13-1662 Acadian Contractors - PV-14923A - 09-17-2013

118
SRC ENGINEERS, INC. P.O. BOX 81903 LAFAYETTE, LA 70598-1903 (337) 837-3810 Fax (337) 837-5710 100 CARDINAL DRIVE LAFAYETTE, LA 70508-4449 srcengineers.com Report Date: CUSTOMER ACADIAN CONTRACTORS Abbeville, Louisiana VESSEL DESCRIPTION Enterprise - Neptune Plant Air Eliminator - PV-14923A 24" OD x 6'-0" S/S x 275 PSIG x 100°F Drawing Number: ASME Code Stamped: Yes Vessel designed per the ASME Boiler & Pressure Vessel Code, Section VIII, Division I, 2010 Edition, A11 Addenda SRC JOB NUMBER 13-1662 NAMEPLATE INFORMATION MAWP: PSI @ °F Serial Number: MDMT: °F @ PSI National Board Number: Year built: 2013 Postweld heat treatment: Radiography: RT-1 Lethal Service: Engineer: Date: Q.C. Manager: Date: 275 100 13-150 -20 275 N/A Non-Lethal 9/17/2013 09/17/13 111-825 Dennis Kohl P.E.

description

work order

Transcript of 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Page 1: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

SRC ENGINEERS, INC.

P.O. BOX 81903 LAFAYETTE, LA 70598-1903 (337) 837-3810 Fax (337) 837-5710

100 CARDINAL DRIVE LAFAYETTE, LA 70508-4449 srcengineers.com

Report Date:

CUSTOMER

ACADIAN CONTRACTORSAbbeville, Louisiana

VESSEL DESCRIPTION

Enterprise - Neptune Plant

Air Eliminator - PV-14923A

24" OD x 6'-0" S/S x 275 PSIG x 100°F

Drawing Number:

ASME Code Stamped: Yes

Vessel designed per the ASME Boiler & Pressure Vessel Code,

Section VIII, Division I, 2010 Edition, A11 Addenda

SRC JOB NUMBER

13-1662

NAMEPLATE INFORMATION

MAWP: PSI @ °F Serial Number:

MDMT: °F @ PSI National Board Number:

Year built: 2013 Postweld heat treatment:

Radiography: RT-1 Lethal Service:

Engineer: Date:

Q.C. Manager: Date:

275 100 13-150

-20 275

N/A

Non-Lethal

9/17/2013

09/17/13

111-825

Dennis Kohl P.E.

DK
Typewritten Text
Dennis Kohl P.E.
Page 2: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Acadian Contractors, Inc

17102 West LA HWY 330

Abbeville, LA 70510

ASME Calculations (275psig@100F)

Item: Air EliminatorVessel No: PV-14923ACustomer: Enterprise - Neptune PlantDesigner: Brett Hebert

Date: Monday, August 05, 2013

Page 3: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Revision History

No. Date Operator Notes

0 8/ 1/2013 bretth New vessel created ASME Section VIII Division 1 [COMPRESS Build 7110]

1 8/ 5/2013 bretth

Converted from ASME Section VIII Division 1, 2010 Edition to ASME Section VIIIDivision 1, 2010 Edition, A11 Addenda. Default Forging Material Changed to A 105.During the conversion, changes may have been made to your vessel (some maybe listed above). Please check your vessel carefully.

1/103

Page 4: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Table Of ContentsRevision History1.

Settings Summary2.

Deficiencies Summary3.

Pressure Summary4.

Thickness Summary5.

Weight Summary6.

Hydrostatic Test7.

Liquid Level bounded by Ellipsoidal Head #18.

Long Seam Summary9.

Wind Code10.

Seismic Code11.

Cylinder #112.

Ellipsoidal Head #113.

Straight Flange on Ellipsoidal Head #114.

Ellipsoidal Head #215.

Straight Flange on Ellipsoidal Head #216.

Nozzle Schedule17.

Nozzle Summary18.

N1 - 3" 300# RFLWN - Liquid Outlet (N1)19.

N2 - 3" 300# RFLWN - Vapor In (N2)20.

N3 - 1 1/2" 300# RFLWN - Level Gauge (N3)21.

N4 - 1 1/2" 300# RFLWN - Level Gauge (N4)22.

N5 - 2" 300# RFWN Drain (N5)23.

N6 - 3" 300# RFWN Flare Outlet (N6)24.

Support Skirt #125.

Skirt Opening (SO)26.

Skirt Base Ring #127.

2/103

Page 5: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Settings Summary

COMPRESS 2013 Build 7320

Units: U.S. Customary

Datum Line Location: 0.00" from bottom seam

Design

ASME Section VIII Division 1, 2010 Edition, A11 Addenda

Design or Rating: Get Thickness from PressureMinimum thickness: 0.0625" per UG-16(b)Design for cold shut down only: NoDesign for lethal service (full radiography required): NoDesign nozzles for: Design P, find nozzle MAWP and MAPCorrosion weight loss: 100% of theoretical lossUG-23 Stress Increase: 1.20Skirt/legs stress increase: 1.0Minimum nozzle projection: 6"Juncture calculations for α > 30 only: YesPreheat P-No 1 Materials > 1.25" and <= 1.50" thick: NoUG-37(a) shell tr calculation considers longitudinal stress: NoButt welds are tapered per Figure UCS-66.3(a).

Hydro/Pneumatic Test

Shop Hydrotest Pressure: 1.3 times vesselMAWP

Test liquid specific gravity: 1.00Maximum stress during test: 90% of yield

Required Marking - UG-116

UG-116(e) Radiography: RT1UG-116(f) Postweld heat treatment: None

Code Cases\Interpretations

Use Code Case 2547: NoApply interpretation VIII-1-83-66: YesApply interpretation VIII-1-86-175: YesApply interpretation VIII-1-01-37: YesNo UCS-66.1 MDMT reduction: NoNo UCS-68(c) MDMT reduction: NoDisallow UG-20(f) exemptions: No

UG-22 Loadings

UG-22(a) Internal or External Design Pressure : YesUG-22(b) Weight of the vessel and normal contents under operating or test conditions: Yes

3/103

Page 6: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

UG-22(c) Superimposed static reactions from weight of attached equipment (external loads): NoUG-22(d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs: YesUG-22(f) Wind reactions: YesUG-22(f) Seismic reactions: YesUG-22(j) Test pressure and coincident static head acting during the test: NoNote: UG-22(b),(c) and (f) loads only considered when supports are present.

4/103

Page 7: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Deficiencies Summary

No deficiencies found.

5/103

Page 8: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Pressure Summary

Pressure Summary for Chamber bounded by Ellipsoidal Head #1 and Ellipsoidal Head #2

IdentifierP

Design( psi)

T

Design( °F)

MAWP( psi)

MAP( psi)

MDMT( °F)

MDMTExemption

ImpactTested

Ellipsoidal Head #2 275 100 275.32 275.32 -54.3 Note 1 No

Straight Flange on Ellipsoidal Head #2 275 100 420.17 420.17 -54.3 Note 2 No

Cylinder #1 275 100 418.56 420.17 -54 Note 3 No

Straight Flange on Ellipsoidal Head #1 275 100 418.51 420.17 -53.9 Note 5 No

Ellipsoidal Head #1 275 100 275.1 276.91 -53.9 Note 4 No

N1 - 3" 300# RFLWN - Liquid Outlet (N1) 275 100 418.7 420.17 -54 Note 6 No

N2 - 3" 300# RFLWN - Vapor In (N2) 275 100 419.17 420.17 -54.1 Note 7 No

N3 - 1 1/2" 300# RFLWN - Level Gauge (N3) 275 100 420.17 420.17 -54.3 Note 8 No

N4 - 1 1/2" 300# RFLWN - Level Gauge (N4) 275 100 418.7 420.17 -54 Note 6 No

N5 - 2" 300# RFWN Drain (N5) 275 100 303.71 305.75 -55 Note 9 No

N6 - 3" 300# RFWN Flare Outlet (N6) 275 100 303.99 303.99 -29.5 Note 10 No

Chamber design MDMT is -20 °FChamber rated MDMT is -29.5 °F @ 275.1 psi

Chamber MAWP hot & corroded is 275.1 psi @ 100 °F

Chamber MAP cold & new is 275.32 psi @ 70 °F

This pressure chamber is not designed for external pressure.

6/103

Page 9: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Notes for MDMT Rating:

Note # Exemption Details

1. Straight Flange governs MDMT

2. Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 34.3 °F, (coincident ratio = 0.6566) UCS-66 governing thickness = 0.25 in

3. Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 34 °F, (coincident ratio = 0.6604) UCS-66 governing thickness = 0.25 in

4. Straight Flange governs MDMT

5. Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 33.9 °F, (coincident ratio = 0.6606) UCS-66 governing thickness = 0.25 in

6. Nozzle impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 34 °F, (coincident ratio = 0.6601) UCS-66 governing thickness = 0.25 in.

7. Nozzle impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 34.1 °F, (coincident ratio = 0.659) UCS-66 governing thickness = 0.25 in.

8. Nozzle impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 34.3 °F, (coincident ratio = 0.6566) UCS-66 governing thickness = 0.25 in.

9. Flange rating governs: UCS-66(b)(1)(b)

10. Nozzle impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 9.5 °F, (coincident ratio = 0.9055) UCS-66 governing thickness = 0.1632 in.

Design notes are available on the Settings Summary page.

7/103

Page 10: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Thickness Summary

ComponentIdentifier

Material Diameter(in)

Length(in)

Nominal t(in)

Design t(in)

Total Corrosion(in)

JointE

Load

Ellipsoidal Head #2 SA-516 70 24 OD 6.0816 0.1632* 0.163 0 1.00 Internal

Straight Flange on Ellipsoidal Head #2 SA-516 70 24 OD 2 0.25 0.1641 0 1.00 Internal

Cylinder #1 SA-516 70 24 OD 72 0.25 0.1651 0 1.00 Internal

Straight Flange on Ellipsoidal Head #1 SA-516 70 24 OD 2 0.25 0.1651 0 1.00 Internal

Ellipsoidal Head #1 SA-516 70 24 OD 6.0821 0.1641* 0.1641 0 1.00 Internal

Support Skirt #1 SA-516 70 24 OD 26.625 0.1875 0.004 0 0.55 Wind

Nominal t: Vessel wall nominal thickness

Design t: Required vessel thickness due to governing loading + corrosion

Joint E: Longitudinal seam joint efficiency

* Head minimum thickness after forming

Load

internal: Circumferential stress due to internal pressure governs

external: External pressure governs

Wind: Combined longitudinal stress of pressure + weight + wind governs

Seismic: Combined longitudinal stress of pressure + weight + seismic governs

8/103

Page 11: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Weight Summary

ComponentWeight ( lb) Contributed by Vessel Elements Surface

Areaft2Metal

New*Metal

Corroded* Insulation InsulationSupports Lining Piping

+ Liquid

Operating Liquid Test Liquid

New Corroded New Corroded

Ellipsoidal Head #2 40.1 40.1 0 0 0 0 0 0 95.8 95.8 6

Cylinder #1 376.9 376.9 0 0 0 0 699.3 699.3 1,130.4 1,130.4 37

Ellipsoidal Head #1 40.9 40.9 0 0 0 0 66.3 66.3 94.7 94.7 6

Support Skirt #1 103.7 103.7 0 0 0 0 0 0 0 0 28

Skirt Base Ring #1 66 66 0 0 0 0 0 0 0 0 7

TOTAL: 627.5 627.5 0 0 0 0 765.5 765.5 1,320.9 1,320.9 84

* Shells with attached nozzles have weight reduced by material cut out for opening.

Component

Weight ( lb) Contributed by Attachments SurfaceAreaft2Body Flanges Nozzles &

Flanges PackedBeds

Ladders &Platforms

Trays TraySupports

Rings &Clips

VerticalLoads

New Corroded New Corroded

Ellipsoidal Head #2 0 0 35.1 35.1 0 0 0 0 0 0 1

Cylinder #1 0 0 90.3 90.3 0 0 0 0 0 0 3

Ellipsoidal Head #1 0 0 11.7 11.7 0 0 0 0 0 0 1

Support Skirt #1 0 0 2.8 2.8 0 0 0 0 0 0 0

TOTAL: 0 0 139.9 139.9 0 0 0 0 0 0 4

Vessel operating weight, Corroded: 1,533 lbVessel operating weight, New: 1,533 lbVessel empty weight, Corroded: 767 lbVessel empty weight, New: 767 lbVessel test weight, New: 2,088 lbVessel test weight, Corroded: 2,088 lbVessel surface area: 88 ft2

Vessel center of gravity location - from datum - lift condition

Vessel Lift Weight, New: 767 lbCenter of Gravity: 22.8244"

Vessel Capacity

Vessel Capacity** (New): 158 US galVessel Capacity** (Corroded): 158 US gal**The vessel capacity does not include volume of nozzle, piping or other attachments.

9/103

Page 12: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Hydrostatic Test

Shop test pressure determination for Chamber bounded by Ellipsoidal Head #1 and Ellipsoidal Head #2 basedon MAWP per UG-99(b)

Shop hydrostatic test gauge pressure is 357.63 psi at 70 °F (the chamber MAWP = 275.1 psi)

The shop test is performed with the vessel in the vertical position.

IdentifierLocal testpressure

psi

Test liquidstatic head

psi

UG-99(b)stressratio

UG-99(b)pressure

factorEllipsoidal Head #2 (1) 358.217 0.587 1 1.30

Straight Flange on Ellipsoidal Head #2 358.217 0.587 1 1.30

Cylinder #1 360.816 3.186 1 1.30

Straight Flange on Ellipsoidal Head #1 360.888 3.258 1 1.30

Ellipsoidal Head #1 361.102 3.471 1 1.30

N1 - 3" 300# RFLWN - Liquid Outlet (N1) 360.626 2.996 1 1.30

N2 - 3" 300# RFLWN - Vapor In (N2) 359.947 2.317 1 1.30

N3 - 1 1/2" 300# RFLWN - Level Gauge (N3) 358.461 0.83 1 1.30

N4 - 1 1/2" 300# RFLWN - Level Gauge (N4) 360.626 2.996 1 1.30

N5 - 2" 300# RFWN Drain (N5) 361.434 3.804 1 1.30

N6 - 3" 300# RFWN Flare Outlet (N6) 357.925 0.295 1 1.30

Notes:(1) Ellipsoidal Head #2 limits the UG-99(b) stress ratio.

The field test condition has not been investigated for the Chamber bounded by Ellipsoidal Head #1 and EllipsoidalHead #2.

The test temperature of 70 °F is warmer than the minimum recommended temperature of 0.5 °F so the brittle fractureprovision of UG-99(h) has been met.

10/103

Page 13: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Liquid Level bounded by Ellipsoidal Head #1

Location from datum 63.625"

Operating Liquid Specific Gravity 0.7

11/103

Page 14: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Long Seam Summary

Shell Long Seam Angles

Component Seam 1

Cylinder #1 0°

Support Skirt #1 90°

Shell Plate Lengths

Component StartingAngle Plate 1

Cylinder #1 0° 74.6128"

Support Skirt #1 90° 74.8092"

*North is located at 0°*Plate Lengths use the circumference of the vessel based on the mid diameter of the components

12/103

Page 15: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Shell Rollout

13/103

Page 16: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Wind Code

Building Code: ASCE 7-10Elevation of base above grade: 0.0000 ftIncrease effective outer diameter by: 0.0000 ft Wind Force Coefficient Cf: 0.5600 Risk Category (Table 1.5-1): II

Basic Wind Speed:, V: 150.0000mph

Exposure category: DWind Directionality Factor, Kd: 0.9500Topographic Factor, Kzt: 1.0000Enforce min. loading of 16 psf: Yes

Vessel Characteristics

Vessel height, h: 9.1478 ftVessel Minimum Diameter, b

Operating, Corroded: 2.0000 ftEmpty, Corroded: 2.0000 ft

Fundamental Frequency, n1

Operating, Corroded: 45.4480 HzEmpty, Corroded: 61.6511 Hz

Damping coefficient, βOperating, Corroded: 0.0250

Empty, Corroded: 0.0200

Vortex Shedding CalculationsTable Lookup Values

2.4.1 Basic Load Combinations for Allowable Stress DesignThe following load combinations are considered in accordance with ASCE section 2.4.1:

5. D + P + Ps + 0.6W7. 0.6D + P + Ps + 0.6WWhereD = Dead loadP = Internal or external pressure loadPs = Static head loadW = Wind load

Wind Deflection Reports:

Operating, CorrodedEmpty, CorrodedWind Pressure Calculations

14/103

Page 17: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Wind Deflection Report: Operating, Corroded

ComponentElevation of

bottom abovebase (in)

Effective OD(ft)

Elastic modulusE (106 psi)

InertiaI (ft4)

Platformwind shear atBottom (lbf)

Total windshear at

Bottom (lbf)

bendingmoment at

Bottom (lbf-ft)

Deflectionat top (in)

Ellipsoidal Head #2 101.6915 2.00 29.3 * 0 20 6 0.0017

Cylinder #1 29.6915 2.00 29.3 0.06343 0 227 823 0.0016

Ellipsoidal Head #1 (top) 26.625 2.00 29.3 * 0 236 882 0.0002

Support Skirt #1 0 2.00 29.3 0.04795 0 312 1,490 0.0002

*Moment of Inertia I varies over the length of the componentWind Deflection Report: Empty, Corroded

ComponentElevation of

bottom abovebase (in)

Effective OD(ft)

Elastic modulusE (106 psi)

InertiaI (ft4)

Platformwind shear atBottom (lbf)

Total windshear at

Bottom (lbf)

bendingmoment at

Bottom (lbf-ft)

Deflectionat top (in)

Ellipsoidal Head #2 101.6915 2.00 29.4 * 0 20 6 0.0017

Cylinder #1 29.6915 2.00 29.4 0.06343 0 227 823 0.0016

Ellipsoidal Head #1 (top) 26.625 2.00 29.4 * 0 236 882 0.0002

Support Skirt #1 0 2.00 29.4 0.04795 0 312 1,490 0.0002

*Moment of Inertia I varies over the length of the component

Wind Pressure (WP) Calculations

Gust Factor (G¯) Calculations

Kz = 2.01 * (Z/Zg)2/α

= 2.01 * (Z/700.0000)0.1739

qz = 0.00256 * Kz * Kzt * Kd * V2

= 0.00256 * Kz * 1.0000 * 0.9500 * 150.00002

= 54.7200 * KzWP = 0.6 * qz * G * Cf (Minimum 16 lb/ft2)

= 0.6 * qz * G * 0.5600 (Minimum 16 lb/ft2)

Design Wind Pressures

Height Z(') Kz qz

(psf)WP: Operating

(psf)WP: Empty

(psf)

WP: HydrotestNew(psf)

WP: HydrotestCorroded

(psf)

WP:Vacuum

(psf)

15.0 1.0302 56.37 17.28 17.28 N.A. N.A. N.A.Design Wind Force determined from: F = Pressure * Af , where Af is the projected area.

Vortex Shedding Calculations

Vortex shedding calculations are based on NBC 1995 building code, Structural Commentaries (Part 4).

Average diameter of vessel (upper third): D = 1.9269 ftAspect ratio: Ar = 4.7474Weight per foot of vessel, Operating, Corroded, (upper third): M = 149.7553 lb/ftStrouhal number, Operating, Corroded: S = 0.2000Weight per foot of vessel, Empty, Corroded, (upper third): M = 78.8956 lb/ft

15/103

Page 18: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Strouhal number, Empty, Corroded: S = 0.2000

Critical wind speed at top of vessel, Vh = (n*D/S)*(3600/5280) mph

Operating, Corroded: Vh = (45.4480*1.9269/0.2000)*(3600/5280) = 298.5440 mph (480.4600 km/h)Empty, Corroded: Vh = (61.6511*1.9269/0.2000)*(3600/5280) = 404.9804 mph (651.7528 km/h)Reference wind speed corresponding to critical wind speed, V Ref

Operating, Corroded: VRef = 333.7801 mph (537.1670 km/h)Empty, Corroded: VRef = 452.7788 mph (728.6769 km/h)Corresponding reference wind speed, VRef

Operating, Corroded: VRef = 150.0000 mph (241.4016 km/h)Empty, Corroded: VRef = 150.0000 mph (241.4016 km/h)

Speed for operating, corroded condition which produces vortex shedding is greater than reference speed. No furthervortex shedding computations were done for this condition.Speed for empty, corroded condition which produces vortex shedding is greater than reference speed. No furthervortex shedding computations were done for this condition.

