RÔ `x Á E

6
LDȝ13ȝ025 1I6 ȎƘŒÔŠxƐƍÁŅ<DOf@mM#ÕņdSiÁçŤ ò ȋÞșŊ~ÝäȚ ÞnșNjĺņĹéǿǸȚ ŬǬ ȉÊ ț Șſ üæ ½ȅ ȉƚșŊ~ÝäȚ ȍò üļșĺƙƎƖĖȚ Experimental Identification of Fundamental Modeling for Non-salient PM-type Synchronous Actuators Yuta Yamamoto (The University of Tokyo), Taichi Nakamura (West Japan Railway Company) Ryuji Watanabe, Yasuhiro Takada, Takafumi Koseki (The University of Tokyo), and Yasuaki Aoyama (Hitachi Research Laboratory) Electric propulsion system in marine industry has been one of the attractive solutions for energy saving and reducing running costs. Transverse flux-type machine (TFM) has been developed as a direct-drive propulsion motor called for high torque at low speed and high reliability without gearbox simultaneously. This manuscript describes experimental verification of performance on the TFM, which authors have proposed, in accordance with classical and systematic theory of synchronous machinery. Furthermore, comparison of characteristics identified between numerical study based on finite element method (FEM) and experiment is also conducted. Ultimately, the problems of the proposed motor are clarified for new prototype model design. ȥŘķÂƐňÔȜƈħȖ³ÔȜƿƾĨǵȜŠxƐƍÁŅřȜĶ V ŀƯȜǠǂǗȗȜƝÍǥ, ŃȇnjƧŤ (Transverse flux-type motor, TFM, direct-drive motor, DDM, ship propulsion, permanent magnet synchronous machine, PMSM, new V-curve, load test, equivalent circuit, finite element method, FEM) 1. =@ ǡŵ0Ĺé#ũpǫǯ9Ğƿƾ$TlBk`mKǍ Ȋ"ʼn, ŴǢƊ@XiCm!ǫǯřȅǘǞ 6. ľ$, ÛƼƿ"ȇ3, >lMmdmNi ǫǯřȅ#¤Ƽƿ(Ņąë365. , ǭù#ŴĴǢpĻ"±, ÑȊũ{řȅșIMOȚĶǴƿ" î, 2013 ù 1 ł24ƺ³Ǧ#ŴǢÕŰ"Ɖă5 EEDI Ç%65żØǎª9ï (1) , CO 2 Ĥ¦Ǿ«ū0ŴǢ²Ź Âp2&åĎÂp"25glWlEFKTū9ÁĿ "èź52!ĘDŽƅķƟš.365. v, Ɯƶ3$, Śt<DOf@mM, ƿƾĨ ǵ9ČȒ"dzȘTiDèź#.ŸŒ\PO´5Ř ķÂƐňÔ (2) "25ǗȗřǔǒȞlj9ǃ (3) . q$, Ɯƶ3ljƁƐ"ŠxƐƍ9žȎ ƘŒÔèȗř#ŶĎ9Əǘ5., ƥƅ!ÁŅřŻǜ "ţ¥ƞřdSi9ĪždSiÁçȞŶĎƠçė ȑ9IJŻ, ŃȇnjƧŤ`mK#ıǑŋșFEAȚ9ž ƨŌ#ŞǪ/}!3ņėŤ#Ń²Ď"ÖÅ 5. ,, Ć#ĶǗȗřǔǒ"Âņèȗř#ÉȔŲ 9ĝ¦, ļ3"59Ƈƅ5. 2. ;5+/4B1!&G 2J1 :/.? ćʼn#½£ƅȞƥƅ !ȌşřÌä"Ȍşřŏ9ƝdSi"Ƴĩ5 ƝÍǥŤ"ţŶĎƠç%%İǍ65. ņǜ ij$, ǗřdžȏƐƍÔȎƘŒř5., ÁŅ ř#¥ƞřdSi"ŦƇ5. nƽƅ!ƁƐȌŨ#ǛIJ ¾Ƹ!ÁŅř$, Ś#2!ėȑdSiÁç9ǃ. Ï 1 "$, dSiÁç, ǖėȑ9, Ï 2 "$, ¿Ǘȗ#Õ ņƅ!Ƶķ9Ƒ. / , $ 45 # % R a 0 , + 45 !$ E 0 1 , + +# 45 +# # I s 2 , #! '# X s $ 3 , +++ ! R X Ï 1 ȎƘŒÔÁŅřdSiÁçėȑ Fig.1 Procedure for model identification of non-salient type synchronous machine (SM).

