lecture1_matiyasevich

Программа профессора

Генератор уравнений

?

M1(a, x) = 0, . . . ,

?

Mk(a, x) = 0, . . .?

. . . . . .S(M1(1, x) = 0) S(Mk(k, x) = 0)

? ?

if S outputs 0then print(1)

if S outputs 0then print(k). . . . . .

? ?

S(Mk(k , x) = 0) = 0 ⇔ k ∈MS

Page 127: 20130922 h10 lecture1_matiyasevich

Программа профессора

Генератор уравнений

?

M1(a, x) = 0, . . . ,

?

Mk(a, x) = 0, . . .?

. . . . . .S(M1(1, x) = 0) S(Mk(k, x) = 0)

? ?

if S outputs 0then print(1)

if S outputs 0then print(k). . . . . .

? ?

S(Mk(k, x) = 0) = 0 ⇔ k ∈MS

Page 128: 20130922 h10 lecture1_matiyasevich

Программа профессора

Генератор уравнений

?

M1(a, x) = 0, . . . ,

?

Mk(a, x) = 0, . . .?

. . . . . .S(M1(1, x) = 0) S(Mk(k, x) = 0)

? ?

if S outputs 0then print(1)

if S outputs 0then print(k). . . . . .

? ?

S(Mk(k , x) = 0) = 0 ⇔ k ∈MS ⇔ ∃x{MS(k , x) = 0}

Page 129: 20130922 h10 lecture1_matiyasevich

Программа профессора

Генератор уравнений

?

M1(a, x) = 0, . . . ,

?

Mk(a, x) = 0, . . .?

. . . . . .S(M1(1, x) = 0) S(Mk(k, x) = 0)

? ?

if S outputs 0then print(1)

if S outputs 0then print(k). . . . . .

? ?

S(Mk(k, x) = 0) = 0 ⇔ k ∈MS ⇔ ∃x{MkS (k, x) = 0}

Page 130: 20130922 h10 lecture1_matiyasevich

Программа профессора

Генератор уравнений

?

M1(a, x) = 0, . . . ,

?

Mk(a, x) = 0, . . .?

. . . . . .S(M1(1, x) = 0) S(Mk(k, x) = 0)

? ?

if S outputs 0then print(1)

if S outputs 0then print(k). . . . . .

? ?

S(Mk(k, x) = 0) = 0 ⇔ k ∈MS ⇔ ∃x{MkS (k, x) = 0}

S(MkS (kS , x) = 0)

Page 131: 20130922 h10 lecture1_matiyasevich

Программа профессора

Генератор уравнений

?

M1(a, x) = 0, . . . ,

?

Mk(a, x) = 0, . . .?

. . . . . .S(M1(1, x) = 0) S(Mk(k, x) = 0)

? ?

if S outputs 0then print(1)

if S outputs 0then print(k). . . . . .

? ?

S(Mk(k, x) = 0) = 0 ⇔ k ∈MS ⇔ ∃x{MkS (k, x) = 0}

S(MkS (kS , x) = 0) =?

Page 132: 20130922 h10 lecture1_matiyasevich

Программа профессора

Генератор уравнений

?

M1(a, x) = 0, . . . ,

?

Mk(a, x) = 0, . . .?

. . . . . .S(M1(1, x) = 0) S(Mk(k, x) = 0)

? ?

if S outputs 0then print(1)

if S outputs 0then print(k). . . . . .

? ?

S(Mk(k, x) = 0) = 0 ⇔ k ∈MS ⇔ ∃x{MkS (k, x) = 0}

S(MkS (kS , x) = 0) = 0

Page 133: 20130922 h10 lecture1_matiyasevich

Программа профессора

Генератор уравнений

?

M1(a, x) = 0, . . . ,

?

Mk(a, x) = 0, . . .?

. . . . . .S(M1(1, x) = 0) S(Mk(k, x) = 0)

? ?

if S outputs 0then print(1)

if S outputs 0then print(k). . . . . .