Gust Factor Calculations

Operating, CorrodedEmpty, Corroded

Gust Factor Calculations: Operating, Corroded

Vessel is considered a rigid structure as n1 = 45.4480 Hz ≥ 1 Hz.

z¯ = max ( 0.60 * h , zmin )= max ( 0.60 * 9.1478 , 7.0000 )= 7.0000

Iz¯ = c * (33 / z¯)1/6

= 0.1500 * (33 / 7.0000)1/6

= 0.1942Lz¯ = l * (z¯ / 33)ep

= 650.0000 * (7.0000 / 33)0.1250

= 535.4715Q = Sqr(1 / (1 + 0.63 * ((b + h) / Lz¯)0.63))

= Sqr(1 / (1 + 0.63 * ((2.0000 + 9.1478) / 535.4715)0.63))= 0.9736

G = 0.925 * (1 + 1.7 * gQ * Iz¯ * Q) / (1 + 1.7 * gv * Iz¯)= 0.925 * (1 + 1.7 * 3.40* 0.1942 * 0.9736) / (1 + 1.7 * 3.40 * 0.1942)= 0.9121

Gust Factor Calculations: Empty, Corroded

Vessel is considered a rigid structure as n1 = 61.6511 Hz ≥ 1 Hz.

z¯ = max ( 0.60 * h , zmin )

16/103

Page 19: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

= max ( 0.60 * 9.1478 , 7.0000 )= 7.0000

Iz¯ = c * (33 / z¯)1/6

= 0.1500 * (33 / 7.0000)1/6

= 0.1942Lz¯ = l * (z¯ / 33)ep

= 650.0000 * (7.0000 / 33)0.1250

= 535.4715Q = Sqr(1 / (1 + 0.63 * ((b + h) / Lz¯)0.63))

= Sqr(1 / (1 + 0.63 * ((2.0000 + 9.1478) / 535.4715)0.63))= 0.9736

G = 0.925 * (1 + 1.7 * gQ * Iz¯ * Q) / (1 + 1.7 * gv * Iz¯)= 0.925 * (1 + 1.7 * 3.40* 0.1942 * 0.9736) / (1 + 1.7 * 3.40 * 0.1942)= 0.9121

Table Lookup Values

α = 11.5000, zg = 700.0000 ft [Table 26.9-1, page 256]c = 0.1500, l = 650.0000, ep = 0.1250 [Table 26.9-1, page 256]a¯ = 0.1111, b¯ = 0.8000 [Table 26.9-1, page 256]zmin = 7.0000 ft [Table 26.9-1, page 256]gQ = 3.40 [26.9.4 page 254]gv = 3.40 [26.9.4 page 254]

17/103

Page 20: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Seismic Code

Method of seismic analysis: ASCE 7-10 groundsupported

Site Class CImportance Factor: Ie = 1.0000Spectral Response Acceleration at short period (% g) Ss = 10.00%Spectral Response Acceleration at period of 1 sec (% g) S1 = 4.00%Response Modification Coeficient from Table 15.4-2 R = 3.0000Acceleration based site co-efficient: Fa = 1.2000Velocity based site co-efficient: Fv = 1.7000Long-period transition period: TL = 12.0000Redundancy factor: ρ = 1.0000User Defined Vertical Accelerations Considered: No

2.4 Combining Nominal Loads Using Allowable Stress DesignThe following load combinations are considered in accordance with ASCE section 2.4.1:

5. D + P + Ps + 0.7E8. 0.6D + P + Ps + 0.7EWhereD = Dead loadP = Internal or external pressure loadPs = Static head loadE = Seismic load

Vessel Characteristics

Vessel height: 9.1478 ftVessel Weight:

Operating, Corroded: 1,533 lbEmpty, Corroded: 767 lb

Period of Vibration Calculation

Fundamental Period, T:Operating, Corroded: 0.022 sec (f = 45.4 Hz)

Empty, Corroded: 0.016 sec (f = 61.7 Hz)

The fundamental period of vibration T (above) is calculated using the Rayleigh method of approximation:

T = 2 * PI * Sqr( {Sum(Wi * yi2 )} / {g * Sum(Wi * yi )} ), where

Wi is the weight of the ith lumped mass, andyi is its deflection when the system is treated as a cantilever beam.

18/103

Page 21: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Seismic Shear Reports:

Operating, CorrodedEmpty, CorrodedBase Shear Calculations

Seismic Shear Report: Operating, Corroded

Component Elevation of bottomabove base (in)

Elastic modulus E(106 psi)

Inertia I(ft4)

Seismic shear atBottom (lbf)

Bending Moment atBottom (lbf-ft)

Ellipsoidal Head #2 101.6915 29.3 * 1 1

Cylinder #1 29.6915 29.3 0.0634 10 114

Ellipsoidal Head #1 (top) 26.625 29.3 * 10 117

Support Skirt #1 0 29.3 0.04795 11 143

*Moment of Inertia I varies over the length of the componentSeismic Shear Report: Empty, Corroded

Component Elevation of bottomabove base (in)

Elastic modulus E(106 psi)

Inertia I(ft4)

Seismic shear atBottom (lbf)

Bending Moment atBottom (lbf-ft)

Ellipsoidal Head #2 101.6915 29.4 * 1 1

Cylinder #1 29.6915 29.4 0.0634 5 99

Ellipsoidal Head #1 (top) 26.625 29.4 * 5 100

Support Skirt #1 0 29.4 0.04795 5 114

*Moment of Inertia I varies over the length of the component

11.4.3: Maximum considered earthquake spectral response acceleration

The maximum considered earthquake spectral response acceleration at short period, SMSSMS = Fa * Ss = 1.2000 * 10.00 / 100 = 0.1200The maximum considered earthquake spectral response acceleration at 1 s period, SM1SM1 = Fv * S1 = 1.7000 * 4.00 / 100 = 0.0680

11.4.4: Design spectral response acceleration parameters

Design earthquake spectral response acceleration at short period, SDSSDS = 2 / 3 * SMS = 2 / 3 * 0.1200 = 0.0800Design earthquake spectral response acceleration at 1 s period, SD1SD1 = 2 / 3 * SM1 = 2 / 3 * 0.0680 = 0.0453

Note: This vessel is assigned to Seismic Design Category A, and seismic design is per Section 11.7. The VAccel Termis not applicable.

Base Shear Calculations

Operating, CorrodedEmpty, Corroded

Base Shear Calculations: Operating, Corroded

Per Section 11.7, this vessel is assigned to Seismic Design Category A, as (SD1 = 0.0453) < 0.067, and (SDs =0.0800) < 0.167.

19/103

Page 22: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Seismic load is determined with Equation 1.4-1.

V = 0.01 * W * 0.7 (Only 70% of seismic load considered as per Section 2.4.1)= 0.01 * 1,532.9884 * 0.7= 10.73 lb

Base Shear Calculations: Empty, Corroded

Per Section 11.7, this vessel is assigned to Seismic Design Category A, as (SD1 = 0.0453) < 0.067, and (SDs =0.0800) < 0.167.Seismic load is determined with Equation 1.4-1.

V = 0.01 * W * 0.7 (Only 70% of seismic load considered as per Section 2.4.1)= 0.01 * 767.4460 * 0.7= 5.37 lb

20/103

Page 23: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Cylinder #1

ASME Section VIII Division 1, 2010 Edition, A11 Addenda

Component: CylinderMaterial specification: SA-516 70 (II-D p. 18, ln. 19)Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 34 °F, (coincident ratio = 0.6604)UCS-66 governing thickness = 0.25 in

Internal design pressure: P = 275 psi @ 100 °F

Static liquid head:

Ps = 1.61 psi (SG = 0.7, Hs =63.625",Operating head)

Ptv = 3.19 psi (SG = 1, Hs = 88.25",Vertical test head)

Corrosion allowance Inner C = 0" Outer C = 0"

Design MDMT = -20 °F No impact test performedRated MDMT = -54 °F Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Full UW-11(a) Type 1Top circumferential joint - Full UW-11(a) Type 1Bottom circumferential joint - Full UW-11(a) Type 1

Estimated weight New = 376.9 lb corr = 376.9 lbCapacity New = 135.19 US gal corr = 135.19 US gal

OD = 24"LengthLc

= 72"

t = 0.25"

Design thickness, (at 100 °F) Appendix 1-1

t = P*Ro / (S*E + 0.40*P) + Corrosion= 276.61*12 / (20,000*1.00 + 0.40*276.61) + 0= 0.1651"

Maximum allowable working pressure, (at 100 °F) Appendix 1-1

P = S*E*t / (Ro - 0.40*t) - Ps= 20,000*1.00*0.25 / (12 - 0.40*0.25) - 1.61= 418.56 psi

Maximum allowable pressure, (at 70 °F) Appendix 1-1

P = S*E*t / (Ro - 0.40*t)= 20,000*1.00*0.25 / (12 - 0.40*0.25)= 420.17 psi

21/103

Page 24: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

% Extreme fiber elongation - UCS-79(d)

EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*0.25 / 11.875)*(1 - 11.875 / ∞)= 1.0526%

The extreme fiber elongation does not exceed 5%.

Design thickness = 0.1651"

The governing condition is due to internal pressure.

The cylinder thickness of 0.25" is adequate.

Thickness Required Due to Pressure + External Loads

Condition Pressure P (psi)

AllowableStress BeforeUG-23 StressIncrease ( psi)

Temperature (°F)

Corrosion C(in) Load Req'd Thk Due to

Tension (in)Req'd Thk Due toCompression (in)

St Sc

Operating, Hot & Corroded 275 20,000 15,771 100 0 Wind 0.0679 0.0659

Seismic 0.0671 0.0667

Operating, Hot & New 275 20,000 15,771 100 0 Wind 0.0679 0.0659

Seismic 0.0671 0.0667

Hot Shut Down, Corroded 0 20,000 15,771 100 0 Wind 0.0007 0.0016

Seismic 0.0001 0.0006

Hot Shut Down, New 0 20,000 15,771 100 0 Wind 0.0007 0.0016

Seismic 0.0001 0.0006

Empty, Corroded 0 20,000 15,771 70 0 Wind 0.0007 0.0016

Seismic 0.0001 0.0005

Empty, New 0 20,000 15,771 70 0 Wind 0.0007 0.0016

Seismic 0.0001 0.0005

Hot Shut Down, Corroded, Weight& Eccentric Moments Only 0 20,000 15,771 100 0 Weight 0.0003 0.0006

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (12 / 0.25)= 0.002604

B = 15,771 psi

S = 20,000 / 1.00 = 20,000 psi

ScHC = min(B, S) = 15,771 psi

Allowable Compressive Stress, Hot and New- ScHN

ScHN = ScHC

= 15,771 psi

22/103

Page 25: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (12 / 0.25)= 0.002604

B = 15,771 psi

S = 20,000 / 1.00 = 20,000 psi

ScCN = min(B, S) = 15,771 psi

Allowable Compressive Stress, Cold and Corroded- ScCC

ScCC = ScCN

= 15,771 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableCS-2)A = 0.125 / (Ro / t)

= 0.125 / (12 / 0.25)= 0.002604

B = 15,771 psi

S = 20,000 / 1.00 = 20,000 psi

ScVC = min(B, S) = 15,771 psi

Operating, Hot & Corroded, Wind, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 275*11.75 / (2*20,000*1.20*1.00 + 0.40*|275|)= 0.0672"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 9,876 / (π*11.8752*20,000*1.20*1.00)= 0.0009"

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.60*542.4 / (2*π*11.875*20,000*1.20*1.00)= 0.0002"

tt = tp + tm - tw(total required,tensile)

= 0.0672 + 0.0009 - (0.0002)= 0.0679"

twc = W / (2*π*Rm*St*Ks*Ec) (Weight)= 542.4 / (2*π*11.875*20,000*1.20*1.00)= 0.0003"

tc = |tmc + twc - tpc|(total, nettensile)

= |0.0009 + (0.0003) - (0.0672)|= 0.0659"

23/103

Page 26: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*20,000*1.20*1.00*(0.25 - 0.0009 + (0.0002)) / (11.75 - 0.40*(0.25 - 0.0009 + (0.0002)))= 1,026.94 psi

Operating, Hot & New, Wind, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 275*11.75 / (2*20,000*1.20*1.00 + 0.40*|275|)= 0.0672"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 9,876 / (π*11.8752*20,000*1.20*1.00)= 0.0009"

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.60*542.4 / (2*π*11.875*20,000*1.20*1.00)= 0.0002"

tt = tp + tm - tw(total required,tensile)

= 0.0672 + 0.0009 - (0.0002)= 0.0679"

twc = W / (2*π*Rm*St*Ks*Ec) (Weight)= 542.4 / (2*π*11.875*20,000*1.20*1.00)= 0.0003"

tc = |tmc + twc - tpc|(total, nettensile)

= |0.0009 + (0.0003) - (0.0672)|= 0.0659"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*20,000*1.20*1.00*(0.25 - 0.0009 + (0.0002)) / (11.75 - 0.40*(0.25 - 0.0009 + (0.0002)))= 1,026.94 psi

Hot Shut Down, Corroded, Wind, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) (bending)= 9,876 / (π*11.8752*20,000*1.20*1.00)= 0.0009"

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.60*542.4 / (2*π*11.875*20,000*1.20*1.00)= 0.0002"

tt = tp + tm - tw (total required, tensile)= 0 + 0.0009 - (0.0002)= 0.0007"

tmc = M / (π*Rm2*Sc*Ks) (bending)

24/103

Page 27: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

= 9,876 / (π*11.8752*15,770.69*1.20)= 0.0012"

twc = W / (2*π*Rm*Sc*Ks) (Weight)= 542.4 / (2*π*11.875*15,770.69*1.20)= 0.0004"

tc = tmc + twc - tpc (total required, compressive)= 0.0012 + (0.0004) - (0)= 0.0016"

Hot Shut Down, New, Wind, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) (bending)= 9,876 / (π*11.8752*20,000*1.20*1.00)= 0.0009"

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.60*542.4 / (2*π*11.875*20,000*1.20*1.00)= 0.0002"

tt = tp + tm - tw (total required, tensile)= 0 + 0.0009 - (0.0002)= 0.0007"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 9,876 / (π*11.8752*15,770.69*1.20)= 0.0012"

twc = W / (2*π*Rm*Sc*Ks) (Weight)= 542.4 / (2*π*11.875*15,770.69*1.20)= 0.0004"

tc = tmc + twc - tpc (total required, compressive)= 0.0012 + (0.0004) - (0)= 0.0016"

Empty, Corroded, Wind, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) (bending)= 9,876 / (π*11.8752*20,000*1.20*1.00)= 0.0009"

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.60*542.4 / (2*π*11.875*20,000*1.20*1.00)= 0.0002"

tt = tp + tm - tw (total required, tensile)= 0 + 0.0009 - (0.0002)= 0.0007"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 9,876 / (π*11.8752*15,770.69*1.20)= 0.0012"

25/103

Page 28: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

twc = W / (2*π*Rm*Sc*Ks) (Weight)= 542.4 / (2*π*11.875*15,770.69*1.20)= 0.0004"

tc = tmc + twc - tpc (total required, compressive)= 0.0012 + (0.0004) - (0)= 0.0016"

Empty, New, Wind, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) (bending)= 9,876 / (π*11.8752*20,000*1.20*1.00)= 0.0009"

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.60*542.4 / (2*π*11.875*20,000*1.20*1.00)= 0.0002"

tt = tp + tm - tw (total required, tensile)= 0 + 0.0009 - (0.0002)= 0.0007"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 9,876 / (π*11.8752*15,770.69*1.20)= 0.0012"

twc = W / (2*π*Rm*Sc*Ks) (Weight)= 542.4 / (2*π*11.875*15,770.69*1.20)= 0.0004"

tc = tmc + twc - tpc (total required, compressive)= 0.0012 + (0.0004) - (0)= 0.0016"

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 940 / (π*11.8752*15,770.69*1.00)= 0.0001"

tw = W / (2*π*Rm*Sc*Ks) (Weight)= 542.4 / (2*π*11.875*15,770.69*1.00)= 0.0005"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0.0001 - (0.0005)|= 0.0003"

tc = tmc + twc - tpc (total required, compressive)= 0.0001 + (0.0005) - (0)= 0.0006"

26/103

Page 29: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Operating, Hot & Corroded, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 275*11.75 / (2*20,000*1.20*1.00 + 0.40*|275|)= 0.0672"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 1,371 / (π*11.8752*20,000*1.20*1.00)= 0.0001"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.59*542.4 / (2*π*11.875*20,000*1.20*1.00)= 0.0002"

tt = tp + tm - tw(total required,tensile)

= 0.0672 + 0.0001 - (0.0002)= 0.0671"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)= 1.01*542.4 / (2*π*11.875*20,000*1.20*1.00)= 0.0003"

tc = |tmc + twc - tpc|(total, nettensile)

= |0.0001 + (0.0003) - (0.0672)|= 0.0667"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*20,000*1.20*1.00*(0.25 - 0.0001 + (0.0002)) / (11.75 - 0.40*(0.25 - 0.0001 + (0.0002)))= 1,030.25 psi

Operating, Hot & New, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 275*11.75 / (2*20,000*1.20*1.00 + 0.40*|275|)= 0.0672"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 1,371 / (π*11.8752*20,000*1.20*1.00)= 0.0001"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.59*542.4 / (2*π*11.875*20,000*1.20*1.00)= 0.0002"

tt = tp + tm - tw(total required,tensile)

= 0.0672 + 0.0001 - (0.0002)= 0.0671"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)= 1.01*542.4 / (2*π*11.875*20,000*1.20*1.00)= 0.0003"

27/103

Page 30: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

tc = |tmc + twc - tpc|(total, nettensile)

= |0.0001 + (0.0003) - (0.0672)|= 0.0667"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*20,000*1.20*1.00*(0.25 - 0.0001 + (0.0002)) / (11.75 - 0.40*(0.25 - 0.0001 + (0.0002)))= 1,030.25 psi

Hot Shut Down, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 1,371 / (π*11.8752*15,770.69*1.20)= 0.0002"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 0.59*542.4 / (2*π*11.875*15,770.69*1.20)= 0.0002"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0.0002 - (0.0002)|= 0.0001"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 1.01*542.4 / (2*π*11.875*15,770.69*1.20)= 0.0004"

tc = tmc + twc - tpc (total required, compressive)= 0.0002 + (0.0004) - (0)= 0.0006"

Hot Shut Down, New, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 1,371 / (π*11.8752*15,770.69*1.20)= 0.0002"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 0.59*542.4 / (2*π*11.875*15,770.69*1.20)= 0.0002"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0.0002 - (0.0002)|= 0.0001"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 1.01*542.4 / (2*π*11.875*15,770.69*1.20)= 0.0004"

tc = tmc + twc - tpc (total required, compressive)= 0.0002 + (0.0004) - (0)

28/103

Page 31: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

= 0.0006"

Empty, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 1,182 / (π*11.8752*15,770.69*1.20)= 0.0001"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 0.59*542.4 / (2*π*11.875*15,770.69*1.20)= 0.0002"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0.0001 - (0.0002)|= 0.0001"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 1.01*542.4 / (2*π*11.875*15,770.69*1.20)= 0.0004"

tc = tmc + twc - tpc (total required, compressive)= 0.0001 + (0.0004) - (0)= 0.0005"

Empty, New, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 1,182 / (π*11.8752*15,770.69*1.20)= 0.0001"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 0.59*542.4 / (2*π*11.875*15,770.69*1.20)= 0.0002"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0.0001 - (0.0002)|= 0.0001"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 1.01*542.4 / (2*π*11.875*15,770.69*1.20)= 0.0004"

tc = tmc + twc - tpc (total required, compressive)= 0.0001 + (0.0004) - (0)= 0.0005"

29/103

Page 32: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Ellipsoidal Head #1

ASME Section VIII, Division 1, 2010 Edition, A11 Addenda

Component: Ellipsoidal HeadMaterial Specification: SA-516 70 (II-D p.18, ln. 19)Straight Flange governs MDMT

Internal design pressure: P = 275 psi @ 100 °F

Static liquid head:

Ps= 1.81 psi (SG=0.7, Hs=71.543" Operating head)Ptv= 3.47 psi (SG=1, Hs=96.168" Vertical test head)

Corrosion allowance: Inner C = 0" Outer C = 0"

Design MDMT = -20°F No impact test performedRated MDMT = -53.9°F Material is not normalized

Material is not produced to fine grain practicePWHT is not performedDo not Optimize MDMT / Find MAWP

Radiography: Category A joints - Seamless No RT Head to shell seam - Full UW-11(a) Type 1

Estimated weight*: new = 40.9 lb corr = 40.9 lbCapacity*: new = 11.3 US gal corr = 11.3 US gal* includes straight flange

Outer diameter = 24"Minimum head thickness = 0.1641"Head ratio D/2h = 2 (new)Head ratio D/2h = 2 (corroded)Straight flange length Lsf = 2"Nominal straight flange thickness tsf = 0.25"Results Summary

The governing condition is internal pressure.Minimum thickness per UG-16 = 0.0625" + 0" = 0.0625"Design thickness due to internal pressure (t) = 0.1641"Maximum allowable working pressure (MAWP) = 275.1 psiMaximum allowable pressure (MAP) = 276.91 psi

K (Corroded)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (23.6718 / (2*5.918))2]=1

K (New)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (23.6718 / (2*5.918))2]=1

30/103

Page 33: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Design thickness for internal pressure, (Corroded at 100 °F) Appendix 1-4(c)

t = P*Do*K / (2*S*E + 2*P*(K - 0.1)) + Corrosion= 276.81*24*1 / (2*20,000*1 + 2*276.81*(1 - 0.1)) + 0= 0.164"

The head internal pressure design thickness is 0.1641".