Transcript of RÔ `x Á E

Page 1: RÔ `x Á E

LD 13 025

1 6

Experimental Identification of Fundamental Modeling for Non-salient PM-type Synchronous Actuators

Yuta Yamamoto (The University of Tokyo), Taichi Nakamura (West Japan Railway Company)

Ryuji Watanabe, Yasuhiro Takada, Takafumi Koseki (The University of Tokyo), and Yasuaki Aoyama (Hitachi Research Laboratory)

Electric propulsion system in marine industry has been one of the attractive solutions for energy saving and

reducing running costs. Transverse flux-type machine (TFM) has been developed as a direct-drive propulsion motor called for high torque at low speed and high reliability without gearbox simultaneously. This manuscript describes experimental verification of performance on the TFM, which authors have proposed, in accordance with classical and systematic theory of synchronous machinery. Furthermore, comparison of characteristics identified between numerical study based on finite element method (FEM) and experiment is also conducted. Ultimately, the problems of the proposed motor are clarified for new prototype model design.

V ,

(Transverse flux-type motor, TFM, direct-drive motor, DDM, ship propulsion, permanent magnet synchronous machine, PMSM, new V-curve, load test, equivalent circuit, finite element method, FEM)

1.

, . , ,

. , , IMO

, 2013 1 EEDI(1), CO2

. , , ,

(2) (3). ,

,

, FEA

. , , .

2.

2 1

. , ,

. , .

1 , , , 2 , .

  Ra

  E0

  Is

  Xs

R X 1

Fig.1 Procedure for model identification of non-salient type synchronous machine (SM).

Page 2: RÔ `x Á E

2 6

Idc

Vuv

IdcIuvw

(a) DC voltage drop test

Vuv0v000uvw

uvw

uvuvvvww

(b) No-load test

uvw

u

w

uvvuvvvvww

IsIsII

(c) Three-phase short-circuit test

2 Fig.2 Experiments to identify model of SM.

A.

, ,

, .

B.

, If , E0

, If – E0 . C.

, If , Is , If – Is .

B C E0,n, Is,n

Zs , , A,

Xs , . 2 2

PMSM , ,

. ,

, . 12 ,

PMSM .

, Ke Kt

. 2 3 2. 2

3 . , 3 , V, E0

, Ra, Xs

, ia Ia

√3 , , ,

. , ia d-q.

3.

3 1 ,

(3) . 41 .

d, q (4)

. , , β

FEA , .

Ra Xs

V E0

ia

3

Fig.3 Equivalent circuit model of Non-salient type SM.

4 3

Fig.4 Structure of proposed synchronous actuator and 3-D element mesh for finite element analysis (FEA).

(757,194 elements, 195,648 nodes)

Page 3: RÔ `x Á E

3 6

1Table 1 Specification of proposed synchronous actuator

Symbol Item FEA value

2p Pole Number 50 poles Ra Armature Resistance 7.58 Ω Ld, Lq d, q-axis Inductance 142 mH Ke Back EMF Coefficient 0.208 Vs/rad Kt Torque Coefficient 5.20 Nm/A f Rated frequency 35 Hz PF Power Factor 0.646 J Current Density 5.0 Arms/mm2

τcog Cogging to Output Torque Ratio 2.4 % τ Torque density 5.7 Nm/l

3 2 5

. , 270 rpm, 10 Nm, DDM . DDM

DC. ,

, .

, DDM, SUS T

,

, . , , Ra=8.06Ω

, . A.

6 , DDM.

DD , , 7

Nr E0 , , Ke Ke

p Kt .

Ke =ϕ f =E0ω=E0pωm

=E0

p ⋅2π Nr60

~ 0.191Vs / rad. ....... (1)

Kt =Tiq= pKe ~ 4.78Nm / A ..................................... (2)

, (1), (2) φf, ω, ωm, p, T, iq , , , ,

, , q . B. (5)

8 , 3A.

Is . ,

5

Fig.5 Experimental setup for basic model identification.

6

Fig.6 Configuration in no-load EMF test.

0 60 120 180 240 3000

30

60

90

120

150

Rotating speed Nr [rpm]

Ope

n-ci

rcui

t lin

e vo

ltage

E0 [

Vrm

s]

7

Fig.7 No-load line voltage with respect to speed.

8

Fig.8 Configuration in three-phase short-circuit test.

, , ,

, . ,

Page 4: RÔ `x Á E

4 6

, . ,

, , Is .

Is ~1.80Arms ........................................................ (3)

, Ks , 1.29, .

, Zs, Xs, Ls ,

Zs =E0Is=KeωIs~ 23.3Ω ........................................... (4)

X s = Zs2 − Ra

2 ~ 21.9Ω ........................................... (5)

Ls =X s2π f

~ 99.6mH ................................................ (6)

. 2 FEA .

, , , Ra, Ls, Ke

FEA , . ,

. , PMSM , ,

, , .

, 2 , ,

. ,

, , ,

. , 10%

. , ,

, . , ,

, .

