04 Tema 03 Proteinas 2011 Web

download 04 Tema 03 Proteinas 2011 Web

of 7

Transcript of 04 Tema 03 Proteinas 2011 Web

  • 7/31/2019 04 Tema 03 Proteinas 2011 Web

    1/7

    17.11.2011

    1

    Protenas

    Prof. Wilkesman

    17/11/2011 Prof. Wilkesman 2

    Repasemos

    la formacinde unaprotena

    17/11/2011 Prof. Wilkesman 3

    Amino Acid Sequences Have Direction

    This illustration ofthe pentapeptideTyr-Gly-Gly-Phe-Leu (YGGFL)shows thesequence from theamino terminus tothe carboxylterminus

    17/11/2011 Prof. Wilkesman 4

    Proteins

    are linear polymers built of monomer unitscalled amino acids.

    contain a wide range of functional groups.

    can interact with one another and withother biological macromolecules to form

    complex assemblies. Some are quite rigid, whereas others

    display limited flexibility

    17/11/2011 Prof. Wilkesman 5

    MW de protenas MW en g/mol

    MW en Da

    MW promedio de los aa= 110

    N aa encontrados en prot.= 50-2000

    MW prom de las protenas=?

    17/11/2011 Prof. Wilkesman 6

    Podemos clasificarlas? Fibrosas

    Forma filamentosa

    Funcin estructural en clulas y tejidos

    Ej.: protenas de la piel, tejido conjuntivo, fibrasanimales

    Globulares Forma de globo por plegado de la cadena

    polipeptdica

    Funciones: trabajo qumico de la clula

    Ej.: Mioglobina, hemoglobina,

  • 7/31/2019 04 Tema 03 Proteinas 2011 Web

    2/7

    17.11.2011

    2

    17/11/2011 Prof. Wilkesman 7

    Ej: Insulina

    Amino Acid Sequence of Bovine Insulin.

    17/11/2011 Prof. Wilkesman 8

    Estructuras de organizacin enprotenas

    Estructuras:

    1 -> secuencia de aa 2 -> hlices , lminas

    3 -> plegado de la estruct. 2

    4 -> Empaquetado de estructuras 3

    17/11/2011 Prof. Wilkesman 9

    Hlices alfa

    Structure of the Helix. (A) A ribbon depiction with the -carbon atoms and side chains (green) shown. (B) Aside view of a ball-and-stick version depicts the hydrogen bonds (dashed lines) between NH and CO groups. (C)An end view shows the coiled backbone as the inside of the helix and the side chains (green) projecting outward.(D) A space-filling view of part C shows the tightly packed interior core of the helix.

    17/11/2011 Prof. Wilkesman 10

    Lminas beta

    Structureof a Strand. The side chains (green) are alternately above and belowthe plane of the strand

    17/11/2011 Prof. Wilkesman 11

    Lminasbeta An Antiparallel

    Sheet.Adjacent strands run in oppositedirections. Hydrogenbonds between NH andCO groups connecteach amino acid to asingle amino acid on anadjacent strand,stabilizing the structure.

    A Parallel Sheet.Adjacent strands runin the same direction.Hydrogen bondsconnect each aminoacid on one strand withtwo different aminoacids on the adjacentstrand.

    17/11/2011 Prof. Wilkesman 12

    Lminas beta mixtas

    Structure of a Mixed Sheet

  • 7/31/2019 04 Tema 03 Proteinas 2011 Web

    3/7

    17.11.2011

    3

    17/11/2011 Prof. Wilkesman 13

    Dihedral angles A measure of the rotation about a bond, usually between

    -180 and +180. Sometimes called torsion angles

    The structure of each amino acid in a polypeptide can be adjusted by rotation about two singlebonds. (A) Phi ( ) is the angle of rotation about the bond between the nitrogen and the -carbonatoms, whereas psi () is the angle of rotation about the bond between the -carbon and thecarbonyl carbon atoms. (B) A view down the bond between the nitrogen and the -carbonatoms, showing how is measured. (C) A view down the bond between the-carbon and thecarbonyl carbon atoms, showing how is measured.

    17/11/2011 Prof. Wilkesman 14

    ngulos derotacin

    Rotation About Bonds in aPolypeptide. The structure of eachamino acid in a polypeptide can beadjusted by rotation about twosingle bonds. (A) Phi () is theangle of rotation about the bondbetween the nitrogen and the -carbon atoms, whereas psi (y) isthe angle of rotation about the bondbetween the -carbon and thecarbonyl carbon atoms. (B) A viewdown the bond between thenitrogen and the -carbon atoms,showing how is measured. (C) Aview down the bond between the -carbon and the carbonyl carbonatoms, showing how y ismeasured.

    17/11/2011 Prof. Wilkesman 15

    Convenio

    17/11/2011 Prof. Wilkesman 16

    Representaciones deRamachandran

    Ilustracin que representa lasconformaciones permitidas. Pueden existirmuchas combinaciones de estructurassecundarias, pero slo algunas son

    factibles. Las coordenadas son losngulos psi () y phi ()

    17/11/2011 Prof. Wilkesman 17

    A Ramachandran Diagram Showing the Values of and psi. Not all and psivalues are possible without collisions between atoms. The most favorable regions areshown in dark green; borderline regions are shown in light green. The structure onthe right is disfavored because of steric clashes.

    Ramachandran

    17/11/2011 Prof. Wilkesman 18

    Ramachandran

    Diagram for

    Helices

    Both right- andleft-handed heliceslie in regions ofallowedconformations inthe Ramachandrandiagram. However,essentially all helices in proteinsare right-handed.