Maximum allowable working pressure, (Corroded at 100 °F) Appendix 1-4(c)

P = 2*S*E*t / (K*Do - 2*t*(K - 0.1)) - Ps= 2*20,000*1*0.1641 / (1*24 - 2*0.1641*(1 - 0.1)) - 1.81= 275.1 psi

The maximum allowable working pressure (MAWP) is 275.1 psi.

Maximum allowable pressure, (New at 70 °F) Appendix 1-4(c)

P = 2*S*E*t / (K*Do - 2*t*(K - 0.1)) - Ps= 2*20,000*1*0.1641 / (1*24 - 2*0.1641*(1 - 0.1)) - 0= 276.91 psi

The maximum allowable pressure (MAP) is 276.91 psi.

% Extreme fiber elongation - UCS-79(d)

EFE = (75*t / Rf)*(1 - Rf / Ro)= (75*0.25 / 4.1492)*(1 - 4.1492 / ∞)= 4.5189%

The extreme fiber elongation does not exceed 5%.

31/103

Page 34: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Straight Flange on Ellipsoidal Head #1

ASME Section VIII Division 1, 2010 Edition, A11 Addenda

Component: Straight FlangeMaterial specification: SA-516 70 (II-D p. 18, ln. 19)Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 33.9 °F, (coincident ratio = 0.6606)UCS-66 governing thickness = 0.25 in

Internal design pressure: P = 275 psi @ 100 °F

Static liquid head:

Ps = 1.66 psi (SG = 0.7, Hs =65.625",Operating head)

Ptv = 3.26 psi (SG = 1, Hs = 90.25",Vertical test head)

Corrosion allowance Inner C = 0" Outer C = 0"

Design MDMT = -20 °F No impact test performedRated MDMT = -53.9 °F Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Seamless No RTCircumferential joint - Full UW-11(a) Type 1

Estimated weight New = 10.6 lb corr = 10.6 lbCapacity New = 3.76 US gal corr = 3.76 US gal

OD = 24"LengthLc

= 2"

t = 0.25"

Design thickness, (at 100 °F) Appendix 1-1

t = P*Ro / (S*E + 0.40*P) + Corrosion= 276.66*12 / (20,000*1.00 + 0.40*276.66) + 0= 0.1651"

Maximum allowable working pressure, (at 100 °F) Appendix 1-1

P = S*E*t / (Ro - 0.40*t) - Ps= 20,000*1.00*0.25 / (12 - 0.40*0.25) - 1.66= 418.51 psi

Maximum allowable pressure, (at 70 °F) Appendix 1-1

P = S*E*t / (Ro - 0.40*t)= 20,000*1.00*0.25 / (12 - 0.40*0.25)= 420.17 psi

32/103

Page 35: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

% Extreme fiber elongation - UCS-79(d)

EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*0.25 / 11.875)*(1 - 11.875 / ∞)= 1.0526%

The extreme fiber elongation does not exceed 5%.

Design thickness = 0.1651"

The governing condition is due to internal pressure.

The cylinder thickness of 0.25" is adequate.

Thickness Required Due to Pressure + External Loads

Condition Pressure P (psi)

AllowableStress BeforeUG-23 StressIncrease ( psi)

Temperature (°F)

Corrosion C(in) Load Req'd Thk Due to

Tension (in)Req'd Thk Due toCompression (in)

St Sc

Operating, Hot & Corroded 275 20,000 15,771 100 0 Wind 0.068 0.0659

Seismic 0.0671 0.0667

Operating, Hot & New 275 20,000 15,771 100 0 Wind 0.068 0.0659

Seismic 0.0671 0.0667

Hot Shut Down, Corroded 0 20,000 15,771 100 0 Wind 0.0008 0.0016

Seismic 0.0001 0.0006

Hot Shut Down, New 0 20,000 15,771 100 0 Wind 0.0008 0.0016

Seismic 0.0001 0.0006

Empty, Corroded 0 20,000 15,771 70 0 Wind 0.0008 0.0016

Seismic 0.0001 0.0005

Empty, New 0 20,000 15,771 70 0 Wind 0.0008 0.0016

Seismic 0.0001 0.0005

Hot Shut Down, Corroded, Weight& Eccentric Moments Only 0 20,000 15,771 100 0 Weight 0.0003 0.0006

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (12 / 0.25)= 0.002604

B = 15,771 psi

S = 20,000 / 1.00 = 20,000 psi

ScHC = min(B, S) = 15,771 psi

Allowable Compressive Stress, Hot and New- ScHN

ScHN = ScHC

= 15,771 psi

33/103

Page 36: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (12 / 0.25)= 0.002604

B = 15,771 psi

S = 20,000 / 1.00 = 20,000 psi

ScCN = min(B, S) = 15,771 psi

Allowable Compressive Stress, Cold and Corroded- ScCC

ScCC = ScCN

= 15,771 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableCS-2)A = 0.125 / (Ro / t)

= 0.125 / (12 / 0.25)= 0.002604

B = 15,771 psi

S = 20,000 / 1.00 = 20,000 psi

ScVC = min(B, S) = 15,771 psi

Operating, Hot & Corroded, Wind, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 275*11.75 / (2*20,000*1.20*1.00 + 0.40*|275|)= 0.0672"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 10,341 / (π*11.8752*20,000*1.20*1.00)= 0.001"

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.60*553 / (2*π*11.875*20,000*1.20*1.00)= 0.0002"

tt = tp + tm - tw(total required,tensile)

= 0.0672 + 0.001 - (0.0002)= 0.068"

twc = W / (2*π*Rm*St*Ks*Ec) (Weight)= 553 / (2*π*11.875*20,000*1.20*1.00)= 0.0003"

tc = |tmc + twc - tpc|(total, nettensile)

= |0.001 + (0.0003) - (0.0672)|= 0.0659"

34/103

Page 37: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*20,000*1.20*1.00*(0.25 - 0.001 + (0.0002)) / (11.75 - 0.40*(0.25 - 0.001 + (0.0002)))= 1,026.77 psi

Operating, Hot & New, Wind, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 275*11.75 / (2*20,000*1.20*1.00 + 0.40*|275|)= 0.0672"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 10,341 / (π*11.8752*20,000*1.20*1.00)= 0.001"

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.60*553 / (2*π*11.875*20,000*1.20*1.00)= 0.0002"

tt = tp + tm - tw(total required,tensile)

= 0.0672 + 0.001 - (0.0002)= 0.068"

twc = W / (2*π*Rm*St*Ks*Ec) (Weight)= 553 / (2*π*11.875*20,000*1.20*1.00)= 0.0003"

tc = |tmc + twc - tpc|(total, nettensile)

= |0.001 + (0.0003) - (0.0672)|= 0.0659"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*20,000*1.20*1.00*(0.25 - 0.001 + (0.0002)) / (11.75 - 0.40*(0.25 - 0.001 + (0.0002)))= 1,026.77 psi

Hot Shut Down, Corroded, Wind, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) (bending)= 10,341 / (π*11.8752*20,000*1.20*1.00)= 0.001"

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.60*553 / (2*π*11.875*20,000*1.20*1.00)= 0.0002"

tt = tp + tm - tw (total required, tensile)= 0 + 0.001 - (0.0002)= 0.0008"

tmc = M / (π*Rm2*Sc*Ks) (bending)

35/103

Page 38: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

= 10,341 / (π*11.8752*15,770.69*1.20)= 0.0012"

twc = W / (2*π*Rm*Sc*Ks) (Weight)= 553 / (2*π*11.875*15,770.69*1.20)= 0.0004"

tc = tmc + twc - tpc (total required, compressive)= 0.0012 + (0.0004) - (0)= 0.0016"

Hot Shut Down, New, Wind, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) (bending)= 10,341 / (π*11.8752*20,000*1.20*1.00)= 0.001"

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.60*553 / (2*π*11.875*20,000*1.20*1.00)= 0.0002"

tt = tp + tm - tw (total required, tensile)= 0 + 0.001 - (0.0002)= 0.0008"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 10,341 / (π*11.8752*15,770.69*1.20)= 0.0012"

twc = W / (2*π*Rm*Sc*Ks) (Weight)= 553 / (2*π*11.875*15,770.69*1.20)= 0.0004"

tc = tmc + twc - tpc (total required, compressive)= 0.0012 + (0.0004) - (0)= 0.0016"

Empty, Corroded, Wind, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) (bending)= 10,341 / (π*11.8752*20,000*1.20*1.00)= 0.001"

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.60*553 / (2*π*11.875*20,000*1.20*1.00)= 0.0002"

tt = tp + tm - tw (total required, tensile)= 0 + 0.001 - (0.0002)= 0.0008"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 10,341 / (π*11.8752*15,770.69*1.20)= 0.0012"

36/103

Page 39: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

twc = W / (2*π*Rm*Sc*Ks) (Weight)= 553 / (2*π*11.875*15,770.69*1.20)= 0.0004"

tc = tmc + twc - tpc (total required, compressive)= 0.0012 + (0.0004) - (0)= 0.0016"

Empty, New, Wind, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) (bending)= 10,341 / (π*11.8752*20,000*1.20*1.00)= 0.001"

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.60*553 / (2*π*11.875*20,000*1.20*1.00)= 0.0002"

tt = tp + tm - tw (total required, tensile)= 0 + 0.001 - (0.0002)= 0.0008"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 10,341 / (π*11.8752*15,770.69*1.20)= 0.0012"

twc = W / (2*π*Rm*Sc*Ks) (Weight)= 553 / (2*π*11.875*15,770.69*1.20)= 0.0004"

tc = tmc + twc - tpc (total required, compressive)= 0.0012 + (0.0004) - (0)= 0.0016"

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 940 / (π*11.8752*15,770.69*1.00)= 0.0001"

tw = W / (2*π*Rm*Sc*Ks) (Weight)= 553 / (2*π*11.875*15,770.69*1.00)= 0.0005"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0.0001 - (0.0005)|= 0.0003"

tc = tmc + twc - tpc (total required, compressive)= 0.0001 + (0.0005) - (0)= 0.0006"

37/103

Page 40: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Operating, Hot & Corroded, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 275*11.75 / (2*20,000*1.20*1.00 + 0.40*|275|)= 0.0672"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 1,392 / (π*11.8752*20,000*1.20*1.00)= 0.0001"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.59*553 / (2*π*11.875*20,000*1.20*1.00)= 0.0002"

tt = tp + tm - tw(total required,tensile)

= 0.0672 + 0.0001 - (0.0002)= 0.0671"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)= 1.01*553 / (2*π*11.875*20,000*1.20*1.00)= 0.0003"

tc = |tmc + twc - tpc|(total, nettensile)

= |0.0001 + (0.0003) - (0.0672)|= 0.0667"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*20,000*1.20*1.00*(0.25 - 0.0001 + (0.0002)) / (11.75 - 0.40*(0.25 - 0.0001 + (0.0002)))= 1,030.25 psi

Operating, Hot & New, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 275*11.75 / (2*20,000*1.20*1.00 + 0.40*|275|)= 0.0672"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 1,392 / (π*11.8752*20,000*1.20*1.00)= 0.0001"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.59*553 / (2*π*11.875*20,000*1.20*1.00)= 0.0002"

tt = tp + tm - tw(total required,tensile)

= 0.0672 + 0.0001 - (0.0002)= 0.0671"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)= 1.01*553 / (2*π*11.875*20,000*1.20*1.00)= 0.0003"

38/103

Page 41: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

tc = |tmc + twc - tpc|(total, nettensile)

= |0.0001 + (0.0003) - (0.0672)|= 0.0667"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*20,000*1.20*1.00*(0.25 - 0.0001 + (0.0002)) / (11.75 - 0.40*(0.25 - 0.0001 + (0.0002)))= 1,030.25 psi

Hot Shut Down, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 1,392 / (π*11.8752*15,770.69*1.20)= 0.0002"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 0.59*553 / (2*π*11.875*15,770.69*1.20)= 0.0002"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0.0002 - (0.0002)|= 0.0001"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 1.01*553 / (2*π*11.875*15,770.69*1.20)= 0.0004"

tc = tmc + twc - tpc (total required, compressive)= 0.0002 + (0.0004) - (0)= 0.0006"

Hot Shut Down, New, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 1,392 / (π*11.8752*15,770.69*1.20)= 0.0002"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 0.59*553 / (2*π*11.875*15,770.69*1.20)= 0.0002"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0.0002 - (0.0002)|= 0.0001"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 1.01*553 / (2*π*11.875*15,770.69*1.20)= 0.0004"

tc = tmc + twc - tpc (total required, compressive)= 0.0002 + (0.0004) - (0)

39/103

Page 42: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

= 0.0006"

Empty, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 1,193 / (π*11.8752*15,770.69*1.20)= 0.0001"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 0.59*553 / (2*π*11.875*15,770.69*1.20)= 0.0002"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0.0001 - (0.0002)|= 0.0001"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 1.01*553 / (2*π*11.875*15,770.69*1.20)= 0.0004"

tc = tmc + twc - tpc (total required, compressive)= 0.0001 + (0.0004) - (0)= 0.0005"

Empty, New, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 1,193 / (π*11.8752*15,770.69*1.20)= 0.0001"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 0.59*553 / (2*π*11.875*15,770.69*1.20)= 0.0002"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0.0001 - (0.0002)|= 0.0001"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 1.01*553 / (2*π*11.875*15,770.69*1.20)= 0.0004"

tc = tmc + twc - tpc (total required, compressive)= 0.0001 + (0.0004) - (0)= 0.0005"

40/103

Page 43: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Ellipsoidal Head #2

ASME Section VIII, Division 1, 2010 Edition, A11 Addenda

Component: Ellipsoidal HeadMaterial Specification: SA-516 70 (II-D p.18, ln. 19)Straight Flange governs MDMT

Internal design pressure: P = 275 psi @ 100 °F

Static liquid head:

Ps= 0 psi (SG=0.7, Hs=0" Operating head)Ptv= 0.51 psi (SG=1, Hs=14.25" Vertical test head)

Corrosion allowance: Inner C = 0" Outer C = 0"

Design MDMT = -20°F No impact test performedRated MDMT = -54.3°F Material is not normalized

Material is not produced to fine grain practicePWHT is not performedDo not Optimize MDMT / Find MAWP

Radiography: Category A joints - Seamless No RT Head to shell seam - Full UW-11(a) Type 1

Estimated weight*: new = 40.1 lb corr = 40.1 lbCapacity*: new = 11.3 US gal corr = 11.3 US gal* includes straight flange

Outer diameter = 24"Minimum head thickness = 0.1632"Head ratio D/2h = 2 (new)Head ratio D/2h = 2 (corroded)Straight flange length Lsf = 2"Nominal straight flange thickness tsf = 0.25"Results Summary

The governing condition is internal pressure.Minimum thickness per UG-16 = 0.0625" + 0" = 0.0625"Design thickness due to internal pressure (t) = 0.163"Maximum allowable working pressure (MAWP) = 275.32 psiMaximum allowable pressure (MAP) = 275.32 psi

K (Corroded)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (23.6737 / (2*5.9184))2]=1

K (New)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (23.6737 / (2*5.9184))2]=1

41/103

Page 44: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Design thickness for internal pressure, (Corroded at 100 °F) Appendix 1-4(c)

t = P*Do*K / (2*S*E + 2*P*(K - 0.1)) + Corrosion= 275*24*1 / (2*20,000*1 + 2*275*(1 - 0.1)) + 0= 0.163"

The head internal pressure design thickness is 0.163".

Maximum allowable working pressure, (Corroded at 100 °F) Appendix 1-4(c)

P = 2*S*E*t / (K*Do - 2*t*(K - 0.1)) - Ps= 2*20,000*1*0.1632 / (1*24 - 2*0.1632*(1 - 0.1)) - 0= 275.32 psi

The maximum allowable working pressure (MAWP) is 275.32 psi.

Maximum allowable pressure, (New at 70 °F) Appendix 1-4(c)

P = 2*S*E*t / (K*Do - 2*t*(K - 0.1)) - Ps= 2*20,000*1*0.1632 / (1*24 - 2*0.1632*(1 - 0.1)) - 0= 275.32 psi

The maximum allowable pressure (MAP) is 275.32 psi.

% Extreme fiber elongation - UCS-79(d)

EFE = (75*t / Rf)*(1 - Rf / Ro)= (75*0.25 / 4.1495)*(1 - 4.1495 / ∞)= 4.5186%

The extreme fiber elongation does not exceed 5%.

42/103

Page 45: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Straight Flange on Ellipsoidal Head #2

ASME Section VIII Division 1, 2010 Edition, A11 Addenda

Component: Straight FlangeMaterial specification: SA-516 70 (II-D p. 18, ln. 19)Material impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 34.3 °F, (coincident ratio = 0.6566)UCS-66 governing thickness = 0.25 in

Internal design pressure: P = 275 psi @ 100 °F

Static liquid head:

Ps = 0 psi (SG = 0.7, Hs = 0",Operating head)

Ptv = 0.59 psi (SG = 1, Hs = 16.25", Vertical testhead)

Corrosion allowance Inner C = 0" Outer C = 0"

Design MDMT = -20 °F No impact test performedRated MDMT = -54.3 °F Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Seamless No RTCircumferential joint - Full UW-11(a) Type 1

Estimated weight New = 10.6 lb corr = 10.6 lbCapacity New = 3.76 US gal corr = 3.76 US gal

OD = 24"LengthLc

= 2"

t = 0.25"

Design thickness, (at 100 °F) Appendix 1-1

t = P*Ro / (S*E + 0.40*P) + Corrosion= 275*12 / (20,000*1.00 + 0.40*275) + 0= 0.1641"

Maximum allowable working pressure, (at 100 °F) Appendix 1-1

P = S*E*t / (Ro - 0.40*t) - Ps= 20,000*1.00*0.25 / (12 - 0.40*0.25) - 0= 420.17 psi

Maximum allowable pressure, (at 70 °F) Appendix 1-1

P = S*E*t / (Ro - 0.40*t)= 20,000*1.00*0.25 / (12 - 0.40*0.25)= 420.17 psi

43/103

Page 46: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

% Extreme fiber elongation - UCS-79(d)

EFE = (50*t / Rf)*(1 - Rf / Ro)= (50*0.25 / 11.875)*(1 - 11.875 / ∞)= 1.0526%

The extreme fiber elongation does not exceed 5%.