? ?

S(Mk(k, x) = 0) = 0 ⇔ k ∈MS ⇔ ∃x{MkS (k, x) = 0}

S(MkS (kS , x) = 0) = 0 ⇒ kS ∈MS

Page 134: 20130922 h10 lecture1_matiyasevich

Программа профессора

Генератор уравнений

?

M1(a, x) = 0, . . . ,

?

Mk(a, x) = 0, . . .?

. . . . . .S(M1(1, x) = 0) S(Mk(k, x) = 0)

? ?

if S outputs 0then print(1)

if S outputs 0then print(k). . . . . .

? ?S(Mk(k, x) = 0) = 0 ⇔ k ∈MS ⇔ ∃x{MkS (k, x) = 0}

S(MkS (kS , x) = 0) = 0 ⇒ kS ∈MS ⇒ ∃x{MkS (kS , x) = 0}

Page 135: 20130922 h10 lecture1_matiyasevich

Программа профессора

Генератор уравнений

?

M1(a, x) = 0, . . . ,

?

Mk(a, x) = 0, . . .?

. . . . . .S(M1(1, x) = 0) S(Mk(k, x) = 0)

? ?

if S outputs 0then print(1)

if S outputs 0then print(k). . . . . .

? ?

S(Mk(k, x) = 0) = 0 ⇔ k ∈MS ⇔ ∃x{MkS (k, x) = 0}

S(MkS (kS , x) = 0) = 1

Page 136: 20130922 h10 lecture1_matiyasevich

Программа профессора

Генератор уравнений

?

M1(a, x) = 0, . . . ,

?

Mk(a, x) = 0, . . .?

. . . . . .S(M1(1, x) = 0) S(Mk(k, x) = 0)

? ?

if S outputs 0then print(1)

if S outputs 0then print(k). . . . . .

? ?

S(Mk(k, x) = 0) = 0 ⇔ k ∈MS ⇔ ∃x{MkS (k, x) = 0}

S(MkS (kS , x) = 0) = 1 ⇒ kS 6∈ MS

Page 137: 20130922 h10 lecture1_matiyasevich

Программа профессора

Генератор уравнений

?

M1(a, x) = 0, . . . ,

?

Mk(a, x) = 0, . . .?

. . . . . .S(M1(1, x) = 0) S(Mk(k, x) = 0)

? ?

if S outputs 0then print(1)

if S outputs 0then print(k). . . . . .

? ?S(Mk(k, x) = 0) = 0 ⇔ k ∈MS ⇔ ∃x{MkS (k, x) = 0}

S(MkS (kS , x) = 0) = 1 ⇒ kS 6∈ MS ⇒ ¬∃x{MkS (kS , x) = 0}

Page 138: 20130922 h10 lecture1_matiyasevich

Универсальное уравнение

Список всех однопараметрических уравнений:

M1(a, x1, . . . ) = 0, . . . ,Mk(a, x1, . . . ) = 0, . . .

〈a, k〉 ∈ U⇔ ∃x1, . . . {Mk(a, x1, . . . ) = 0}

〈a, k〉 ∈ U ⇔ ∃y1 . . . yn{U(a, k , y1, . . . , yn) = 0}

∃x1, . . . {Mk(a, x1, . . . ) = 0} ⇔ ∃y1 . . . yn{U(a, k , y1, . . . , yn) = 0}

Page 139: 20130922 h10 lecture1_matiyasevich

Универсальное уравнениеСписок всех однопараметрических уравнений:

M1(a, x1, . . . ) = 0, . . . ,Mk(a, x1, . . . ) = 0, . . .

