06 技術解説 三浦 - daido.co.jp ·...

download 06 技術解説 三浦 - daido.co.jp · 技術解説>航空機エンジン用耐熱合金の最近の動向 37 酷な条件に曝されるのは第1段高圧タービンブレードで

If you can't read please download the document

Transcript of 06 技術解説 三浦 - daido.co.jp ·...

  • 35

    Technical Review

    Trend of Heat Resistant Alloys for Aero Engine Applications

    Nobuhiro Miura

    Synopsis

    2012 5 17 Dr., Eng., National Defense Academy, School of Systems Engineering,

    Department of Mechanical Systems Engineering

    1/3 Fig. 1 SFC

    Specific Fuel Consumption 56

    SFC

    In recent years, with emission reduction of carbon dioxide and nitrogen oxide, higher output and effciency of civil aircraft engines are demanded. They have been done by improvement of thermal and propulsive efficiencies. The thermal efficiency of the aircraft engine strongly depends on the turbine inlet temperature (TIT). With an increase in TIT, hot section parts in the engines such as combustion chambers, turbine blades, nozzle guide vanes, discs and shafts are expected to endure higher temperatures. Ni-based superalloys have been used for the hot section parts because of their excellent high-temperature strength, ductility, thermal fatigue and oxidation resistance. Recent alloy design of Ni-based superalloys has focused on increasing the temperature capability through the addition of Rhenium and Ruthenium. For the next-generation engines, further lightweight of the heat-resistant alloys has been demanded and practical use of ceramics matrix composites is expected as materials beyond Ni-based superalloys. In this paper, the latest developing trend of the heat-resistant alloys is outlined.

    1

    Ti

    1 3

    B787-8

    20 %

    4

    50 %

  • 83 1 2012 36

    Fw

    Fw = Fn / W 5

    Fw 1 W

    Fw W

    6 7

    15

    o

    SFC o

    3Ni31

    TIT:

    Turbine Inlet Temperature

    TIT Fig. 2 TIT 8

    TIT TIT

    SFC

    Fig. 3 TIT 910

    1950 TIT 900

    TIT

    10

    1600

    TIT 2000 11TIT

    2

    1930

    40

    1 PWR Qf

    th

    th = PWR / Qf 1

    2 Fn

    Va PWRpp = Fn Va / PWR 2

    3

    oo = th p 3

    3

    Fn

    SFC

    SFC = Wf / Fn 4

    Wf

    SFC

    Fig. 1.Improvement of SFC of aero gas turbine engines.56

  • 37

    1

    1

    Ni

    Ni

    Ni

    TBC: Thermal Barrier Coarting

    12 14

    32NiNi

    CC:

    Conventional Casting1970

    DS: Directional Solidification

    SC: Single

    Crystal

    Ni

    Ni3AlTi

    SEM

    Fig. 4

    Fig. 2.Relation between pressure ratio and turbine inlet temperature.8

    Fig. 4SEM of as-heat treated single crystal Ni-based superalloy CMSX-4.

    Fig. 3. Evolution of TIT of aero gas turbine engines.

    DS

    BZr

  • 83 1 2012 38

    Table 1. Chemical compositions of single crystal Ni-based superalloys wt%

    .

    Table 1 Re

    1970 DS

    50PWA1480Rene N4 CMSX-2

    1

    Re

    1 Re 3wt%

    PWA1484Rene N5CMSX-4 2

    2

    1 25

    Re 5 6 wt% CMSX-10ReneN6

    3 1050

    Re Ru 2 3 wt% 4

    GE SENCMA NIMS

    15 4

    Ru 1100

    5 TMS-162 TMS-196 NIMS

    16 18

  • 39

    33

    Re

    Ru 17 19Re

    6

    2011

    6 3,000 4,000 kg

    Re Cu

    Mo 20

    CuMo

    ReRu

    GE

    2 Ni ReneN5

    Re 1.5 wt% Rene N515

    Rene N500 Rene N5

    Rene N515

    Re

    Fig. 521 B737 A320

    CFM56

    22

    Fig. 6 2 CMSX-4 1273 K[001]

    Re NKH71

    CMSX-4

    160 MPa

    [001]

    100

    23

    CMSX-4

    24

    NKH71 CMSX-4

    CMSX-4 /

    Fig. 7

    NKH71 /

    4 TMS-138

    Fig. 5.Comparison with creep rupture property of Rene N5 and Rene N51521.

    Fig. 6.Stress-time to rupture curves of CMSX-4 and NKH71 at 1273 K.

  • 83 1 2012 40

    4

    p Va

    0.9

    BPRBy-Pass Ratio BPR = Waf / Wap

    Waf Wap

    BPR 10

    BPR SFC

    Re

    15

    BPR TIT

    Fig. 8 GE90-115B 25

    B777-300ER

    GE90-115B GE

    IHI GE1014

    B787 B747-8I GE

    GEnx

    3 B787 TRENT1000

    70

    5 51TiAl

    Fw

    Fig. 7.Dislocation substructure at / interface of creep interrupted specimens a CMSX-4 and b NKH71.

    Fig. 8.Appearance of GE90-115B low pressure turbine shaft.25

  • 41

    Ni

    GEnx

    7

    2 TiAl

    Fig. 926TiAl

    Fig. 9. TiAl low pressure turbine blade.26

    Fig. 10. Appearance of CMC afterburner nozzle flap.2952NiTIT

    Ni

    CMC: Ceramics Matrix

    Composite SiC Al2O3

    SiC Ni

    1/3 1200

    3 1300

    222728

    CMC

    Fig. 10 29.

    6

    %

    NOx

    TIT

    NOx

    TIT

  • 83 1 2012 42

    NOx

    1386

    264120072135620065884 http://www.newairplane.com/787/design_highlights/#/

    Home

    5 7

    200342

    62004139

    7

    2005p.229

    8 7

    200352

    9 123

    38199724710 123

    48200736511 123

    38199715712 123

    4820073391338201014614 38

    2010155

    15

    16201171716 A. SatoH. HaradaA.-C. YehK. KawagishiT.

    KobayashiY. KoizumiT. Yokokawa and J. X. Zhang

    : Superalloys20082008131

    17 H. Harada 123

    48200735718 A. SatoA.-C. YehT. KobayashiT. Yokokawa

    H. HaradaT. Murakumo and J. X. Zhang : Energy

    Materials2200719

    19 X.P. TanJ.L. LiuT. JinZ.Q. HuH.U. HongB.G.

    ChoiI.S. Kim and C.Y. Jo : Mat. Sci. Eng. A52820118381

    2039201123421 P. J. FinkJ.L. MillerD. G. Konitzer : JOM62

    201055

    22

    20101

    23 N. MiuraY. Kondo and N. Ohi : Superalloys2000

    2000377

    24 N. MiuraY. Kondo and T. Matsuo : Proc. of 9th Int.

    Conf. on Creep and Fracture of Engineering Materials and

    Structures2001437

    25 802009127

    26 IHI

    48200815327 J-Y. Guedou : Proc. of the 27th Int. Cong. of the

    Aeronautical Sciences20101

    2838201014029 Aviation Week & Space TechnologyMarch 92009

    36