  • 7/31/2019 04 Tema 03 Proteinas 2011 Web

    4/7

    17.11.2011

    4

    17/11/2011 Prof. Wilkesman 19

    Ramachandran Diagram For Strands

    The red area

    shows thestericallyallowedconformations ofextended, -strand-likestructures

    17/11/2011 Prof. Wilkesman 20

    17/11/2011 Prof. Wilkesman 21

    Ejemplos de protenas fibrosas

    Queratinas

    Colgeno

    17/11/2011 Prof. Wilkesman 22

    Alfa - Queratinas

    An -Helical Coiled Coil. The two helices windaround one another to form a superhelix. Suchstructures are found in many proteins includingkeratin in hair, quills, claws, and horns.

    17/11/2011 Prof. Wilkesman 23 17/11/2011 Prof. Wilkesman 24

    Colgeno The structure of a typical collagen

    molecule.

    (A) A modelof partof a single collagen chain in which each amino acid isrepresented by a sphere. The chain isabout 1000 amino acids long. It isarranged as a left-handed helix, withthree amino acids per turn and withglycine as every third amino acid.Therefore, an chain is composed ofa series of triplet Gly-X-Y sequences,in which X and Y can be any aminoacid (although X is commonly prolineand Y is commonly hydroxyproline).

    (B) A model of part of a collagenmolecule in which three chains, eachshown in a different color, are wrappedaround one another to form a triple-stranded helical rod. Glycine is theonly amino acid small enough tooccupy the crowded interior of thetriple helix. Only a short length of themolecule is shown; the entire molecule

    is 300 nm long.

  • 7/31/2019 04 Tema 03 Proteinas 2011 Web

    5/7

    17.11.2011

    5

    17/11/2011 Prof. Wilkesman 25 17/11/2011 Prof. Wilkesman 26

    Protenas 2

    17/11/2011 Prof. Wilkesman 27

    Protenas globulares: estructuraterciaria, modelos de plegado

    La mayora de las protenas estn formadas por ms de undominio

    Existe siempre un interior de residuos hidrofbicos y unexterior de residuos hidroflicos.

    Las lminas estn generalmente envueltas enestructuras cilndricas.

    Existen giros en la cadena polipeptdica para doblar enesquinas o ir de un segmento a uno o viceversa. Tipos

    de giros: y . No todas las partes de las protenas globulares son hlices

    o lminas , o giros. Existen segmentos conectores oregiones estructuradas irregularmente.

    17/11/2011 Prof. Wilkesman 28

    Modelos de plegado

    Existen ciertos motivos comunes enprotenas: Todas tienen ms de un dominio Hay un interior hidrofbico y un exterior

    hidroflico Lminas beta estn envueltas en estructuras

    tipo cilindro Hay giros No todo es hlices alfa, o lm. Beta, tambin

    hay segmentos conectores

    17/11/2011 Prof. Wilkesman 29

    Dominios de protenas Protein Domains. The cell-surface protein CD4

    consists of four similar domains Dominio: regin compacta, plegada localmente,

    de la estructura 3

    17/11/2011 Prof. Wilkesman 30

    Tipos de

    Giros:

    Giro tipo

    Giro tipo

  • 7/31/2019 04 Tema 03 Proteinas 2011 Web

    6/7

    17.11.2011

    6

    17/11/2011 Prof. Wilkesman 31

    Barriles beta

    17/11/2011 Prof. Wilkesman 32

    Tipos de plegados de

    protenas globulares

    17/11/2011 Prof. Wilkesman 33

    Ejemplo deprotena ricaen lminas

    beta

    Immunoglobulin Fold. Animmunoglobulin domainconsists of apair of-sheets linkedby a disulfide

    bond andhydrophobicinteractions.Threehypervariableloops lie at oneend of thestructure.

    17/11/2011 Prof. Wilkesman 34

    Qu est sucediendo?

    17/11/2011 Prof. Wilkesman 35

    Factores quedeterminan lasestructuras 2 y 3.Desnaturalizacin yagentesdesnaturalizantes.Papel del S-S.

    La mayora de lainformacin quedetermina laestructura 3-D deuna protena lalleva la secuenciade aminocidos.

    Estructura Nativa Desnaturalizacin Renaturalizacin

    17/11/2011 Prof. Wilkesman 36

    Estabilizacin de la estructura 3 a) Interacciones carga-carga b) Puentes de hidrgeno internos. Hay tres

    tipos: armazn con armazn, armazn concadena lateral y cadena lateral con cadenalateral.

    c) Fuerzas Van der Waals d) Efecto hidrofobo: el enterramineto de los

    grupos R hidrofobos en el interior de laprotena produce un aumento de la entropade estabilizacin.

    e) Puentes S-S: formados exclusivamentepor Cys

  • 7/31/2019 04 Tema 03 Proteinas 2011 Web

    7/7

    17.11.2011

    7

    17/11/2011 Prof. Wilkesman 37

    Estabilizacin por puentes de H

    17/11/2011 Prof. Wilkesman 38

    Estructura cuaternariaAsociacin de cadenaspolipeptdicas para formarestructuras especficas demltiples subunidades.

    Qu estabiliza la estructura4?

    Las mismas interacciones queestabilizan la estruct. 3.

    17/11/2011 Prof. Wilkesman 39

    Three-Dimensional Structure of Myoglobin. (A) This ball-and-stick modelshows all nonhydrogen atoms and reveals many interactions between theamino acids. (B) A schematic view shows that the protein consists largely ofa helices. The heme group is shown in black and the iron atom is shown asa purple sphere.

    Mioglobina

    17/11/2011 Prof. Wilkesman 40

    Hemoglobina

    17/11/2011 Prof. Wilkesman 41

    Importanciabiolgica de lahemoglobina

    17/11/2011 Prof. Wilkesman 42

    Importanciabiolgica de lahemoglobina