〈a, k〉 ∈ U⇔ ∃x1, . . . {Mk(a, x1, . . . ) = 0}

〈a, k〉 ∈ U ⇔ ∃y1 . . . yn{U(a, k , y1, . . . , yn) = 0}

∃x1, . . . {Mk(a, x1, . . . ) = 0} ⇔ ∃y1 . . . yn{U(a, k , y1, . . . , yn) = 0}

Page 140: 20130922 h10 lecture1_matiyasevich

Универсальное уравнениеСписок всех однопараметрических уравнений:

M1(a, x1, . . . ) = 0, . . . ,Mk(a, x1, . . . ) = 0, . . .

〈a, k〉 ∈ U⇔ ∃x1, . . . {Mk(a, x1, . . . ) = 0}

〈a, k〉 ∈ U ⇔ ∃y1 . . . yn{U(a, k , y1, . . . , yn) = 0}

∃x1, . . . {Mk(a, x1, . . . ) = 0} ⇔ ∃y1 . . . yn{U(a, k , y1, . . . , yn) = 0}

Page 141: 20130922 h10 lecture1_matiyasevich

Универсальное уравнениеСписок всех однопараметрических уравнений:

M1(a, x1, . . . ) = 0, . . . ,Mk(a, x1, . . . ) = 0, . . .

〈a, k〉 ∈ U⇔ ∃x1, . . . {Mk(a, x1, . . . ) = 0}

〈a, k〉 ∈ U ⇔ ∃y1 . . . yn{U(a, k , y1, . . . , yn) = 0}

∃x1, . . . {Mk(a, x1, . . . ) = 0} ⇔ ∃y1 . . . yn{U(a, k , y1, . . . , yn) = 0}

Page 142: 20130922 h10 lecture1_matiyasevich

Универсальное уравнениеСписок всех однопараметрических уравнений:

M1(a, x1, . . . ) = 0, . . . ,Mk(a, x1, . . . ) = 0, . . .

〈a, k〉 ∈ U⇔ ∃x1, . . . {Mk(a, x1, . . . ) = 0}

〈a, k〉 ∈ U ⇔ ∃y1 . . . yn{U(a, k , y1, . . . , yn) = 0}

∃x1, . . . {Mk(a, x1, . . . ) = 0} ⇔ ∃y1 . . . yn{U(a, k , y1, . . . , yn) = 0}

Page 143: 20130922 h10 lecture1_matiyasevich

Текущие рекордыЗадача о решении произвольного параметрическогодиофантова уравнения может быть сведена к решениюэквивалентного диофантова уравнения, имеющего степень D иN неизвестных, где в качестве 〈D,N〉 можно взять любую изследующих пар:

〈4, 58〉, 〈8, 38〉, 〈12, 32〉, 〈16, 29〉, 〈20, 28〉, 〈24, 26〉, 〈28, 25〉, 〈36, 24〉,〈96, 21〉, 〈2668, 19〉, 〈2× 105, 14〉, 〈6.6× 1043, 13〉, 〈1.3× 1044, 12〉,

〈4.6× 1044, 11〉, 〈8.6× 1044, 10〉, 〈1.6× 1045, 9〉.

Page 144: 20130922 h10 lecture1_matiyasevich

Непростой многочлен для простых чиселТеорема (J.P.Jones, D.Sato, H.Wada, D.Wiens, [1976])Множество всех простых чисел – это в точности множествовсех положительных значений, принимаемых многочленом

(k + 2) { 1 −[wz + h + j − q]2

− [(gk + 2g + k + 1)(h + j) + h − z]2

− [2n + p + q + z − e]2

−[16(k + 1)3(k + 2)(n + 1)2 + 1− f 2]2

−[e3(e + 2)(a+ 1)2 + 1− o2]2

−[(a2 − 1)y2 + 1− x2]2

−[16r2y4(a2 − 1) + 1− u2]2 − [n + l + v − y ]2

−[((a+ u2(u2 − a))2 − 1

)(n + 4dy)2 + 1− (x + cu)2

]2−

[(a2 − 1)l2 + 1−m2]2

−[q + y(a− p − 1) + s(2ap + 2a− p2 − 2p − 2)− x

]2−

[z + pl(a− p) + t(2ap − p2 − 1)− pm

]2− [ai + k + 1− l − i ]2

−[p + l(a− n − 1) + b(2an + 2a− n2 − 2n − 2)−m

]2 }при натуральных значениях 26 переменных a, b, c , . . . , x , y , z .