2 FEA

Table 2 Comparison of FEA with experimental value. Item FEA value Experiment Error

Armature resistance 7.58 Ω 8.06 Ω 5.96 % d, q-axis Inductance 142 mH 99.6 mH 42.6 % Back EMF Coefficient 0.208 Vs/rad 0.191 Vs/rad 8.17 % Power Factor 0.646 0.757 14.7 %

4.

4 1 , . ,

, . ,

. , 9 . ,

V δ . .

, δ , V, I

V-I V . ,

, ,

, , .

, δ ≥0 , E0 = E0 e j0 , ia ,

ia =Ve jδ − E0e

j0

Ra + jX s ...................................................... (7)

. 10 d-qπ/2 rad. d-q .

id =X s cosδ − Ra sinδ( )V − X sE0

Ra2 + X s

2 .............................. (8)

iq =Ra cosδ + X s sinδ( )V − RaE0

Ra2 + X s

2 ............................... (9)

Ra Xs

V = Ve jδ E0 = E0 e j0

ia

V

9

Fig.9 Equivalent circuit for motor operation. q-axis

d-axis

ia

id

iqβ

ii

βiqqiββ

aaaββ

iaaiiββββ

ii

δ

βββφV

Raia

E0Xsia δ

Raaiaaaa

10

Fig.10 Phasor diagram for motor operation.

Page 5: RÔ `x Á E

5 6

Pc Q >0Pi, Qi .

Pi = Re Via( ) = VRa2 + X s

2RaV + X s sinδ − Ra cosδ( )E0{ } (8)

Qi = Im Via( ) = VRa2 + X s

2X sV − X s cosδ + Ra sinδ( )E0{ } (9)

, φ , .

Pi =Via cosϕ ......................................................... (10)

, Po ,

Po = Pi − Raia2 ......................................................... (11)

, T ωm Po , , q . η , (10) (11)

T =Poωm

= Ktiq ........................................................ (12)

. , , , .

, , ,

, (12) q, d

. , d, qβ , (8) δ ,

φ δ–β , . 4 2 11 14

. , DDM,

. ,

, .

11

Fig.11 Configuration in load test for generator operation.

12

Fig.12 Experimental setup for load test of generator.

uuu v w

Ifg Va=VfIamIfm

VinVinininnVVV Iin

T

Pinn

inVV

Pout

13

Fig.13 Configuration in load test for motor operation.

14

Fig.13 Experimental setup for load test.

, , DDM,

(DCM) (SG) MG . , , DDM

, , DDM .

, , . ,

, PMSM d,q,

, , ,

. ,

, 50Vrms, 80Vrms 2 . , DDM , , MG

. ,

, , . 15, 16, – . 15 ,

. , 16.

, , ,

, ,

V–I , , , d

Page 6: RÔ `x Á E

6 6

, , .

17, 18 , 16

. , ,

, d , . , .

, 50Vrms , , , ,

16 , , . , 80Vrms ,

, , . ,

, .

5.

,

. ,

. , , FEA ,

,

. ,

. , 4 ,

, .

(6), , ,

.

( ) International Maritime Organization: “Emission from fuel used

for international aviation and maritime transport”, Subsidiary Body for Scientific and Technical Advice (SBSTA 35) (2011)

( ) H. Weh et al.: “New Permanent Magnet Excited Synchronous Machine with High Efficiency at Low Speeds”, in Proc. IEEE Elect. Mach. Conf. (1988)

( ) T. Nakamura et al.: “A low-speed high-torque permanent magnet synchronous motor – Reducing cogging torque and eddy current loss – ”, Journal JSAEM, Vol.20, No.2, pp.410-415 (2012)

( ) PM dq DVol.113, No.1 pp.1330–1331 (1993)

( ) JEC–TR21001 (2006)

( ) S.M. Husband et al.: “The Rolls-Royce transverse flux motor development”, IEEE Elect. Mach. Drives Conf., Vol. 3, pp.1435-1440 (2003)

0 10 20 30 40 50 600

0.5

1

1.5

2

2.5

3

3.5

Arm

atur

e cu

rren

t [A

rms]

Terminal voltage [Vrms]

Calculation Measurement PF 1.00lagging leading lagging leading 0.80 0.60 0.40 0.20

15

Fig.15 Load characteristics of generator.

0 10 20 30 40 50 60 70 80 90 1000

1

2

3

4

Arm

atur

e cu

rren

t [A

rms]

Terminal voltage [Vrms]

Calculation Power angle δ [deg] 0 15 30 45 60 75 90

Heavy load

Measurement Vin [Vrms] 50 80

16 V

Fig.16 New V-curve for load characteristics of motor.

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

d-axis current id [A]

q-ax

is c

urre

nt i q

[A]

50Vrms80Vrms

17

Fig.17 Locus of current vector in motor operation.

0 15 30 45 60 75 9002468

10

Torq

ue T

[Nm

]

Current phase β [deg]

50Vrms80Vrms

18

Fig.18 Torque with respect to current phase.