Design thickness = 0.1641"

The governing condition is due to internal pressure.

The cylinder thickness of 0.25" is adequate.

Thickness Required Due to Pressure + External Loads

Condition Pressure P (psi)

AllowableStress BeforeUG-23 StressIncrease ( psi)

Temperature (°F)

Corrosion C(in) Load Req'd Thk Due to

Tension (in)Req'd Thk Due toCompression (in)

St Sc

Operating, Hot & Corroded 275 20,000 15,771 100 0 Wind 0.0671 0.0671

Seismic 0.0671 0.0671

Operating, Hot & New 275 20,000 15,771 100 0 Wind 0.0671 0.0671

Seismic 0.0671 0.0671

Hot Shut Down, Corroded 0 20,000 15,771 100 0 Wind 0 0.0001

Seismic 0 0.0001

Hot Shut Down, New 0 20,000 15,771 100 0 Wind 0 0.0001

Seismic 0 0.0001

Empty, Corroded 0 20,000 15,771 70 0 Wind 0 0.0001

Seismic 0 0.0001

Empty, New 0 20,000 15,771 70 0 Wind 0 0.0001

Seismic 0 0.0001

Hot Shut Down, Corroded, Weight& Eccentric Moments Only 0 20,000 15,771 100 0 Weight 0.0001 0.0001

Allowable Compressive Stress, Hot and Corroded- ScHC, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (12 / 0.25)= 0.002604

B = 15,771 psi

S = 20,000 / 1.00 = 20,000 psi

ScHC = min(B, S) = 15,771 psi

Allowable Compressive Stress, Hot and New- ScHN

ScHN = ScHC

= 15,771 psi

44/103

Page 47: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Allowable Compressive Stress, Cold and New- ScCN, (table CS-2)A = 0.125 / (Ro / t)

= 0.125 / (12 / 0.25)= 0.002604

B = 15,771 psi

S = 20,000 / 1.00 = 20,000 psi

ScCN = min(B, S) = 15,771 psi

Allowable Compressive Stress, Cold and Corroded- ScCC

ScCC = ScCN

= 15,771 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableCS-2)A = 0.125 / (Ro / t)

= 0.125 / (12 / 0.25)= 0.002604

B = 15,771 psi

S = 20,000 / 1.00 = 20,000 psi

ScVC = min(B, S) = 15,771 psi

Operating, Hot & Corroded, Wind, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 275*11.75 / (2*20,000*1.20*1.00 + 0.40*|275|)= 0.0672"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 69 / (π*11.8752*20,000*1.20*1.00)= 0"

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.60*75.2 / (2*π*11.875*20,000*1.20*1.00)= 0"

tt = tp + tm - tw(total required,tensile)

= 0.0672 + 0 - (0)= 0.0671"

twc = W / (2*π*Rm*St*Ks*Ec) (Weight)= 75.2 / (2*π*11.875*20,000*1.20*1.00)= 0"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0) - (0.0672)|= 0.0671"

45/103

Page 48: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*20,000*1.20*1.00*(0.25 - 0 + (0)) / (11.75 - 0.40*(0.25 - 0 + (0)))= 1,030.12 psi

Operating, Hot & New, Wind, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 275*11.75 / (2*20,000*1.20*1.00 + 0.40*|275|)= 0.0672"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 69 / (π*11.8752*20,000*1.20*1.00)= 0"

tw = 0.6*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.60*75.2 / (2*π*11.875*20,000*1.20*1.00)= 0"

tt = tp + tm - tw(total required,tensile)

= 0.0672 + 0 - (0)= 0.0671"

twc = W / (2*π*Rm*St*Ks*Ec) (Weight)= 75.2 / (2*π*11.875*20,000*1.20*1.00)= 0"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0) - (0.0672)|= 0.0671"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*20,000*1.20*1.00*(0.25 - 0 + (0)) / (11.75 - 0.40*(0.25 - 0 + (0)))= 1,030.12 psi

Hot Shut Down, Corroded, Wind, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 69 / (π*11.8752*15,770.69*1.20)= 0"

tw = 0.6*W / (2*π*Rm*Sc*Ks) (Weight)= 0.60*75.2 / (2*π*11.875*15,770.69*1.20)= 0"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0)|= 0"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

46/103

Page 49: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

= 75.2 / (2*π*11.875*15,770.69*1.20)= 0.0001"

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.0001) - (0)= 0.0001"

Hot Shut Down, New, Wind, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 69 / (π*11.8752*15,770.69*1.20)= 0"

tw = 0.6*W / (2*π*Rm*Sc*Ks) (Weight)= 0.60*75.2 / (2*π*11.875*15,770.69*1.20)= 0"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0)|= 0"

twc = W / (2*π*Rm*Sc*Ks) (Weight)= 75.2 / (2*π*11.875*15,770.69*1.20)= 0.0001"

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.0001) - (0)= 0.0001"

Empty, Corroded, Wind, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 69 / (π*11.8752*15,770.69*1.20)= 0"

tw = 0.6*W / (2*π*Rm*Sc*Ks) (Weight)= 0.60*75.2 / (2*π*11.875*15,770.69*1.20)= 0"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0)|= 0"

twc = W / (2*π*Rm*Sc*Ks) (Weight)= 75.2 / (2*π*11.875*15,770.69*1.20)= 0.0001"

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.0001) - (0)= 0.0001"

47/103

Page 50: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Empty, New, Wind, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 69 / (π*11.8752*15,770.69*1.20)= 0"

tw = 0.6*W / (2*π*Rm*Sc*Ks) (Weight)= 0.60*75.2 / (2*π*11.875*15,770.69*1.20)= 0"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0)|= 0"

twc = W / (2*π*Rm*Sc*Ks) (Weight)= 75.2 / (2*π*11.875*15,770.69*1.20)= 0.0001"

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.0001) - (0)= 0.0001"

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 0 / (π*11.8752*15,770.69*1.00)= 0"

tw = W / (2*π*Rm*Sc*Ks) (Weight)= 75.2 / (2*π*11.875*15,770.69*1.00)= 0.0001"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0.0001)|= 0.0001"

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.0001) - (0)= 0.0001"

Operating, Hot & Corroded, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 275*11.75 / (2*20,000*1.20*1.00 + 0.40*|275|)= 0.0672"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 6 / (π*11.8752*20,000*1.20*1.00)= 0"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.59*75.2 / (2*π*11.875*20,000*1.20*1.00)= 0"

tt = tp + tm - tw

48/103

Page 51: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

(total required,tensile)

= 0.0672 + 0 - (0)= 0.0671"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)= 1.01*75.2 / (2*π*11.875*20,000*1.20*1.00)= 0"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0) - (0.0672)|= 0.0671"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*20,000*1.20*1.00*(0.25 - 0 + (0)) / (11.75 - 0.40*(0.25 - 0 + (0)))= 1,030.14 psi

Operating, Hot & New, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0.40*|P|) (Pressure)= 275*11.75 / (2*20,000*1.20*1.00 + 0.40*|275|)= 0.0672"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 6 / (π*11.8752*20,000*1.20*1.00)= 0"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0.59*75.2 / (2*π*11.875*20,000*1.20*1.00)= 0"

tt = tp + tm - tw(total required,tensile)

= 0.0672 + 0 - (0)= 0.0671"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)= 1.01*75.2 / (2*π*11.875*20,000*1.20*1.00)= 0"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (0) - (0.0672)|= 0.0671"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0.40*(t - tm + tw))= 2*20,000*1.20*1.00*(0.25 - 0 + (0)) / (11.75 - 0.40*(0.25 - 0 + (0)))= 1,030.14 psi

49/103

Page 52: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Hot Shut Down, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 6 / (π*11.8752*15,770.69*1.20)= 0"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 0.59*75.2 / (2*π*11.875*15,770.69*1.20)= 0"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0)|= 0"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 1.01*75.2 / (2*π*11.875*15,770.69*1.20)= 0.0001"

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.0001) - (0)= 0.0001"

Hot Shut Down, New, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 6 / (π*11.8752*15,770.69*1.20)= 0"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 0.59*75.2 / (2*π*11.875*15,770.69*1.20)= 0"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0)|= 0"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 1.01*75.2 / (2*π*11.875*15,770.69*1.20)= 0.0001"

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.0001) - (0)= 0.0001"

Empty, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 6 / (π*11.8752*15,770.69*1.20)= 0"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 0.59*75.2 / (2*π*11.875*15,770.69*1.20)= 0"

50/103

Page 53: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0)|= 0"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 1.01*75.2 / (2*π*11.875*15,770.69*1.20)= 0.0001"

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.0001) - (0)= 0.0001"

Empty, New, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)= 6 / (π*11.8752*15,770.69*1.20)= 0"

tw = (0.6 - 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 0.59*75.2 / (2*π*11.875*15,770.69*1.20)= 0"

tt = |tp + tm - tw| (total, net compressive)= |0 + 0 - (0)|= 0"

twc = (1 + 0.14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 1.01*75.2 / (2*π*11.875*15,770.69*1.20)= 0.0001"

tc = tmc + twc - tpc (total required, compressive)= 0 + (0.0001) - (0)= 0.0001"

51/103

Page 54: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Nozzle Schedule

Nozzlemark Service Size Materials Impact

Tested Normalized FineGrain Flange Blind

N1 N1 - 3" 300# RFLWN - Liquid Outlet 4.62 OD x 0.81 Nozzle SA-105 No No No NPS 3 Class 300LWN A105 No

N2 N2 - 3" 300# RFLWN - Vapor In 4.62 OD x 0.81 Nozzle SA-105 No No No NPS 3 Class 300LWN A105 No

N3 N3 - 1 1/2" 300# RFLWN - LevelGauge 2.75 OD x 0.625 Nozzle SA-105 No No No

NPS 1 1/2 Class300LWN A105

No

N4 N4 - 1 1/2" 300# RFLWN - LevelGauge 2.75 OD x 0.625 Nozzle SA-105 No No No

NPS 1 1/2 Class300LWN A105

No

N5 N5 - 2" 300# RFWN Drain NPS 2 Sch 80(XS) Nozzle SA-106 B Smls

pipe No No No NPS 2 Class 300WN A105 No

N6 N6 - 3" 300# RFWN Flare Outlet 4.62 OD x 0.81 Nozzle SA-105 No No No NPS 3 Class 300LWN A105 No

52/103

Page 55: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Nozzle Summary

Nozzlemark

OD(in)

tn

(in)Req t

n(in)

A1? A2?Shell Reinforcement

Pad Corr(in)

Aa/A

r(%)

Nom t(in)

Design t(in)

User t(in)

Width(in)

tpad(in)

N1 4.62 0.81 0.2258 Yes Yes 0.25 N/A N/A N/A 0 Exempt

N2 4.62 0.81 0.2258 Yes Yes 0.25 N/A N/A N/A 0 Exempt

N3 2.75 0.625 0.1776 Yes Yes 0.25 N/A N/A N/A 0 Exempt

N4 2.75 0.625 0.1776 Yes Yes 0.25 N/A N/A N/A 0 Exempt

N5 2.375 0.218 0.154 Yes Yes 0.1641* N/A N/A N/A 0 Exempt

N6 4.62 0.81 0.1799 Yes Yes 0.1632* N/A N/A N/A 0 Exempt

tn: Nozzle thicknessReq tn: Nozzle thickness required per UG-45/UG-16Nom t: Vessel wall thicknessDesign t: Required vessel wall thickness due to pressure + corrosion allowance per UG-37User t: Local vessel wall thickness (near opening)Aa: Area available per UG-37, governing conditionAr: Area required per UG-37, governing conditionCorr: Corrosion allowance on nozzle wall* Head minimum thickness after forming

53/103

Page 56: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

N1 - 3" 300# RFLWN - Liquid Outlet (N1)

ASME Section VIII Division 1, 2010 Edition, A11 Addenda

tw(lower) = 0.25 inLeg41 = 0.25 inLeg43 = 0.25 inhnew = 0.5 in

Note: round inside edges per UG-76(c)

Location and OrientationLocated on: Cylinder #1Orientation: 180°Nozzle center line offset to datum line: 6.75 inEnd of nozzle to shell center: 18 inPasses through a Category A joint: No

NozzleAccess opening: NoMaterial specification: SA-105 (II-D p. 18, ln. 5)Inside diameter, new: 3 inNominal wall thickness: 0.81 inCorrosion allowance: 0 inProjection available outside vessel, Lpr: 4.88 inInternal projection, hnew: 0.5 inProjection available outside vessel to flange face, Lf: 6 inLocal vessel minimum thickness: 0.25 inLiquid static head included: 1.475 psiLongitudinal joint efficiency: 1

ASME B16.5-2009 FlangeDescription: NPS 3 Class 300 LWN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32)Blind included: NoRated MDMT: -55°F per UCS-66(b)(1)(b)Liquid static head: 1.4371 psiMAWP rating: 740 psi @ 100°FMAP rating: 740 psi @ 70°FHydrotest rating: 1,125 psi @ 70°FPWHT performed: No

54/103

Page 57: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 420.17 psi @ 100 °F

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0.2258 0.81

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.175 0.175 weld size is adequate

Calculations for internal pressure 420.17 psi @ 100 °F

Nozzle impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 34 °F, (coincident ratio = 0.6601).

Nozzle UCS-66 governing thk: 0.25 inNozzle rated MDMT: -54 °FParallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(3, 1.5 + (0.81 - 0) + (0.25 - 0))= 3 in

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(0.25 - 0), 2.5*(0.81 - 0) + 0)= 0.625 in

Inner Normal Limit of reinforcement per UG-40

LI = MIN(2.5*(t - C), 2.5*(ti - Cn - C))= MIN(2.5*(0.25 - 0), 2.5*(0.81 - 0 - 0))= 0.625 in

55/103

Page 58: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 420.1738*1.5 / (20,000*1 - 0.6*420.1738)= 0.0319 in

Required thickness tr from UG-37(a)

tr = P*Ro / (S*E + 0.4*P)= 420.1738*12 / (20,000*1 + 0.4*420.1738)= 0.25 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.25 intc(min) = lesser of 0.25 or 0.7*tmin = 0.175 intc(actual) = 0.7*Leg = 0.7*0.25 = 0.175 in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 420.1738*1.5 / (20,000*1 - 0.6*420.1738) + 0= 0.0319 in

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.0319 , 0 ]= 0.0319 in

tb1 = P*Ro / (S*E + 0.4*P) + Corrosion= 420.1738*12 / (20,000*1 + 0.4*420.1738) + 0= 0.25 in

tb1 = max[ tb1 , tb UG16 ]= max[ 0.25 , 0.0625 ]= 0.25 in

tb = min[ tb3 , tb1 ]= min[ 0.2258 , 0.25 ]= 0.2258 in

tUG-45 = max[ ta , tb ]

56/103

Page 59: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

= max[ 0.0319 , 0.2258 ]= 0.2258 in

Available nozzle wall thickness new, tn = 0.81 in

The nozzle neck thickness is adequate.

57/103

Page 60: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 420.17 psi @ 70 °F

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0.2258 0.81

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.175 0.175 weld size is adequate

Calculations for internal pressure 420.17 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(3, 1.5 + (0.81 - 0) + (0.25 - 0))= 3 in

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(0.25 - 0), 2.5*(0.81 - 0) + 0)= 0.625 in

Inner Normal Limit of reinforcement per UG-40

LI = MIN(2.5*(t - C), 2.5*(ti - Cn - C))= MIN(2.5*(0.25 - 0), 2.5*(0.81 - 0 - 0))= 0.625 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 420.1735*1.5 / (20,000*1 - 0.6*420.1735)= 0.0319 in

58/103

Page 61: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Required thickness tr from UG-37(a)

tr = P*Ro / (S*E + 0.4*P)= 420.1735*12 / (20,000*1 + 0.4*420.1735)= 0.25 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.25 intc(min) = lesser of 0.25 or 0.7*tmin = 0.175 intc(actual) = 0.7*Leg = 0.7*0.25 = 0.175 in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 420.1735*1.5 / (20,000*1 - 0.6*420.1735) + 0= 0.0319 in

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.0319 , 0 ]= 0.0319 in

tb1 = P*Ro / (S*E + 0.4*P) + Corrosion= 420.1735*12 / (20,000*1 + 0.4*420.1735) + 0= 0.25 in

tb1 = max[ tb1 , tb UG16 ]= max[ 0.25 , 0.0625 ]= 0.25 in

tb = min[ tb3 , tb1 ]= min[ 0.2258 , 0.25 ]= 0.2258 in

tUG-45 = max[ ta , tb ]= max[ 0.0319 , 0.2258 ]= 0.2258 in

Available nozzle wall thickness new, tn = 0.81 in

The nozzle neck thickness is adequate.

59/103

Page 62: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

N2 - 3" 300# RFLWN - Vapor In (N2)

ASME Section VIII Division 1, 2010 Edition, A11 Addenda

tw(lower) = 0.25 inLeg41 = 0.25 inLeg43 = 0.25 inhnew = 0.5 in

Note: round inside edges per UG-76(c)

Location and OrientationLocated on: Cylinder #1Orientation: 270°Nozzle center line offset to datum line: 25.5625 inEnd of nozzle to shell center: 18 inPasses through a Category A joint: No

NozzleAccess opening: NoMaterial specification: SA-105 (II-D p. 18, ln. 5)Inside diameter, new: 3 inNominal wall thickness: 0.81 inCorrosion allowance: 0 inProjection available outside vessel, Lpr: 4.88 inInternal projection, hnew: 0.5 inProjection available outside vessel to flange face, Lf: 6 inLocal vessel minimum thickness: 0.25 inLiquid static head included: 0.9997 psiLongitudinal joint efficiency: 1

ASME B16.5-2009 FlangeDescription: NPS 3 Class 300 LWN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32)Blind included: NoRated MDMT: -55°F per UCS-66(b)(1)(b)Liquid static head: 0.9618 psiMAWP rating: 740 psi @ 100°FMAP rating: 740 psi @ 70°FHydrotest rating: 1,125 psi @ 70°FPWHT performed: No

60/103

Page 63: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 420.17 psi @ 100 °F

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0.2258 0.81

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.175 0.175 weld size is adequate

Calculations for internal pressure 420.17 psi @ 100 °F

Nozzle impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 34.1 °F, (coincident ratio = 0.659).

Nozzle UCS-66 governing thk: 0.25 inNozzle rated MDMT: -54.1 °FParallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(3, 1.5 + (0.81 - 0) + (0.25 - 0))= 3 in

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(0.25 - 0), 2.5*(0.81 - 0) + 0)= 0.625 in

Inner Normal Limit of reinforcement per UG-40

LI = MIN(2.5*(t - C), 2.5*(ti - Cn - C))= MIN(2.5*(0.25 - 0), 2.5*(0.81 - 0 - 0))= 0.625 in

61/103

Page 64: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 420.1715*1.5 / (20,000*1 - 0.6*420.1715)= 0.0319 in

Required thickness tr from UG-37(a)

tr = P*Ro / (S*E + 0.4*P)= 420.1715*12 / (20,000*1 + 0.4*420.1715)= 0.25 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.25 intc(min) = lesser of 0.25 or 0.7*tmin = 0.175 intc(actual) = 0.7*Leg = 0.7*0.25 = 0.175 in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 420.1715*1.5 / (20,000*1 - 0.6*420.1715) + 0= 0.0319 in

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.0319 , 0 ]= 0.0319 in

tb1 = P*Ro / (S*E + 0.4*P) + Corrosion= 420.1715*12 / (20,000*1 + 0.4*420.1715) + 0= 0.25 in

tb1 = max[ tb1 , tb UG16 ]= max[ 0.25 , 0.0625 ]= 0.25 in

tb = min[ tb3 , tb1 ]= min[ 0.2258 , 0.25 ]= 0.2258 in

tUG-45 = max[ ta , tb ]

62/103

Page 65: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

= max[ 0.0319 , 0.2258 ]= 0.2258 in

Available nozzle wall thickness new, tn = 0.81 in

The nozzle neck thickness is adequate.