Page 145: 20130922 h10 lecture1_matiyasevich

Диофантовы машиныФормализация недетерминизма

Leonard Adleman и Kenneth Manders [1976] ввели понятиенедетерминированной диофантовой машины, NDDM .

NDDM

P(a, x1, . . . , xm)?= 0 �-

? --

входa

угадатьx1, . . . , xm

ДА НЕТ

принять a отвергнуть

DPRM-теорема: NDDM имееют такую же вычислительнуюсилу как, например, машины Тьюринга, то есть любоемножество, принимаемое некоторой машиной Тьюринга,принимается некоторой NDDM, и, очевидно, наоборот.

Page 146: 20130922 h10 lecture1_matiyasevich

Диофантовы машиныФормализация недетерминизма

Leonard Adleman и Kenneth Manders [1976] ввели понятиенедетерминированной диофантовой машины, NDDM .

NDDM

P(a, x1, . . . , xm)?= 0 �-

? --

входa

угадатьx1, . . . , xm

ДА НЕТ

принять a отвергнуть

DPRM-теорема: NDDM имееют такую же вычислительнуюсилу как, например, машины Тьюринга, то есть любоемножество, принимаемое некоторой машиной Тьюринга,принимается некоторой NDDM, и, очевидно, наоборот.

Page 147: 20130922 h10 lecture1_matiyasevich

Диофантовы машиныФормализация недетерминизма

Leonard Adleman и Kenneth Manders [1976] ввели понятиенедетерминированной диофантовой машины, NDDM .

NDDM

P(a, x1, . . . , xm)?= 0 �-

? --

входa

угадатьx1, . . . , xm

ДА НЕТ

принять a отвергнуть

DPRM-теорема: NDDM имееют такую же вычислительнуюсилу как, например, машины Тьюринга, то есть любоемножество, принимаемое некоторой машиной Тьюринга,принимается некоторой NDDM, и, очевидно, наоборот.

Page 148: 20130922 h10 lecture1_matiyasevich

Диофантова сложностьОпределения

NDDM

P(a, x1, . . . , xm)?= 0 �-

? --

входa

угадатьx1, . . . , xm

ДА НЕТ

принять a отвергнуть

SIZE(a)=минимально возможное значение |x1|+ · · ·+ |xm|, где|x | обозначает длину двоичной записи x .

Page 149: 20130922 h10 lecture1_matiyasevich

Диофантова сложностьОпределения

NDDM

P(a, x1, . . . , xm)?= 0 �-

? --

входa

угадатьx1, . . . , xm

ДА НЕТ

принять a отвергнуть

SIZE(a)=минимально возможное значение |x1|+ · · ·+ |xm|, где|x | обозначает длину двоичной записи x .

Page 150: 20130922 h10 lecture1_matiyasevich

Диофантова сложностьD vs NP

Leonard Adleman и Kenneth Manders [1975] ввели врассмотрение класс D состоящий из множествM имеющихпредставления вида

a ∈M ⇐⇒⇐⇒ ∃x1 . . . xm

[P(a, x1, . . . , xm) = 0& |x1|+ · · ·+ |xm| ≤ |a|k

].

Открытая проблема. D ?= NP.

Page 151: 20130922 h10 lecture1_matiyasevich

Диофантова сложностьD vs NP

Leonard Adleman и Kenneth Manders [1975] ввели врассмотрение класс D состоящий из множествM имеющихпредставления вида

a ∈M ⇐⇒⇐⇒ ∃x1 . . . xm

[P(a, x1, . . . , xm) = 0& |x1|+ · · ·+ |xm| ≤ |a|k

].

Открытая проблема. D ?= NP.