63/103

Page 66: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 420.17 psi @ 70 °F

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0.2258 0.81

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.175 0.175 weld size is adequate

Calculations for internal pressure 420.17 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(3, 1.5 + (0.81 - 0) + (0.25 - 0))= 3 in

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(0.25 - 0), 2.5*(0.81 - 0) + 0)= 0.625 in

Inner Normal Limit of reinforcement per UG-40

LI = MIN(2.5*(t - C), 2.5*(ti - Cn - C))= MIN(2.5*(0.25 - 0), 2.5*(0.81 - 0 - 0))= 0.625 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 420.1735*1.5 / (20,000*1 - 0.6*420.1735)= 0.0319 in

64/103

Page 67: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Required thickness tr from UG-37(a)

tr = P*Ro / (S*E + 0.4*P)= 420.1735*12 / (20,000*1 + 0.4*420.1735)= 0.25 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.25 intc(min) = lesser of 0.25 or 0.7*tmin = 0.175 intc(actual) = 0.7*Leg = 0.7*0.25 = 0.175 in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 420.1735*1.5 / (20,000*1 - 0.6*420.1735) + 0= 0.0319 in

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.0319 , 0 ]= 0.0319 in

tb1 = P*Ro / (S*E + 0.4*P) + Corrosion= 420.1735*12 / (20,000*1 + 0.4*420.1735) + 0= 0.25 in

tb1 = max[ tb1 , tb UG16 ]= max[ 0.25 , 0.0625 ]= 0.25 in

tb = min[ tb3 , tb1 ]= min[ 0.2258 , 0.25 ]= 0.2258 in

tUG-45 = max[ ta , tb ]= max[ 0.0319 , 0.2258 ]= 0.2258 in

Available nozzle wall thickness new, tn = 0.81 in

The nozzle neck thickness is adequate.

65/103

Page 68: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

N3 - 1 1/2" 300# RFLWN - Level Gauge (N3)

ASME Section VIII Division 1, 2010 Edition, A11 Addenda

tw(lower) = 0.25 inLeg41 = 0.25 inLeg43 = 0.25 inhnew = 0.5 in

Note: round inside edges per UG-76(c)

Location and OrientationLocated on: Cylinder #1Orientation: 315°Nozzle center line offset to datum line: 66 inEnd of nozzle to shell center: 18 inPasses through a Category A joint: No

NozzleAccess opening: NoMaterial specification: SA-105 (II-D p. 18, ln. 5)Inside diameter, new: 1.5 inNominal wall thickness: 0.625 inCorrosion allowance: 0 inProjection available outside vessel, Lpr: 5.19 inInternal projection, hnew: 0.5 inProjection available outside vessel to flange face, Lf: 6 inLocal vessel minimum thickness: 0.25 inLiquid static head included: 0 psiLongitudinal joint efficiency: 1

ASME B16.5-2009 FlangeDescription: NPS 1.5 Class 300 LWN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32)Blind included: NoRated MDMT: -55°F per UCS-66(b)(1)(b)Liquid static head: 0 psiMAWP rating: 740 psi @ 100°FMAP rating: 740 psi @ 70°FHydrotest rating: 1,125 psi @ 70°FPWHT performed: No

66/103

Page 69: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 420.17 psi @ 100 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0.1776 0.625

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.175 0.175 weld size is adequate

Calculations for internal pressure 420.17 psi @ 100 °F

Nozzle impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 34.3 °F, (coincident ratio = 0.6566).

Nozzle UCS-66 governing thk: 0.25 inNozzle rated MDMT: -54.3 °FParallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(1.5, 0.75 + (0.625 - 0) + (0.25 - 0))= 1.625 in

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(0.25 - 0), 2.5*(0.625 - 0) + 0)= 0.625 in

Inner Normal Limit of reinforcement per UG-40

LI = MIN(2.5*(t - C), 2.5*(ti - Cn - C))= MIN(2.5*(0.25 - 0), 2.5*(0.625 - 0 - 0))= 0.625 in

67/103

Page 70: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 420.1735*0.75 / (20,000*1 - 0.6*420.1735)= 0.016 in

Required thickness tr from UG-37(a)

tr = P*Ro / (S*E + 0.4*P)= 420.1735*12 / (20,000*1 + 0.4*420.1735)= 0.25 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.25 intc(min) = lesser of 0.25 or 0.7*tmin = 0.175 intc(actual) = 0.7*Leg = 0.7*0.25 = 0.175 in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 420.1735*0.75 / (20,000*1 - 0.6*420.1735) + 0= 0.016 in

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.016 , 0 ]= 0.016 in

tb1 = P*Ro / (S*E + 0.4*P) + Corrosion= 420.1735*12 / (20,000*1 + 0.4*420.1735) + 0= 0.25 in

tb1 = max[ tb1 , tb UG16 ]= max[ 0.25 , 0.0625 ]= 0.25 in

tb = min[ tb3 , tb1 ]= min[ 0.1776 , 0.25 ]= 0.1776 in

tUG-45 = max[ ta , tb ]

68/103

Page 71: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

= max[ 0.016 , 0.1776 ]= 0.1776 in

Available nozzle wall thickness new, tn = 0.625 in

The nozzle neck thickness is adequate.

69/103

Page 72: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 420.17 psi @ 70 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0.1776 0.625

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.175 0.175 weld size is adequate

Calculations for internal pressure 420.17 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(1.5, 0.75 + (0.625 - 0) + (0.25 - 0))= 1.625 in

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(0.25 - 0), 2.5*(0.625 - 0) + 0)= 0.625 in

Inner Normal Limit of reinforcement per UG-40

LI = MIN(2.5*(t - C), 2.5*(ti - Cn - C))= MIN(2.5*(0.25 - 0), 2.5*(0.625 - 0 - 0))= 0.625 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 420.1735*0.75 / (20,000*1 - 0.6*420.1735)= 0.016 in

70/103

Page 73: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Required thickness tr from UG-37(a)

tr = P*Ro / (S*E + 0.4*P)= 420.1735*12 / (20,000*1 + 0.4*420.1735)= 0.25 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.25 intc(min) = lesser of 0.25 or 0.7*tmin = 0.175 intc(actual) = 0.7*Leg = 0.7*0.25 = 0.175 in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 420.1735*0.75 / (20,000*1 - 0.6*420.1735) + 0= 0.016 in

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.016 , 0 ]= 0.016 in

tb1 = P*Ro / (S*E + 0.4*P) + Corrosion= 420.1735*12 / (20,000*1 + 0.4*420.1735) + 0= 0.25 in

tb1 = max[ tb1 , tb UG16 ]= max[ 0.25 , 0.0625 ]= 0.25 in

tb = min[ tb3 , tb1 ]= min[ 0.1776 , 0.25 ]= 0.1776 in

tUG-45 = max[ ta , tb ]= max[ 0.016 , 0.1776 ]= 0.1776 in

Available nozzle wall thickness new, tn = 0.625 in

The nozzle neck thickness is adequate.

71/103

Page 74: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

N4 - 1 1/2" 300# RFLWN - Level Gauge (N4)

ASME Section VIII Division 1, 2010 Edition, A11 Addenda

tw(lower) = 0.25 inLeg41 = 0.25 inLeg43 = 0.25 inhnew = 0.5 in

Note: round inside edges per UG-76(c)

Location and OrientationLocated on: Cylinder #1Orientation: 315°Nozzle center line offset to datum line: 6 inEnd of nozzle to shell center: 18 inPasses through a Category A joint: No

NozzleAccess opening: NoMaterial specification: SA-105 (II-D p. 18, ln. 5)Inside diameter, new: 1.5 inNominal wall thickness: 0.625 inCorrosion allowance: 0 inProjection available outside vessel, Lpr: 5.19 inInternal projection, hnew: 0.5 inProjection available outside vessel to flange face, Lf: 6 inLocal vessel minimum thickness: 0.25 inLiquid static head included: 1.475 psiLongitudinal joint efficiency: 1

ASME B16.5-2009 FlangeDescription: NPS 1.5 Class 300 LWN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32)Blind included: NoRated MDMT: -55°F per UCS-66(b)(1)(b)Liquid static head: 1.4561 psiMAWP rating: 740 psi @ 100°FMAP rating: 740 psi @ 70°FHydrotest rating: 1,125 psi @ 70°FPWHT performed: No

72/103

Page 75: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 420.17 psi @ 100 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0.1776 0.625

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.175 0.175 weld size is adequate

Calculations for internal pressure 420.17 psi @ 100 °F

Nozzle impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 34 °F, (coincident ratio = 0.6601).

Nozzle UCS-66 governing thk: 0.25 inNozzle rated MDMT: -54 °FParallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(1.5, 0.75 + (0.625 - 0) + (0.25 - 0))= 1.625 in

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(0.25 - 0), 2.5*(0.625 - 0) + 0)= 0.625 in

Inner Normal Limit of reinforcement per UG-40

LI = MIN(2.5*(t - C), 2.5*(ti - Cn - C))= MIN(2.5*(0.25 - 0), 2.5*(0.625 - 0 - 0))= 0.625 in

73/103

Page 76: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 420.1738*0.75 / (20,000*1 - 0.6*420.1738)= 0.016 in

Required thickness tr from UG-37(a)

tr = P*Ro / (S*E + 0.4*P)= 420.1738*12 / (20,000*1 + 0.4*420.1738)= 0.25 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.25 intc(min) = lesser of 0.25 or 0.7*tmin = 0.175 intc(actual) = 0.7*Leg = 0.7*0.25 = 0.175 in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 420.1738*0.75 / (20,000*1 - 0.6*420.1738) + 0= 0.016 in

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.016 , 0 ]= 0.016 in

tb1 = P*Ro / (S*E + 0.4*P) + Corrosion= 420.1738*12 / (20,000*1 + 0.4*420.1738) + 0= 0.25 in

tb1 = max[ tb1 , tb UG16 ]= max[ 0.25 , 0.0625 ]= 0.25 in

tb = min[ tb3 , tb1 ]= min[ 0.1776 , 0.25 ]= 0.1776 in

tUG-45 = max[ ta , tb ]

74/103

Page 77: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

= max[ 0.016 , 0.1776 ]= 0.1776 in

Available nozzle wall thickness new, tn = 0.625 in

The nozzle neck thickness is adequate.

75/103

Page 78: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 420.17 psi @ 70 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0.1776 0.625

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.175 0.175 weld size is adequate

Calculations for internal pressure 420.17 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(1.5, 0.75 + (0.625 - 0) + (0.25 - 0))= 1.625 in

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(0.25 - 0), 2.5*(0.625 - 0) + 0)= 0.625 in

Inner Normal Limit of reinforcement per UG-40

LI = MIN(2.5*(t - C), 2.5*(ti - Cn - C))= MIN(2.5*(0.25 - 0), 2.5*(0.625 - 0 - 0))= 0.625 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 420.1735*0.75 / (20,000*1 - 0.6*420.1735)= 0.016 in

76/103

Page 79: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Required thickness tr from UG-37(a)

tr = P*Ro / (S*E + 0.4*P)= 420.1735*12 / (20,000*1 + 0.4*420.1735)= 0.25 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.25 intc(min) = lesser of 0.25 or 0.7*tmin = 0.175 intc(actual) = 0.7*Leg = 0.7*0.25 = 0.175 in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 420.1735*0.75 / (20,000*1 - 0.6*420.1735) + 0= 0.016 in

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.016 , 0 ]= 0.016 in

tb1 = P*Ro / (S*E + 0.4*P) + Corrosion= 420.1735*12 / (20,000*1 + 0.4*420.1735) + 0= 0.25 in

tb1 = max[ tb1 , tb UG16 ]= max[ 0.25 , 0.0625 ]= 0.25 in

tb = min[ tb3 , tb1 ]= min[ 0.1776 , 0.25 ]= 0.1776 in

tUG-45 = max[ ta , tb ]= max[ 0.016 , 0.1776 ]= 0.1776 in

Available nozzle wall thickness new, tn = 0.625 in

The nozzle neck thickness is adequate.

77/103

Page 80: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

N5 - 2" 300# RFWN Drain (N5)

ASME Section VIII Division 1, 2010 Edition, A11 Addenda

tw(lower) = 0.1641 inLeg41 = 0.25 in

Note: round inside edges per UG-76(c)

Location and OrientationLocated on: Ellipsoidal Head #1Orientation: 0°End of nozzle to datum line: -17.125 inCalculated as hillside: NoDistance to head center, R: 0 inPasses through a Category A joint: No

NozzleAccess opening: NoMaterial specification: SA-106 B Smls pipe (II-D p. 10, ln. 40)Description: NPS 2 Sch 80 (XS)Inside diameter, new: 1.939 inNominal wall thickness: 0.218 inCorrosion allowance: 0 inProjection available outside vessel, Lpr: 6.3228 inProjection available outside vessel to flange face, Lf: 9.0728 inLocal vessel minimum thickness: 0.1641 inLiquid static head included: 2.0362 psiLongitudinal joint efficiency: 1

ASME B16.5-2009 FlangeDescription: NPS 2 Class 300 WN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32)Blind included: NoRated MDMT: -55°F per UCS-66(b)(1)(b)Liquid static head: 2.0404 psiMAWP rating: 740 psi @ 100°FMAP rating: 740 psi @ 70°FHydrotest rating: 1,125 psi @ 70°F

78/103

Page 81: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

PWHT performed: NoCircumferential joint radiography: Full UW-11(a) Type 1

79/103

Page 82: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 305.75 psi @ 100 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0.1348 0.1908

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.1149 0.175 weld size is adequate

Calculations for internal pressure 305.75 psi @ 100 °F

Fig UCS-66.2 general note (1) applies.

Nozzle is impact test exempt per UCS-66(d) (NPS 4 or smaller pipe).

Nozzle UCS-66 governing thk: 0.1641 inNozzle rated MDMT: -155 °FParallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(1.939, 0.9695 + (0.218 - 0) + (0.1641 - 0))= 1.939 in

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(0.1641 - 0), 2.5*(0.218 - 0) + 0)= 0.4103 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 305.75*0.9695 / (17,100*1 - 0.6*305.75)= 0.0175 in

80/103

Page 83: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Required thickness tr from UG-37(a)(c)

tr = P*K1*Do / (2*S*E + 0.8*P)= 305.75*0.9*24 / (2*20,000*1 + 0.8*305.75)= 0.1641 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.1641 intc(min) = lesser of 0.25 or 0.7*tmin = 0.1149 intc(actual) = 0.7*Leg = 0.7*0.25 = 0.175 in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 305.7542*0.9695 / (17,100*1 - 0.6*305.7542) + 0= 0.0175 in

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.0175 , 0 ]= 0.0175 in

tb1 = 0.181 in

tb1 = max[ tb1 , tb UG16 ]= max[ 0.181 , 0.0625 ]= 0.181 in

tb = min[ tb3 , tb1 ]= min[ 0.1348 , 0.181 ]= 0.1348 in

tUG-45 = max[ ta , tb ]= max[ 0.0175 , 0.1348 ]= 0.1348 in

Available nozzle wall thickness new, tn = 0.875*0.218 = 0.1908 in

The nozzle neck thickness is adequate.

81/103

Page 84: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 305.75 psi @ 70 °F

UG-45 NozzleWall

ThicknessSummary (in)The nozzle passes

UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0.1348 0.1908

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.1149 0.175 weld size is adequate

Calculations for internal pressure 305.75 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(1.939, 0.9695 + (0.218 - 0) + (0.1641 - 0))= 1.939 in

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(0.1641 - 0), 2.5*(0.218 - 0) + 0)= 0.4103 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 305.7542*0.9695 / (17,100*1 - 0.6*305.7542)= 0.0175 in

Required thickness tr from UG-37(a)(c)

tr = P*K1*Do / (2*S*E + 0.8*P)= 305.7542*0.9*24 / (2*20,000*1 + 0.8*305.7542)= 0.1641 in

This opening does not require reinforcement per UG-36(c)(3)(a)

82/103

Page 85: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.1641 intc(min) = lesser of 0.25 or 0.7*tmin = 0.1149 intc(actual) = 0.7*Leg = 0.7*0.25 = 0.175 in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 305.7542*0.9695 / (17,100*1 - 0.6*305.7542) + 0= 0.0175 in

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.0175 , 0 ]= 0.0175 in

tb1 = 0.181 in

tb1 = max[ tb1 , tb UG16 ]= max[ 0.181 , 0.0625 ]= 0.181 in

tb = min[ tb3 , tb1 ]= min[ 0.1348 , 0.181 ]= 0.1348 in

tUG-45 = max[ ta , tb ]= max[ 0.0175 , 0.1348 ]= 0.1348 in

Available nozzle wall thickness new, tn = 0.875*0.218 = 0.1908 in

The nozzle neck thickness is adequate.

83/103

Page 86: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

N6 - 3" 300# RFWN Flare Outlet (N6)

ASME Section VIII Division 1, 2010 Edition, A11 Addenda

tw(lower) = 0.1632 inLeg41 = 0.25 in

Note: round inside edges per UG-76(c)

Location and OrientationLocated on: Ellipsoidal Head #2Orientation: 0°End of nozzle to datum line: 88.25 inCalculated as hillside: NoDistance to head center, R: 0 inPasses through a Category A joint: No

NozzleAccess opening: NoMaterial specification: SA-105 (II-D p. 18, ln. 5)Inside diameter, new: 3 inNominal wall thickness: 0.81 inCorrosion allowance: 0 inProjection available outside vessel, Lpr: 7.1622 inProjection available outside vessel to flange face, Lf: 8.2822 inLocal vessel minimum thickness: 0.1632 inLiquid static head included: 0 psiLongitudinal joint efficiency: 1

ASME B16.5-2009 FlangeDescription: NPS 3 Class 300 LWN A105Bolt Material: SA-193 B7 Bolt <= 2 1/2 (II-D p. 334, ln. 32)Blind included: NoRated MDMT: -55°F per UCS-66(b)(1)(b)Liquid static head: 0 psiMAWP rating: 740 psi @ 100°FMAP rating: 740 psi @ 70°FHydrotest rating: 1,125 psi @ 70°FPWHT performed: No

84/103

Page 87: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 303.99 psi @ 100 °F

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0.1799 0.81

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.1142 0.175 weld size is adequate

Calculations for internal pressure 303.99 psi @ 100 °F

Nozzle impact test exemption temperature from Fig UCS-66 Curve B = -20 °FFig UCS-66.1 MDMT reduction = 9.5 °F, (coincident ratio = 0.9055).

Nozzle UCS-66 governing thk: 0.1632 inNozzle rated MDMT: -29.5 °FParallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(3, 1.5 + (0.81 - 0) + (0.1632 - 0))= 3 in

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(0.1632 - 0), 2.5*(0.81 - 0) + 0)= 0.4079 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 303.992*1.5 / (20,000*1 - 0.6*303.992)= 0.023 in

85/103

Page 88: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Required thickness tr from UG-37(a)(c)

tr = P*K1*Do / (2*S*E + 0.8*P)= 303.992*0.9*24 / (2*20,000*1 + 0.8*303.992)= 0.1632 in

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.1632 intc(min) = lesser of 0.25 or 0.7*tmin = 0.1142 intc(actual) = 0.7*Leg = 0.7*0.25 = 0.175 in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 303.992*1.5 / (20,000*1 - 0.6*303.992) + 0= 0.023 in

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.023 , 0 ]= 0.023 in

tb1 = 0.1799 in

tb1 = max[ tb1 , tb UG16 ]= max[ 0.1799 , 0.0625 ]= 0.1799 in

tb = min[ tb3 , tb1 ]= min[ 0.2258 , 0.1799 ]= 0.1799 in

tUG-45 = max[ ta , tb ]= max[ 0.023 , 0.1799 ]= 0.1799 in

Available nozzle wall thickness new, tn = 0.81 in

The nozzle neck thickness is adequate.

86/103

Page 89: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-37 Area Calculation Summary(in2)

For P = 303.99 psi @ 70 °F

UG-45Nozzle WallThicknessSummary

(in)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

This nozzle is exempt from areacalculations per UG-36(c)(3)(a) 0.1799 0.81

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculationsper UW-15(b)(2)

UW-16 Weld Sizing Summary

Weld description Required weldthroat size (in)

Actual weldthroat size (in) Status

Nozzle to shell fillet (Leg41) 0.1142 0.175 weld size is adequate

Calculations for internal pressure 303.99 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))= MAX(3, 1.5 + (0.81 - 0) + (0.1632 - 0))= 3 in

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2.5*(t - C), 2.5*(tn - Cn) + te)= MIN(2.5*(0.1632 - 0), 2.5*(0.81 - 0) + 0)= 0.4079 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0.6*P)= 303.992*1.5 / (20,000*1 - 0.6*303.992)= 0.023 in

Required thickness tr from UG-37(a)(c)

tr = P*K1*Do / (2*S*E + 0.8*P)= 303.992*0.9*24 / (2*20,000*1 + 0.8*303.992)= 0.1632 in

This opening does not require reinforcement per UG-36(c)(3)(a)

87/103

Page 90: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

UW-16(c) Weld Check

Fillet weld: tmin = lesser of 0.75 or tn or t = 0.1632 intc(min) = lesser of 0.25 or 0.7*tmin = 0.1142 intc(actual) = 0.7*Leg = 0.7*0.25 = 0.175 in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

ta UG-27 = P*R / (S*E - 0.6*P) + Corrosion= 303.992*1.5 / (20,000*1 - 0.6*303.992) + 0= 0.023 in

ta = max[ ta UG-27 , ta UG-22 ]= max[ 0.023 , 0 ]= 0.023 in

tb1 = 0.1799 in

tb1 = max[ tb1 , tb UG16 ]= max[ 0.1799 , 0.0625 ]= 0.1799 in

tb = min[ tb3 , tb1 ]= min[ 0.2258 , 0.1799 ]= 0.1799 in

tUG-45 = max[ ta , tb ]= max[ 0.023 , 0.1799 ]= 0.1799 in

Available nozzle wall thickness new, tn = 0.81 in

The nozzle neck thickness is adequate.

88/103

Page 91: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Support Skirt #1

Material: SA-516 70 (II-D p. 18, ln. 19)Design temperature, operating: 100 °FInner diameter at top, new: 23.625inInner diameter at bottom, new: 23.625inOverall length (includes base ring thickness): 26.625inCorrosion allowance inside: 0 inCorrosion allowance outside: 0 inWeld joint efficiency top: 0.55Weld joint efficiency bottom: 0.8Nominal thickness, new: 0.1875inSkirt is attached to: Ellipsoidal Head #1Skirt attachment offset: 3.0665in down from the top seam

Skirt design thickness, largest of the following + corrosion = 0.004 in

The governing condition is due to wind, compressive stress at the base, operating & corroded.

The skirt thickness of 0.1875 in is adequate.

LoadingVessel

Condition(Stress)

GoverningSkirt

Location

Temperature(°F)

AllowableStress(psi)

CalculatedStress/E

(psi)

Requiredthickness

(in)

Wind operating, corroded (+) bottom 100 20,000 189.22 0.0018

Wind operating, corroded (-) bottom 100 14,898.49 318.71 0.004

Wind empty, corroded (+) bottom 70 20,000 230.15 0.0022

Wind empty, corroded (-) bottom 70 14,898.49 264.13 0.0033

Wind test, new (+) bottom 70 14,898.49 -75.28 0.0009

Wind test, new (-) bottom 70 14,898.49 155.48 0.002

Seismic operating, corroded (+) bottom 100 14,898.49 -40.99 0.0005

Seismic operating, corroded (-) bottom 100 14,898.49 126.35 0.0016

Seismic empty, corroded (+) bottom 70 14,898.49 -13.01 0.0002

Seismic empty, corroded (-) bottom 70 14,898.49 67 0.0008

Loading due to wind, operating & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

t = -0.6*W / (π*D*St*E) + 48*M / (π*D2*St*E)= -0.6*1,466.99 / (π*23.8125*20,000*0.8) + 48*1,490 / (π*23.81252*20,000*0.8)= 0.0018 in

Required thickness, tensile stress at the top:

t = -0.6*Wt / (π*Dt*St*E) + 48*Mt / (π*Dt2*St*E)

= -0.6*1,360.52 / (π*23.8125*20,000*0.55) + 48*882.1 / (π*23.81252*20,000*0.55)= 0.0012 in

89/103

Page 92: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Leeward side (compressive)

Required thickness, compressive stress at base:

t = W / (π*D*Sc*Ec) + 48*M / (π*D2*Sc*Ec)= 1,466.99 / (π*23.8125*14,898*1) + 48*1,490 / (π*23.81252*14,898*1)= 0.004 in

Required thickness, compressive stress at the top:

t = Wt / (π*Dt*Sc*Ec) + 48*Mt / (π*Dt2*Sc*Ec)

= 1,360.52 / (π*23.8125*14,898*1) + 48*882.1 / (π*23.81252*14,898*1)= 0.0028 in

Loading due to wind, empty & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

t = -0.6*W / (π*D*St*E) + 48*M / (π*D2*St*E)= -0.6*701.45 / (π*23.8125*20,000*0.8) + 48*1,490 / (π*23.81252*20,000*0.8)= 0.0022 in

Required thickness, tensile stress at the top:

t = -0.6*Wt / (π*Dt*St*E) + 48*Mt / (π*Dt2*St*E)

= -0.6*594.98 / (π*23.8125*20,000*0.55) + 48*882.1 / (π*23.81252*20,000*0.55)= 0.0017 in

Leeward side (compressive)

Required thickness, compressive stress at base:

t = W / (π*D*Sc*Ec) + 48*M / (π*D2*Sc*Ec)= 701.45 / (π*23.8125*14,898*1) + 48*1,490 / (π*23.81252*14,898*1)= 0.0033 in

Required thickness, compressive stress at the top:

t = Wt / (π*Dt*Sc*Ec) + 48*Mt / (π*Dt2*Sc*Ec)

= 594.98 / (π*23.8125*14,898*1) + 48*882.1 / (π*23.81252*14,898*1)= 0.0021 in

Loading due to wind, test & new

90/103

Page 93: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Windward side (tensile)

Required thickness, tensile stress at base:

t = -0.6*W / (π*D*St*E) + 48*M / (π*D2*St*E)= -0.6*2,023.01 / (π*23.8125*14,898*1) + 48*78.3 / (π*23.81252*14,898*1)= 0.0009 in

Required thickness, tensile stress at the top:

t = -0.6*Wt / (π*Dt*St*E) + 48*Mt / (π*Dt2*St*E)

= -0.6*1,916.54 / (π*23.8125*14,898*1) + 48*78.3 / (π*23.81252*14,898*1)= 0.0009 in

Leeward side (compressive)

Required thickness, compressive stress at base:

t = W / (π*D*Sc*Ec) + 48*M / (π*D2*Sc*Ec)= 2,023.01 / (π*23.8125*14,898*1) + 48*78.3 / (π*23.81252*14,898*1)= 0.002 in

Required thickness, compressive stress at the top:

t = Wt / (π*Dt*Sc*Ec) + 48*Mt / (π*Dt2*Sc*Ec)

= 1,916.54 / (π*23.8125*14,898*1) + 48*78.3 / (π*23.81252*14,898*1)= 0.0019 in

Loading due to earthquake, operating & corroded

Tensile side

Required thickness, tensile stress at base:

t = -(0.6 - 0.14*SDS)*W / (π*D*St*E) + 48*M / (π*D2*St*E)= -(0.6 - 0.14*0.08)*1,466.99 / (π*23.8125*14,898*1) + 48*143.3 / (π*23.81252*14,898*1)= 0.0005 in

Required thickness, tensile stress at the top:

t = -(0.6 - 0.14*SDS)*Wt / (π*Dt*St*E) + 48*Mt / (π*Dt2*St*E)

= -(0.6 - 0.14*0.08)*1,360.52 / (π*23.8125*14,898*1) + 48*116.8 / (π*23.81252*14,898*1)= 0.0005 in

Compressive side

91/103

Page 94: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Required thickness, compressive stress at base:

t = (1 + 0.14*SDS)*W / (π*D*Sc*Ec) + 48*M / (π*D2*Sc*Ec)= (1 + 0.14*0.08)*1,466.99 / (π*23.8125*14,898*1) + 48*143.3 / (π*23.81252*14,898*1)= 0.0016 in

Required thickness, compressive stress at the top:

t = (1 + 0.14*SDS)*Wt / (π*Dt*Sc*Ec) + 48*Mt / (π*Dt2*Sc*Ec)

= (1 + 0.14*0.08)*1,360.52 / (π*23.8125*14,898*1) + 48*116.8 / (π*23.81252*14,898*1)= 0.0014 in

Loading due to earthquake, empty & corroded

Tensile side

Required thickness, tensile stress at base:

t = -(0.6 - 0.14*SDS)*W / (π*D*St*E) + 48*M / (π*D2*St*E)= -(0.6 - 0.14*0.08)*701.45 / (π*23.8125*14,898*1) + 48*114.4 / (π*23.81252*14,898*1)= 0.0002 in

Required thickness, tensile stress at the top:

t = -(0.6 - 0.14*SDS)*Wt / (π*Dt*St*E) + 48*Mt / (π*Dt2*St*E)

= -(0.6 - 0.14*0.08)*594.98 / (π*23.8125*14,898*1) + 48*99.8 / (π*23.81252*14,898*1)= 0.0001 in

Compressive side

Required thickness, compressive stress at base:

t = (1 + 0.14*SDS)*W / (π*D*Sc*Ec) + 48*M / (π*D2*Sc*Ec)= (1 + 0.14*0.08)*701.45 / (π*23.8125*14,898*1) + 48*114.4 / (π*23.81252*14,898*1)= 0.0008 in

Required thickness, compressive stress at the top:

t = (1 + 0.14*SDS)*Wt / (π*Dt*Sc*Ec) + 48*Mt / (π*Dt2*Sc*Ec)

= (1 + 0.14*0.08)*594.98 / (π*23.8125*14,898*1) + 48*99.8 / (π*23.81252*14,898*1)= 0.0007 in

92/103

Page 95: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Skirt Opening (SO)

ASME Section VIII, Division 2, 2010 Edition, A11 Addenda

Component Skirt Opening

Description Skirt Opening

Drawing Mark SO

Opening forNozzle N5 - 2" 300# RFWN Drain (N5)

Sleeve Material SA-106 B Smls pipe (II-D p. 10, ln. 40)

Location and Orientation

Attached to Support Skirt #1

Orientation radial

Offset, L 17.125"

Angle, θ 0°

Distance, r 12.5"

Through aCategory B Joint No

Dimensions

Pipe NPS andSchedule NPS 6 Sch 80 (XS)

Inside Diameter 5.761"

Nominal WallThickness 0.432"

Skirt Thickness 0.1875"

Leg41 0.25"

ExternalProjection

Available, Lpr1

0.5"

Corrosion Inner 0"

Outer 0"

93/103

Page 96: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Skirt Opening Reinforcement Summary

RequiredThickness

tr(in)

AT(in2)

Ar(in2) Ratio Status

Operating Hot & CorrodedWind Tensile 0.0009 1.116 0.0054 206.1583 OK

Compressive 0.0032 0.6151 0.0187 32.9219 OK

Seismic Tensile 0 0.6221 0 N/A OK

Compressive 0.0015 0.6189 0.0086 71.7272 OK

Empty Cold & CorrodedWind Tensile 0.0012 1.1148 0.0072 154.4035 OK

Compressive 0.0026 0.6166 0.0147 41.8703 OK

Seismic Tensile 0 0.6221 0 N/A OK

Compressive 0.0008 0.6205 0.0044 140.8571 OK

Shop Test New Wind Tensile 0 0.6221 0 N/A OK

Compressive 0.0019 0.618 0.0109 56.5854 OKNote: Skirt required thickness of zero on tensile side indicates load is compressive.

Openings Subject to Axial Tension

LR = min[ (Reff*t)0.5, 2*Rn] (4.5.4)

LH1 = min[ 1.5*t , te] + (Rn*tn)0.5 (4.5.11)

LH2 = Lpr1 (4.5.12)

LH3 = 8*(t + te) (4.5.13)

LH = min[ LH1, LH2, LH3] + t (4.5.14)

fr1 = min[ Sn / S , 1 ]

fr2 = min[ Sn / S , 1 ]

A1 = 2*LR*(E1*t - tr)

A2 = 2*(LH - tr)*tn*fr2

A41 = L412*fr2

AT = A1 + A2 + A41

Ar = d*tr + 2*tn*tr*(1 - fr1)

Corroded

LR = min[ (11.8125*0.1875)0.5, 2*2.8805] = 1.4882"

LH1 = min[ 1.5*0.1875 , 0] + (2.8805*0.432)0.5 = 1.1155"

LH2 = 0.5 = 0.5"

LH3 = 8*(0.1875 + 0) = 1.5"

LH = min[ 1.1155, 0.5, 1.5] + 0.1875 = 0.6875"

Operating Hot & Corroded Wind Tensile

94/103

Page 97: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

fr1 = min[ 17,100 / 20,000 , 1 ] = 0.855

fr2 = min[ 17,100 / 20,000 , 1 ] = 0.855

A1 = 2*1.4882*(1*0.1875 - 0.0009) = 0.5554 in2

A2 = 2*(0.6875 - 0.0009)*0.432*0.855 = 0.5072 in2

A41 = 0.252*0.855 = 0.0534 in2

AT = 0.5554 + 0.5072 + 0.0534 = 1.116 in2

Ar = 5.761*0.0009 + 2*0.432*0.0009*(1 - 0.855) = 0.0054 in2

AT = 1.116 in2 ≥ Ar = 0.0054 in2

Empty Cold & Corroded Wind Tensile

fr1 = min[ 17,100 / 20,000 , 1 ] = 0.855

fr2 = min[ 17,100 / 20,000 , 1 ] = 0.855

A1 = 2*1.4882*(1*0.1875 - 0.0012) = 0.5544 in2

A2 = 2*(0.6875 - 0.0012)*0.432*0.855 = 0.507 in2

A41 = 0.252*0.855 = 0.0534 in2

AT = 0.5544 + 0.507 + 0.0534 = 1.1148 in2

Ar = 5.761*0.0012 + 2*0.432*0.0012*(1 - 0.855) = 0.0072 in2

AT = 1.1148 in2 ≥ Ar = 0.0072 in2

Division 2 4.5.17.3 Openings Subject to Axial Compression

γn = d / {2*(R*t)0.5} (4.5.212)

γn > {(R / t) / 291 + 0.22}2

tn,eff = min[ tn , t]

LR = 0.75*(R*t)0.5

LH = min[0.5*{(d / 2)*tn}0.5 , 2.5*tn , Lpr1 ]

fr1 = min[ Sn / S , 1 ]

fr2 = min[ Sn / S , 1 ]

A1 = 2*LR*(t - tr) - 2*tn,eff*(t - tr)*(1 - fr1)

A2 = 2*LH*tn,eff*fr2

A41 = L412*fr2

AT = A1 + A2 + A41

Ar = d*tr (4.5.211)

New

γn = 5.761 / {2*(11.8125*0.1875)0.5} = 1.9355

γn > {(11.8125 / 0.1875) / 291 + 0.22}2 = 0.1905

95/103

Page 98: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Area required factor for compressive side = 1

LR = 0.75*(11.8125*0.1875)0.5 = 1.1162"

LH = min[0.5*{(5.761 / 2)*0.432}0.5 , 2.5*0.432 , 0.5 ] = 0.5"

tn,eff = min[ 0.432 , 0.1875] = 0.1875"

Corroded

γn = 5.761 / {2*(11.8125*0.1875)0.5} = 1.9355

γn > {(11.8125 / 0.1875) / 291 + 0.22}2 = 0.1905

Area required factor for compressive side = 1

LR = 0.75*(11.8125*0.1875)0.5 = 1.1162"

LH = min[0.5*{(5.761 / 2)*0.432}0.5 , 2.5*0.432 , 0.5 ] = 0.5"

tn,eff = min[ 0.432 , 0.1875] = 0.1875"

Operating Hot & Corroded Wind Compressive

fr1 = min[ 17,100 / 20,000 , 1 ] = 0.855

fr2 = min[ 17,100 / 20,000 , 1 ] = 0.855

A1 = 2*1.1162*(0.1875 - 0.0032) - 2*0.1875*(0.1875 - 0.0032)*(1 - 0.855) = 0.4013 in2

A2 = 2*0.5*0.1875*0.855 = 0.1603 in2

A41 = 0.252*0.855 = 0.0534 in2

AT = 0.4013 + 0.1603 + 0.0534 = 0.6151 in2

Ar = 5.761*0.0032 = 0.0187 in2

AT = 0.6151 in2 ≥ Ar = 0.0187 in2

Empty Cold & Corroded Wind Compressive

fr1 = min[ 17,100 / 20,000 , 1 ] = 0.855

fr2 = min[ 17,100 / 20,000 , 1 ] = 0.855

A1 = 2*1.1162*(0.1875 - 0.0026) - 2*0.1875*(0.1875 - 0.0026)*(1 - 0.855) = 0.4028 in2

A2 = 2*0.5*0.1875*0.855 = 0.1603 in2

A41 = 0.252*0.855 = 0.0534 in2

AT = 0.4028 + 0.1603 + 0.0534 = 0.6166 in2

Ar = 5.761*0.0026 = 0.0147 in2

AT = 0.6166 in2 ≥ Ar = 0.0147 in2

Shop Test New Wind Compressive

fr1 = min[ 17,100 / 20,000 , 1 ] = 0.855

fr2 = min[ 17,100 / 20,000 , 1 ] = 0.855

A1 = 2*1.1162*(0.1875 - 0.0019) - 2*0.1875*(0.1875 - 0.0019)*(1 - 0.855) = 0.4042 in2

A2 = 2*0.5*0.1875*0.855 = 0.1603 in2

A41 = 0.252*0.855 = 0.0534 in2

96/103

Page 99: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

AT = 0.4042 + 0.1603 + 0.0534 = 0.618 in2

Ar = 5.761*0.0019 = 0.0109 in2

AT = 0.618 in2 ≥ Ar = 0.0109 in2

Operating Hot & Corroded Seismic Compressive

fr1 = min[ 17,100 / 20,000 , 1 ] = 0.855

fr2 = min[ 17,100 / 20,000 , 1 ] = 0.855

A1 = 2*1.1162*(0.1875 - 0.0015) - 2*0.1875*(0.1875 - 0.0015)*(1 - 0.855) = 0.4051 in2

A2 = 2*0.5*0.1875*0.855 = 0.1603 in2

A41 = 0.252*0.855 = 0.0534 in2

AT = 0.4051 + 0.1603 + 0.0534 = 0.6189 in2

Ar = 5.761*0.0015 = 0.0086 in2

AT = 0.6189 in2 ≥ Ar = 0.0086 in2

Empty Cold & Corroded Seismic Compressive

fr1 = min[ 17,100 / 20,000 , 1 ] = 0.855

fr2 = min[ 17,100 / 20,000 , 1 ] = 0.855

A1 = 2*1.1162*(0.1875 - 0.0008) - 2*0.1875*(0.1875 - 0.0008)*(1 - 0.855) = 0.4067 in2

A2 = 2*0.5*0.1875*0.855 = 0.1603 in2

A41 = 0.252*0.855 = 0.0534 in2

AT = 0.4067 + 0.1603 + 0.0534 = 0.6205 in2

Ar = 5.761*0.0008 = 0.0044 in2

AT = 0.6205 in2 ≥ Ar = 0.0044 in2

97/103

Page 100: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Skirt Base Ring #1

Base configuration: single base plate without gussetsFoundation compressive strength: 20,000 psiAnchor bolt material:Anchor bolt allowable stress, Sb: 20,000 psiBolt circle, BC: 28.125 inAnchor bolt corrosion allowance (applied to root radius): 0 inAnchor bolt clearance: 0.375 inBase plate material: 516-70Base plate allowable stress, Sp: 20,000 psiBase plate inner diameter, Di: 19 inBase plate outer diameter, Do: 31 inBase plate thickness, tb: 0.5 inInitial bolt preload: 0 % (0 psi)Number of bolts, N: 8Bolt size and type: 0.75 inch series 8 threadedBolt root area (corroded), Ab: 0.302 in2

Diameter of anchor bolt holes, db: 1.125 in

Load Vesselcondition

Base M(lbf-ft)

W(lb)

Requiredbolt area

(in2)

trBase(in)

Foundationbearingstress(psi)

Wind operating, corroded 1,490 1,533 0.0101 0.1384 10.43

Wind operating, new 1,490 1,533 0.0101 0.1384 10.43

Wind empty, corroded 1,490 767.4 0.013 0.127 8.77

Wind empty, new 1,490 767.4 0.013 0.127 8.77

Wind test, new 78.3 2,089 0 0.0947 4.88

Seismic operating, corroded 143.3 1,533 0 0.0861 4.03

Seismic operating, new 143.3 1,533 0 0.0861 4.03

Seismic empty, corroded 114.4 767.4 0 0.0639 2.22

Seismic empty, new 114.4 767.4 0 0.0639 2.22

Anchor bolt load (operating, corroded + Wind)

P = -0.6*W / N + 48 * M / (N*BC)= -0.6*1,532.99 / 8 + 48 * 1,490 / (8*28.125)= 202.89 lbf

Required area per bolt = P / Sb = 0.0101 in2

The area provided (0.302 in2) by the specified anchor bolt is adequate.

Foundation bearing stress (operating, corroded + Wind)

Ac = pi*(Do2 - Di

2) / 4 - N*pi*db2 / 4

= π*(312 - 192) / 4 - 8*π*1.1252 / 4= 463.2867 in2

Ic = π*(Do4 - Di

4) / 64= π*(314 - 194) / 64

98/103

Page 101: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

= 38,936.11 in4

fc = N*Ab*Preload / Ac + W / Ac + 6*M*Do / Ic= 8*0.302*0 / 463.2867 + 1,532.99 / 463.2867 + 6*1,490*31 / 38,936.11= 10 psi

As fc <= 20,000 psi the base plate width is satisfactory.

Base plate required thickness (operating, corroded + Wind)

tr = (3*fc*L2 / Sp)0.5

= (3*10*3.52 / 20,000)0.5

= 0.1384 in

The base plate thickness is satisfactory.

Anchor bolt load (operating, new + Wind)

P = -0.6*W / N + 48 * M / (N*BC)= -0.6*1,532.99 / 8 + 48 * 1,490 / (8*28.125)= 202.89 lbf

Required area per bolt = P / Sb = 0.0101 in2

The area provided (0.302 in2) by the specified anchor bolt is adequate.

Foundation bearing stress (operating, new + Wind)

Ac = pi*(Do2 - Di

2) / 4 - N*pi*db2 / 4

= π*(312 - 192) / 4 - 8*π*1.1252 / 4= 463.2867 in2

Ic = π*(Do4 - Di

4) / 64= π*(314 - 194) / 64= 38,936.11 in4

fc = N*Ab*Preload / Ac + W / Ac + 6*M*Do / Ic= 8*0.302*0 / 463.2867 + 1,532.99 / 463.2867 + 6*1,490*31 / 38,936.11= 10 psi

As fc <= 20,000 psi the base plate width is satisfactory.

Base plate required thickness (operating, new + Wind)

tr = (3*fc*L2 / Sp)0.5

= (3*10*3.52 / 20,000)0.5

= 0.1384 in

The base plate thickness is satisfactory.

Anchor bolt load (empty, corroded + Wind)

P = -0.6*W / N + 48 * M / (N*BC)= -0.6*767.45 / 8 + 48 * 1,490 / (8*28.125)= 260.31 lbf

Required area per bolt = P / Sb = 0.013 in2

99/103

Page 102: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

The area provided (0.302 in2) by the specified anchor bolt is adequate.

Foundation bearing stress (empty, corroded + Wind)

Ac = pi*(Do2 - Di

2) / 4 - N*pi*db2 / 4

= π*(312 - 192) / 4 - 8*π*1.1252 / 4= 463.2867 in2

Ic = π*(Do4 - Di

4) / 64= π*(314 - 194) / 64= 38,936.11 in4

fc = N*Ab*Preload / Ac + W / Ac + 6*M*Do / Ic= 8*0.302*0 / 463.2867 + 767.45 / 463.2867 + 6*1,490*31 / 38,936.11= 9 psi

As fc <= 20,000 psi the base plate width is satisfactory.

Base plate required thickness (empty, corroded + Wind)

tr = (3*fc*L2 / Sp)0.5

= (3*9*3.52 / 20,000)0.5

= 0.127 in

The base plate thickness is satisfactory.

Anchor bolt load (empty, new + Wind)

P = -0.6*W / N + 48 * M / (N*BC)= -0.6*767.45 / 8 + 48 * 1,490 / (8*28.125)= 260.31 lbf

Required area per bolt = P / Sb = 0.013 in2

The area provided (0.302 in2) by the specified anchor bolt is adequate.

Foundation bearing stress (empty, new + Wind)

Ac = pi*(Do2 - Di

2) / 4 - N*pi*db2 / 4

= π*(312 - 192) / 4 - 8*π*1.1252 / 4= 463.2867 in2

Ic = π*(Do4 - Di

4) / 64= π*(314 - 194) / 64= 38,936.11 in4

fc = N*Ab*Preload / Ac + W / Ac + 6*M*Do / Ic= 8*0.302*0 / 463.2867 + 767.45 / 463.2867 + 6*1,490*31 / 38,936.11= 9 psi

As fc <= 20,000 psi the base plate width is satisfactory.

Base plate required thickness (empty, new + Wind)

tr = (3*fc*L2 / Sp)0.5

= (3*9*3.52 / 20,000)0.5

100/103

Page 103: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

= 0.127 in

The base plate thickness is satisfactory.

Anchor bolt load (test, new + Wind)

P = -0.6*W / N + 48 * M / (N*BC)= -0.6*2,089.01 / 8 + 48 * 78.3 / (8*28.125)= -139.97 lbf

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (test, new + Wind)

Ac = pi*(Do2 - Di

2) / 4 - N*pi*db2 / 4

= π*(312 - 192) / 4 - 8*π*1.1252 / 4= 463.2867 in2

Ic = π*(Do4 - Di

4) / 64= π*(314 - 194) / 64= 38,936.11 in4

fc = N*Ab*Preload / Ac + W / Ac + 6*M*Do / Ic= 8*0.302*0 / 463.2867 + 2,089.01 / 463.2867 + 6*78.3*31 / 38,936.11= 5 psi

As fc <= 20,000 psi the base plate width is satisfactory.

Base plate required thickness (test, new + Wind)

tr = (3*fc*L2 / Sp)0.5

= (3*5*3.52 / 20,000)0.5

= 0.0947 in

The base plate thickness is satisfactory.

Anchor bolt load (operating, corroded + Seismic)

P = -(0.6 - 0.14*SDS)*W / N + 48 * M / (N*BC)= -(0.6 - 0.14*0.08)*1,532.99 / 8 + 48 * 143.3 / (8*28.125)= -82.26 lbf

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (operating, corroded + Seismic)

Ac = pi*(Do2 - Di

2) / 4 - N*pi*db2 / 4

= π*(312 - 192) / 4 - 8*π*1.1252 / 4= 463.2867 in2

Ic = π*(Do4 - Di

4) / 64= π*(314 - 194) / 64= 38,936.11 in4

fc = N*Ab*Preload / Ac + (1 + 0.14*SDS)*W / Ac + 6*M*Do / Ic= 8*0.302*0 / 463.2867 + (1 + 0.14*0.08)*1,532.99 / 463.2867 + 6*143.3*31 / 38,936.11= 4 psi

101/103

Page 104: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

As fc <= 20,000 psi the base plate width is satisfactory.

Base plate required thickness (operating, corroded + Seismic)

tr = (3*fc*L2 / Sp)0.5

= (3*4*3.52 / 20,000)0.5

= 0.0861 in

The base plate thickness is satisfactory.

Anchor bolt load (operating, new + Seismic)

P = -(0.6 - 0.14*SDS)*W / N + 48 * M / (N*BC)= -(0.6 - 0.14*0.08)*1,532.99 / 8 + 48 * 143.3 / (8*28.125)= -82.26 lbf

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (operating, new + Seismic)

Ac = pi*(Do2 - Di

2) / 4 - N*pi*db2 / 4

= π*(312 - 192) / 4 - 8*π*1.1252 / 4= 463.2867 in2

Ic = π*(Do4 - Di

4) / 64= π*(314 - 194) / 64= 38,936.11 in4

fc = N*Ab*Preload / Ac + (1 + 0.14*SDS)*W / Ac + 6*M*Do / Ic= 8*0.302*0 / 463.2867 + (1 + 0.14*0.08)*1,532.99 / 463.2867 + 6*143.3*31 / 38,936.11= 4 psi

As fc <= 20,000 psi the base plate width is satisfactory.

Base plate required thickness (operating, new + Seismic)

tr = (3*fc*L2 / Sp)0.5

= (3*4*3.52 / 20,000)0.5

= 0.0861 in

The base plate thickness is satisfactory.

Anchor bolt load (empty, corroded + Seismic)

P = -(0.6 - 0.14*SDS)*W / N + 48 * M / (N*BC)= -(0.6 - 0.14*0.08)*767.45 / 8 + 48 * 114.4 / (8*28.125)= -32.09 lbf

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (empty, corroded + Seismic)

Ac = pi*(Do2 - Di

2) / 4 - N*pi*db2 / 4

= π*(312 - 192) / 4 - 8*π*1.1252 / 4= 463.2867 in2

102/103

Page 105: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Ic = π*(Do4 - Di

4) / 64= π*(314 - 194) / 64= 38,936.11 in4

fc = N*Ab*Preload / Ac + (1 + 0.14*SDS)*W / Ac + 6*M*Do / Ic= 8*0.302*0 / 463.2867 + (1 + 0.14*0.08)*767.45 / 463.2867 + 6*114.4*31 / 38,936.11= 2 psi

As fc <= 20,000 psi the base plate width is satisfactory.

Base plate required thickness (empty, corroded + Seismic)

tr = (3*fc*L2 / Sp)0.5

= (3*2*3.52 / 20,000)0.5

= 0.0639 in

The base plate thickness is satisfactory.

Anchor bolt load (empty, new + Seismic)

P = -(0.6 - 0.14*SDS)*W / N + 48 * M / (N*BC)= -(0.6 - 0.14*0.08)*767.45 / 8 + 48 * 114.4 / (8*28.125)= -32.09 lbf

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (empty, new + Seismic)

Ac = pi*(Do2 - Di

2) / 4 - N*pi*db2 / 4

= π*(312 - 192) / 4 - 8*π*1.1252 / 4= 463.2867 in2

Ic = π*(Do4 - Di

4) / 64= π*(314 - 194) / 64= 38,936.11 in4

fc = N*Ab*Preload / Ac + (1 + 0.14*SDS)*W / Ac + 6*M*Do / Ic= 8*0.302*0 / 463.2867 + (1 + 0.14*0.08)*767.45 / 463.2867 + 6*114.4*31 / 38,936.11= 2 psi

As fc <= 20,000 psi the base plate width is satisfactory.

Base plate required thickness (empty, new + Seismic)

tr = (3*fc*L2 / Sp)0.5

= (3*2*3.52 / 20,000)0.5

= 0.0639 in

The base plate thickness is satisfactory.

103/103

Page 106: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

LIFTING EYE DESIGN

MGW 1000 lbf Max gross weight of equipment

DLF 2.00 Dynamic Load Factor

θ 60 deg Sling angle with respect to horizontal axis

N 2 Number of slings in lifting system

t 0.5 in Lug plate thickness

tc 0.1875 in Cheek plate thickness

ro 1.50 in Lift eye finish radius (minimum distance from center of hole to radius)

dh 0.8125 in Pin hole diameter (Hole diameter should not exceed 10% of the shackle pin diameter)

d 3.0 in Lifting Eye width at attachment (weld)

h1 3.0 in Distance from center of hole to fixed edge attachment (weld)

γ 0 deg Angle between vertical sling plane and plane of pad eye

dc 2.5 in Cheek plate diameter

Fy 38 ksi Yield strength of the pad eye material

Fu 70 ksi Ultimate tensile strength of the pad eye material

T 1 Select Type of Sling Load Calculation: T = 1 for GOM - No Shackle Fit (load on all slings) = 2 for GOM - Shackle Fit (load on N-1 slings)

= 3 for slings per DNV 2.7-1 (load on N-1 slings)

Page 107: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

PDirection 1 Select Direction of Sling with respect to weld: PDirection = 1 for Toward weld

= 2 for Away from weld

h2 0 in Vertical distance from the center of pin holeto the centroid to the pad eye geometry:

BRIGHT 6 x 19 Class STEEL CORE (IWRC)

Diameter Breaking(in.) Strength in

(Tons)

1/4 3.4

5/16 5.3

3/8 7.6

7/16 10.2

1/2 13.3

9/16 16.8

5/8 20.6

3/4 29.4

7/8 39.8

1 51.7

1 1/8 65.0

1 1/4 79.9

1 3/8 96.0

1 1/2 114.0

1 5/8 132.0

1 3/4 153.0

2 198.0

2 1/4 247.0

2 3/8 274.0

2 1/2 302.0

Diameter Breaking(in.) Strength in

(Tons)

1/4 2.7

5/16 4.1

3/8 5.9

7/16 8.0

1/2 10.3

9/16 13.0

5/8 16.1

3/4 23.0

7/8 31.1

1 40.4

1 1/8 50.8

1 1/4 62.5

1 3/8 75.1

1 1/2 89.0

1 5/8 103.0

1 3/4 120.0

1 7/8 137.0

2 155.0

2 1/8 173.0

2 1/4 193.0

GALVANIZED6 x 19 Class

STEEL CORE (IWRC)Nominal Size Working Load Dimensions (in.)

Limit (Tons) A B C

3/16 1/3 0.38 0.25 0.88

0.25 1/2 0.47 0.31 1.13

0.31 3/4 0.53 0.38 1.22

0.38 1 0.66 0.44 1.44

0.44 1 1/2 0.75 0.50 1.69

0.50 2 0.81 0.64 1.88

0.63 3 1/4 1.06 0.77 2.38

0.75 4 3/4 1.25 0.89 2.81

0.88 6 1/2 1.44 1.02 3.31

1.00 8 1/2 1.69 1.15 3.75

1.13 9 1/2 1.81 1.25 4.25

1.25 12 2.03 1.40 4.69

1.38 13 1/2 2.25 1.53 5.25

1.50 17 2.38 1.66 5.75

1.75 25 2.88 2.04 7.00

2.00 35 3.25 2.30 7.75

2.50 55 4.13 2.80 10.50Maximum Proof Load is 2.0 times the Working Load Limit. Minimun Ultimate Strength is 6 times the Working Load Limit.

Crosby Forged Shackles G-2130

For G-2140 Crosby Alloy Bolt Type Shackles andG-2130CT / G-2140CT Crosby COLD TUFF Shackles SeeCrosby Catalog Latest Edition

**Rule of thumb: Size the cable first then choose a shackle one diameter larger than the sling.

Page 108: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

SHACKLE & CABLE DATA:

SS 0.63 in Shackle Size

SSWLL 3.25 tonf Shackle Safe Working Load

Shackle Dimensions:

A 1.06 in B 0.77 in C 2.38 in

Cselect 1 Select Cable Type:Cselect = 1 for Normal

= 2 for Galvanized

CS 0.5 in Cable Size

CBS 13.3 tonf Cable Min BS

Check shackle clearance around pad eye geometry (Note 0.375" is included for thimble thickness):

Cactual ro

dh

2

CS 0.375 in

Cactual 1.969 in C 2.38 in

Clearance "Satisfactory" Cactual Cif

"NOTSatisfactory" otherwise

"Satisfactory"

Ferule efficiency for mechanical splice - Wire Rope Sling Manual - 3rd Ed., Page 13 - Table 4 (IWRC / EIPS)

KT 0.95 0.25 in CS 1 inif

0.925 1 in CS 2 inif

0.90 CS 2 inif

KT 0.95

Calculate the cable WLL for a single sling (to be compared to the calculated resultant sling force):

Note: The cable WLL is calculated using a design factor of 5.0(to account for variations in load, wear, abrasion, and damage).Wire Rope Sling Manual - 3rd Ed., Page 5Additionally, the working load limit is multiplied by the feruleefficiency (mechanical splice).

CWLL

CBS KT

52.527 tonf

Page 109: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

MASTER LINK ASSEMBLY - USE CROSBY A-345:

1/2 7,000 14,000 2.50 5.005/8 9,000 18,000 3.00 6.003/4 12,300 24,600 2.75 5.507/8 14,000 28,400 3.75 6.38

1 24,360 48,700 3.50 7.001 1/4 36,200 72,400 4.38 8.751 1/2 54,300 113,200 5.25 10.501 3/4 84,900 169,800 6.00 12.002 102,600 205,200 7.00 14.002 1/4 143,100 289,200 8.00 16.002 1/2 160,000 320,000 8.00 16.002 3/4 216,900 433,800 9.50 16.003 228,000 456,000 9.00 18.003 1/4 262,200 524,400 10.00 20.003 1/2 279,000 558,000 12.00 24.003 3/4 336,000 672,000 10.00 20.004 373,000 746,000 10.00 20.004 1/4 354,000 708,000 12.00 24.004 1/2 360,000 720,000 14.00 28.004 3/4 389,000 778,000 14.00 28.005 395,000 790,000 15.00 30.00

** Proof test load equals or exceeds the requirement of ASTM A957(8.1) and ASME B30.9-1.4 for the chain size and number of legs

C

A-342 Alloy Master Links

* Minimum Ultimate Load is 5 times the Working Load Limit. Based single leg sling (in-line load), or resultant load on multiple legs with an included angle less than or equal to 120 degrees.

Working Load Limit (lbs)*

Size "A" (in.)

Proof Load (lbs)**

B

Note: As a Minimum the Master LinkAssembly Size Should be 2 Times theSelected Cable Size

Link 1.0 in Link = Master Link Assembly Size (From Crosby Catalog)

LinkWLL 24360 lbf Link WLL = Master Link Assembly Safe Working Load (With 5:1 Factor of Safety)

Note: If the sling assembly has three or more legs and the sling has a WLL greater than 25,000 lbs thena master link with sub links should be used.

1. Calculate the resultant sling loads (without DLF) and compare with the available working load limits (WLL) ofthe lifting set components:

n N 1( ) N 4 T 2= T 3=( )if

N otherwise

2 Number of lugs used for slings load calculations.

Resultant sling force (no factor of safetyincluded)Note: If T (type) = 3, DNV EnhancementFactor, "EF" is multiplied times the RSF.

RSFMGW

n sin θ( )T 1= T 2=if

EF MGW

n sin θ( )T 3=if

EF 1

Page 110: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Check Shackle:

SSWLL 3.25 tonfShackle "Satisfactory" SSWLL RSFif

"NOTSatisfactory" otherwise

"Satisfactory"

RSF 0.289 tonf

Check Slings:

BSreq5.0 RSF

KT1.52 tonf

Slings "Satisfactory" CWLL RSFif

"NOTSatisfactory" otherwise

"Satisfactory"

CWLL 2.527 tonf

RSF 0.289 tonf

Check Master Link:

LinkWLL 12.18 tonfMasterLink "Satisfactory" LinkWLL MGW T 2if

"Satisfactory" LinkWLL EF MGW T 3=if

"NOTSatisfactory" otherwise

"Satisfactory"

MGW 0.5 tonf

MGW EF 0.5 tonf

2. Calculate sling load components (with DLF) to determine lift eye stress:

FOS 5 N 1=if

DLF otherwise

2 Factor of safety (DLF of 5 is used for single point lifts (n= 1)

PFOS MGW

n sin θ( )T 1= T 2=if

FOS MGW

n sin θ( )T 3=if

Resultant sling force (DLF included)

Pv P sin θ( ) 1000 lbf Vertical sling load component (DLF included)

Ph P cos θ( ) 577 lbf Horizontal sling load component (DLF included)

Pside P sin γ( )( ) θ 90deg=if

P sin γ( ) cos θ( )( ) otherwise

0 lbf Out of plane component of sling loadnormal to the plane of the pad eye (DLFincluded)

3. Calculate the tensile stress at the pin hole (section A-A) as per AISC:

Allowable tensile stress on the net area ofthe pin hole for pin-connected membersAISC D3.1 and D3.2

Ft1 0.45 Fy 17.1 ksi

Tensile area at section A-AAt1 2 ro dh t dc dh 2 tc 1.727 in

2

Page 111: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Tensile stressat section A-A ft1

Ph

At10.33 ksi

TensionAtHole "Satisfactory" ft1 Ft1if

"NOTSatisfactory" otherwise

"Satisfactory"

4. Calculate the tensile stress at the attachment as per AISC:

Allowable tensile stress at attachmentas per AISC D1, Page 5-40Ft2 min 0.60 Fy 0.50 Fu 22.8 ksi

At2 d t 1.5 in2

Cross sectional area (tensile)of lift eye plate at theattachment

Tensile stress at the attachmentft2

Ph

At20.385 ksi

TensionAtAttachment "Satisfactory" ft2 Ft2if

"NOTSatisfactory" otherwise

"Satisfactory"

5. Check pin shear tear out stress (section B-B) as per AISC:

Allowable shear stress as per AISC J-4 Page 5-77, F.4 Page 5-49Fto min 0.40 Fy 0.30Fu 15.2 ksi

Ato 2 ro

dh

2

t 4dc

2

dh

2

tc 1.727 in2

Shear tear out area (double shear)

ftoP

Ato0.67 ksi Shear tear out stress

ShearTearOut "Satisfactory" fto Ftoif

"NOTSatisfactory" otherwise

"Satisfactory"

6. Check bearing stress at the hole as per AISC:

Fp 0.90 Fy 34.2 ksi Allowable bearing stress as per AISC J8 - Page 5-79

Ap t tc B 0.53 in2

Bearing area at hole

Page 112: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

fpP

Ap2.181 ksi Bearing stress at hole

Bearing "Satisfactory" fp Fpif

"NOTSatisfactory" otherwise

"Satisfactory"

7. Check bending stress at the lug attachment as per AISC:

Allowable bending stress as per AISC(about strong axis)Fb 0.60 Fy 22.8 ksi

Strong axis section modulus of the lifteye plate at the attachmentSs

t d2

60.75 in

3

Weak axis section modulus of the lifteye plate at the attachmentSw

d t2

60.125 in

3

Mo Pv h1 Ph h2 PDirection 1=if

Pv h1 Ph h2 PDirection 2=if

Summation of the moments acting about the strong axis of lift lug.

Strong Axis Bending Stress at attachment(Due to horizontal component load)fbx

Mo

Ss4 ksi

Weak Axis Bending Stress atattachment(due to out of plane load)fbz1

Pside h1

Sw0 ksi

API RP 2A - due to 5% API side loadrequirement(5% of total sling load with DLFincluded)

PAPI 0.05 P 58 lbf

Weak Axis Bending Stress atattachment(due to out of plane load)

fbz2

PAPI h1

Sw1.386 ksi

fb fbx fbz1 fbz2 5.386 ksi Max bending stress at attachment

Bending "Satisfactory" fb Fbif

"NOTSatisfactory" otherwise

"Satisfactory"

Page 113: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

8. Check transverse (direct) shear stress at the lug attachment as per AISC:

Fv 0.40 Fy 15.2 ksi Allowable shear stress as per AISC F4 - Page 5-49

Av d t 1.5 in2

Shear area at attachment

fv

Pv

Av0.67 ksi Shear stress at attachment due to

horizontal load

ShearAtAttachment "Satisfactory" fv Fvif

"NOTSatisfactory" otherwise

"Satisfactory"

9. Check combined stress (axial tension, bending, and shear) at attachment as per AISC:

ft2 0.385 ksi Tensile stress at the attachment

fb 5.386 ksi Max bending stress at attachment

fv 0.667 ksi Shear stress at attachment due to horizontal load

Unity code check for combined axial tension, bending, and shear at the attachment as per Article: "A SystematicApproach to Lifting Eye Design" - Ocean ResourcesEngineering - 1977. Also similar in approach to AISC H1 -Page 5-54 but more conservative.

Uft2 fb

0.60 Fy

fv

0.60 Fy

2

0.254

CombinedStress "Satisfactory" U 1.0if

"NOTSatisfactory" otherwise

"Satisfactory"

Page 114: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

10. Shackle pin versus lug hole dimensional check:

B 0.77 in Selected shackle pin diameter

Dhmax B 1.10 0.847 in Maximum permitted pin hole diameter (should not be more than 110% of the pin diameter)

Dhmin B 1.04 0.801 in Minimum permitted pin hole diameter (should not be less than 104% of the pin diameter)

dh 0.813 in Specified pin hole diameter

11. Shackle jaw gap versus lug thickness dimensional check:

A 1.06 in Selected Shackle (inside) width

tmin A 0.75 0.795 in Minimum permitted plate thickness(should not be less than 75% of inside shackle jaw gap)

tmax A 0.063 in 0.997 in Maximum permitted plate thickness (should not be more than 1/16" less than inside of shackle jaw gap)

tactual t 2 tc 0.875 in Specified plate thickness (including cheek plate)

Page 115: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

VERIFICATION OF RESULTS:

ShackleClearance "Satisfactory" Cactual Cif

"NOTSatisfactory" otherwise

"Satisfactory"

ShacklePinFit "Satisfactory" dh Dhmax dh Dhminif

"NOTSatisfactory" otherwise

"Not Applicable" T 1=if

"Not Applicable"

ShackleJawFit "Satisfactory" tactual tmin tactual tmaxif

"NOTSatisfactory" otherwise

"Not Applicable" T 1=if

"Not Applicable"

ShackleWLL "Satisfactory" SSWLL RSFif

"NOTSatisfactory" otherwise

"Satisfactory"

SlingsWLL "Satisfactory" CWLL RSFif

"NOTSatisfactory" otherwise

"Satisfactory"

MasterLinkWLL "Satisfactory" LinkWLL MGWif

"NOTSatisfactory" otherwise

"Satisfactory"

TensionAtHole "Satisfactory" ft1 Ft1if

"NOTSatisfactory" otherwise

"Satisfactory"

TensionAtAttachment "Satisfactory" ft2 Ft2if

"NOTSatisfactory" otherwise

"Satisfactory"

ShearTearOut "Satisfactory" fto Ftoif

"NOTSatisfactory" otherwise

"Satisfactory"

Bearing "Satisfactory" fp Fpif

"NOTSatisfactory" otherwise

"Satisfactory"

Bending "Satisfactory" fb Fbif

"NOTSatisfactory" otherwise

"Satisfactory"

ShearAtAttachment "Satisfactory" fv Fvif

"NOTSatisfactory" otherwise

"Satisfactory"

CombinedStress "Satisfactory" U 1.0if

"NOTSatisfactory" otherwise

"Satisfactory"

Page 116: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

SUMMARY OF FACTORS OF SAFETY:

Shear Tear Out FS

Factor of safety for shear tear out stress with respect to the shear yield strength (0.58*Fy):

FSTO

0.58Fy

fto

FOS

65.91 FSreqdTO 3.0

TearOutFS "Satisfactory" FSTO FSreqdTOif

"Not Satisfactory" FSreqdTO FSTOif

"Satisfactory"

Contact/Bearing Stress FS

Factor of safety for bearing stress with respect to the yield strength:

FSCS

Fy

fp

FOS

34.842 FSreqdCS 2.22

ContactFS "Satisfactory" FSCS FSreqdCSif

"Not Satisfactory" FSreqdCS FSCSif

"Satisfactory"

Pad Eye Combined Stress FS

Factor of safety for combined stress (axial tension and bending) with respect to the yield strength:

FSPS

Fy

ft2 fb

FOS

13.17 FSreqdPS 3.03

PadEyeFS "Satisfactory" FSPS FSreqdPSif

"Not Satisfactory" FSreqdPS FSPSif

"Satisfactory"

Cable FS

Factor of safety for slings with respect to the working load limit:

FSC

CWLL

RSF8.754 DFc 1.0

CableFS "Satisfactory" FSC DFcif

"Not Satisfactory" otherwise

"Satisfactory"

Page 117: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

Shackle FS

Factor of safety for shackles with respect to the working load limit:

FSS

SSWLL

RSF11.258 DFs 1.0

ShackleFS "Satisfactory" FSS DFsif

"Not Satisfactory" otherwise

"Satisfactory"

Master Link FS

Factor of safety for master link with respect to the working load limit:

FSML

LinkWLL

MGW24.36 DFml 1.0

MasterLinkFS "Satisfactory" FSML DFmlif

"Not Satisfactory" otherwise

"Satisfactory"

Page 118: 13-1662 Acadian Contractors - PV-14923A - 09-17-2013

XI

B

XII

A

B

I

FP60

SHELL FP30

II

HEAD

SHELL

IXA

B

C

X

A

B

VII

GRIND FLUSH

G

B

VIII

B

V

B

FLUSH

VI

BA

1/8"

AB

III IV

FP70

PLA

TFO

RM

NO

RTH

N

78 "

7"

38 "

78 "

38 "

18 "

34 "

14 "

1116 "

112 "

1116 "

214 " 1

12 "

7"

2"

114 "

14 "

334 "

516 "

2,081WEIGHT

0.810

SERVICE

RF LWN

100

275

24" O.D. x 6'-0" S/S

SA516-70/0.25

SA516-70/0.25

RT-1

PY - 14923ATAG NO. 0

760

A

358

WEIGHT

13-150

2013

6.0

FULL

SA 105VAPOR IN

275

WPS-PC-103

-

NOTES:

3" 300

MAT'L/THKN

N1 LIQUID OUT1

-

3" 300

°FPSI

PSI

1. ALL TEXT TO BE 1/8" ARIAL UNLESS NOTES OTHERWISE

W

AIR ELIMINATOR

AT

LENGTH

SHELL

HEAD

MAT'L/THKN

-20

HYDRO

YEAR

BUILT

TEST AT

DRY

DIA (ID) x

ALLOW

CORR

MFG SRL

-

NUMBER

-

IN

NECK

ACADIAN CONTRACTORS

1

NAMEPLATE DETAIL

17102 Louisiana 330 Abbeville, LA 70510E

LBS

-WPS-PC-103

CERTIFIED BY

PSI

0.5 X 0.250 0.250

RF LWN 3.0 0.810 SA 105 - - - 6.0 0.5 X 0.250 0.250 -

MARKWELD SIZE

No.WIDE & THK. MAT'L O.S. I.S. WELD

DETAIL

AT

B C

LBS

SHELL

B

REINFORCING PAD

B

SERVICE SIZE RATING TYPE BOREWALL MAT'L LENGTH

MDMT

MAWP

ASME CODE

NAT'L BD. NO.

(337) 893-6397

°F

N2

PROJECTION

B

3.0

ORIENTATION

ASM

N6 1 FLARE OUTLET 3" 300 RF LWN 3.0 0.810 SA 105 - - - NOTED 0.0 V - 0.250 -

N5 1 DRAIN 2" 300 RF WN S/80 0.218 SA 106B - - - NOTED 0.0 V,IV - 0.250 -

N4 1 LEVEL GAUGE 1½" 300 RF LWN 1.5 0.625 SA 105 - - - 6.0 0.5 X 0.250 0.250 -

N3 1 LEVEL GAUGE 1½" 300 RF LWN 1.5 0.625 SA 105 - - - 6.0 0.5 X 0.250 0.250

REF. SIZE QTY. DESCRIPTION

1 24" O.D. 6'-0"SHELL: ROLLED PLATE, 0.25" NOMINAL THICKNESS (0.1651" CALCULATED MINIMUM) SA 516-70

2 24" O.D. 2HEADS: ASME 2:1 ELLIPSOIDAL, 2" S.F., (0.1641" CALCULATED MINIMUM) SA 516-70

3 24" O.D. 2'-2" SKIRT: ROLLED PLATE: 0.1875" NOMINAL THICKNESS, SA 516-70

4 3" 3 FLANGES: ANSI 300, RF LWN, 3" BORE, SA 105

5 1½" 2 FLANGES: ANSI 300, RF LWN, 1½" BORE, SA 105

6 2" 1 FLANGES: ANSI 300, RF WN, SCH. 80 BORE, SA 105

7 2" 1'-7" PIPE: SMLS., SCH. 80, SA 106B

8 2" 1 ELBOW: 90 L.R., WELD, SCH. 80, SA 234 WPB

9 ½" 6.7 SQFT PLATE: SA 516-70

10 - 1 ASME/ACADIAN CONTRACTORS NAME PLATE

11 ½ 0.25 SQFT PLATE: SA 516-70

12 6" 3" PIPE: SMLS., SCH. 80, SA 106B

13 3/16" 0.1 SQFT PLATE: SA 36

REVISIONS

REV. DESCRIPTION DATE BY APPROVED

A ISSUED FOR APPROVAL 08-20-2013 RJF SRC

B LIFT LUG THICKNESS, N2 EXT. EXT. 09-17-2013 RJF SRC

REPRODUCTION IN PART OR AS A WHOLE

D

C

B

AA

B

C

D

12345678

8 7 6 5

5. INSIDE CORNERS R. .032,

SHARP CORNERS.

PV: 14923A

6. MACHINE FINISH

ACADIAN CONTRACTORS. ANY

ASME Y14.5M=1994

.030

ACADIAN CONTRACTORS IS PROHIBITED.

PROPRIETARY AND CONFIDENTIAL

DRAWN

CHECKED

ENG APPR.

MFG APPR.

Q.A.

COMMENTS:

DATE NAME

SRC ENGINEERS, INC.

SIZE

BDWG. NO. REV

-

WEIGHT:SCALE: 1:32

UNLESS OTHERWISE SPECIFIED:

SHEET 1 OF 1

Lafayette, LA (337)837-3810

111-825B

ACADIAN CONTRACTORS

ENTERPRISE - NEPTUNE PLANTABBEVILLE, LOUISIANA

JOB NO. 13-1662

08/13

__ __

__ __

0

MACHINE

14

4. REMOVE ALL BURRS AND

ASME SECT. VIII DIV. 1, 2010 ED., A11 ADD.

RT-1

FRACTIONS= .X =

3

THE INFORMATION CONTAINED IN THIS

358

FABRICATION

DRAWING IS THE SOLE PROPERTY OF

275

1/16" .XX =

__

.XXX =

__

1. DO NOT SCALE DRAWING.

3° .XXXX =

-

3. INTERPRET DIM. TOL. PER

INT. SURFACE TREATMENT:

OUTSIDE CORNERS R. .020

N/A

2

.015

-

F MIN/MAX

-

-

JML

0.50°

FLG. STUD SPEC.:

.0010

AIR ELIMINATOR - PV - 14923A

CONSTRUCTION CODE:

ANGLES

YEAR BUILT:

-

SERIAL No.: 13-150

BW FIT MATL. SPEC.:

DESIGN PRESSURE EXTERNAL:

INSULATION DESC.:

__ __

2013

WITHOUT THE WRITTEN PERMISSION OF

24"O.D. x 6'-0" S/S x 275 PSIG

SPECIFICATIONSTAG/ MODEL No.:

2. DIMENSIONS ARE IN INCHES.

HYDRO PRESSURE INTERNAL:

.005

J.E. ROUND SEAMS: CORROSION ALLOWANCE:

FULL LIQUID WEIGHT.:

PSIG @ TEMP

DESIGN PRESSURE INTERNAL: PSIG @ TEMP

F MIN/MAX

ANGLES

FLANGE RATING: ANSI 300

J.E. LONG SEAMS:

100%

NATIONAL BD. No.: -

STRESS RELIEF: NONE

COUPLING RATING: N/A

HEAD MATL. SPEC.: SA 516-70

CPLG. MATL. SPEC.: N/A

SHELL MATL. SPEC.: SA 516-70

RADIOGRAPHY:

SA 105

-20/100

FLANGE MATL. SPEC.:

SA 106B

SA 515-70 REPAD MATL. SPEC.:

-

100%

N/A RJ GSK. MATL. SPEC.:

LBS 760

FLEXITALLIC GASKET STYLE "CG"

PIPE MATL. SPEC.:

RF GSK. DESC.:

SA 234 WPB

SA 36

RF GSK. MATL. SPEC.:

STRUC. MATL. SPEC.:

SA 193-B7

SA 194-2H

EMPTY WEIGHT:

FLG. NUT SPEC.:

2,081 LBS

RJ GSK. DESC.: N/A

WELD PROCEDURE:

INSPECTED BY:

EXT. SURFACE TREATMENT:

TOLERANCES:

N O T E S:1. FLANGE BOLT HOLES TO STRADDLE VESSEL CENTERLINES UNLESS OTHERWISE NOTED.2. DRILL & TAP 1/4" TELLTALE HOLE IN REINFORCING PAD.3. OUTSIDE PROJECTION SHOWN IN THE NOZZLE SCHEDULE IS FROM THE VESSEL O.D. UNLESS OTHERWISE NOTED4. INSIDE PROJECTION SHOWN IN THE NOZZLE SCHEDULE IS MINIMUM ONLY.5. ALL TAIL DIMINSIONS ARE FROM THE REFERENCE LINE.6. ALL NOZZLES SHALL BE ADEQUATELY PROTECTED AND COVERED FOR SHIPMENT7. UNLESS OTHERWISE NOTED 1/4" DIMENSIONAL, OR 1/2" ANGULAR TOLERANCES.8. CHIP ALL WELDS TO SOUND METAL, UNLESS OTHERWISE NOTED9. NOZZLE INTERNAL PROJECTIONS SHALL HAVE 1/8" RADIUS ROUNDED EDGES.10. VESSEL SHALL MEET THE REQUIREMENTS OF THE ASME BOILER & PRESSURE VESSEL CODE SECTION VIII, DIV. 1, AND STAMPED ACCORDINGLY.

N2

N4

N5

N3

N1

SKIRT

0

270

180

90

I

CLLUG

WELD

WELDI

N6ASME NAMEPLATE & LIFT

2

45.0°

45.0°

90.0°

N4

N2

N3

N1

N6

N5

5

4

5 4

12

SIDE ELEVATION

AS POSSIBLE

1

2

2

3

7

76

9

8

4

(4) 1" DIA. VENT HOLES,LOCATED AS HIGH

11

A

6"

6"

6" "8 171

31"

LIFT LUG DETAILSCALE 1:4

11

13 BOTH SIDES

(2 REQUIRED)

TO SHELL

13

1 1 "

"

3"

R1

"

2

3"

16

1

2

212 "

3/16

12

DETAIL A SCALE 1 : 16

3

FLUSH

3/16INSIDE

3/16

12 " N2

N4

N6

N1

N3

2

4

7

4

4

FRONT ELEVATION

6

IIWELD

LOCATION

WELDII

1

5

2 3

5

9

ASME NAMEPLATE

11

"

"4

24" O.D.

43

"7

"

1

72"

16 46

SEAM TO SEAM

16

6

2914

4"