경종민 [email protected] 1 Packaging and Interconnection.

56
1 경경경 [email protected] Packaging and Interconnection

Transcript of 경종민 [email protected] 1 Packaging and Interconnection.

Page 1: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

1

경종민 [email protected]

Packaging and Interconnection

Page 2: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

2

References• H.B.Bakoglu, ‘Circuits, Interconnections, and Packagin

g for VLSI’, Addison-Wesley, 1990

Page 3: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

3

Packaging

Page 4: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

4

1. Overview• Agony of interconnection :

– Device becomes smaller, faster while chip size and routing length becomes bigger.

– IR voltage drop, delay, power dissipation due to interconnects, and max. current density, noise coupling/crosstalk are serious problems in future VLSI and now.

• Typical distribution of interconnection lines.

Clock, bus

Page 5: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

5• Multi-level interconnection

Page 6: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

6

2. Packaging• Package Types : 2-side : DIP(Dual In-Line) : thru-hole

4-side : QFP(Quad Flat Package) : SMT (Surface

Mount Tech.)

area type : PGA(Pin Grid Array) : thru-hole

BGA(Ball Grid Array)

• Chip to package bonding : wire bonding

TAB (Tape Automated Bonding)

Flip-chip bonding

Page 7: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

7• MCN(Multi-Chip Module)

Level 0 Level 1 Level 2 Level 3

Level 15

Page 8: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

8

• MCM 제품의 형태 및 비표– MCM-L(Laminated) :

극세선 다층구조 PCB 기판 , 저가 , 중성능 , Cache 메모리

모듈 등 다양한 용도

– MCM-C(Ceramic) :

하이브리드 기술 , 대형 컴퓨터 , 군사 / 항공용 특수용도

– MCM-D(Deposited) :

반도체 칩 공정으로부터 파생 , 구리 / 폴리이미드 다층구조 ,

컴퓨터 , 정보통신 , Workstation, PC, 이동전화기 등

광범위한 용도

Page 9: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

9

Page 10: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

10

• MCM 요소 기술– MCM 설계 기술 :

기판재료 , 절연체 재료 , 접착재료 , PCB 재료 등 재료설계 (

재료 , 화공 ), 전기적 회로 설계 ( 전자 ), 열적 냉각 설계 ( 기계 )

– MCM 단위공정 기술

coating, etching, metallization, lithography 등

– 안정된 베어 (bare) 칩 세트 확보

– Known Good Die(KGD) 문제 : MCM Yield

– MCM 테스트 기술

– Inter-disciplinary collaboration

Page 11: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

11

• MCM 시장 및 기술 예측 (1997 년도 예상 )– 1998 년 MCM 시장 : $1.6 billion

– MCM 시장의 큰 driver :

데이터 처리 , 정보 통신 (B-ISDN) (HDTV, CATV, ATM 등 )

내장형 콘트롤러 (DSP, GPS, RISC 등 ), Workstation/PC,

이동전화기

– 저가의 MCM-L 시장

기존 PCB 와 경쟁

– 고가의 MCM-D 시장 : > 100MHz

Page 12: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

12

Multi-Chip Module Technique 구조 :

i) IC 칩 : 한 개 이상의 칩 실장ii) Substrate : ( 열팽창계수 (TCE), 유전상수 , 열 전도율 , 비용 )

• type MCM-L : FR-4, Polyimide Glass, MCM-D : Si, SiC, SiN, SiO2 MCM-C : Alumina, Hybrid MCM

• Routing : 배선층 , I/O 배정 , 칩 배치 , 고밀도 배선 (via 사용 )• 배선구조 : 도체 - 절연체

기판 - 배선 (Cr/Cu-Polymer-Cu-Polymer-Cu/Au)-chip

공정 :i) 칩 bonding(die bonding)ii) 칩과 기판 연결 : wire bonding, TAB, flip chip

전기적 시험

Page 13: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

13

MCM Package StructuresTechnology Thin Film Thick Film PCB

(type) (MCM-D) (MCM-C) (MCM-L)

A. Dielectric Polyimide/SiO2 Alumina Epoxy-Glass

Glass+Ceramic Polyimide-glass

Dielectric Constant Er 3.2/3.8 9-10/4-8 4.7/2.5

Resistivity(-cm) 1016/1014 1014/1014 1014/1014

Thickness(m) < 20 100 and up 100 and upB. Conductors Cu-Al W, Mo, Cu, Au Cu, Au

Sheet resistance(m/sq) 3-4.2 2-15 3Thickness(m) 10 20-30 18-35Line width(m) 25 100 and up 70 and upVia hole size(m) 40 100 and up 50 and upMin Via Grid(m) 100 250 and up 250 and upNo. of Layers 1-6 30 and up 50

C. Dielectric and Via Coat/Deposit+Litho Tape/Punch Punch/DrillingD. Conductor Sputter Screen Laminate/Deposi

t electroplate,Photolitho

E. Firing/Curing/Arm 400 C(Oxidizing) 900C(N2) < 100C

G. I/O Connection Solder Bond Solder/Braze Solder/Braze

Page 14: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

14

• MCM design flow– Chip placement– wiring design

i) # of I/O ports, module area, wire length/layer, via– Chip placement– Electrical considerations

• Electrical Design Considerationsa) Key design factors :

1. Physical dimension(space)2. Electrical consideration3. Thermal consideration

b)Information transfer process :1. Change in the signal level2. Signal transition time

c)Electrical parameters : RequirementsR- Voltage drops Faster switching speedsC- RC delays Reducing input capacitanceL- delay noise Optimizing the driving

impedance

Page 15: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

15

Page 16: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

16

• Module Package - MCM-C Package

Page 17: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

17

Page 18: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

18

• MCM-C Cross-section

Page 19: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

19

Interconnection Modelling as a Transmission Line

Page 20: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

20

Interconnection Modelling :• Modelling of interconnection line as

i) lumped C model : treated as lumped capacitive loads

ii) lumped RC mode : first-order consideration of R when R is significant

iii) distributed RC model : better consideration of R’s (intra-chip wire)

iv) transmission line model : if the interconnection wire is sufficiently long or circuits very fast s.t. signal rise time is comparable to the time of flight across the line, i.e, L is not negligible.(PCB wire)v) lossy transmission line model : (MCB substrate wire)

Page 21: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

21

Interconnection wire 의 전송선 modelling l : wire length : signal 의 wavelength

t=l/v : time of flight

t=/v : signal 의 rise time1. t << Tr (i.e., l << ) 인 경우 :

wire 는 lumped capacitance 로 model 가능2. 그렇지 않은 경우 :

1) lossless 일 때 (R 성분이 L 성분에 비해 작을 때 ) : transmission line 으로 model2) lossy 인 경우 :

R 성분이 L 성분보다 크므로 Transmission line 효과 보다는 RC distributed 회로로 model 가능 . 즉 , wire R >> Zo(

특성저항 ) 인 경우

Page 22: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

22

Observations1. High-speed chip 의 detailed modelling 을 위해서는

pin, lead frame, bonding wire 등을 전송선으로 보고 2-D 해석을 해야 함 .

2. 대략의 chip-to-chip delay 계산을 위해서는 board wiring 은 전송선으로 , pin, lead frame 등은 lumped C or L load 로 model 하면 충분 .

3. * Power ground line 은 Signal line 과 달리 C 는 키우고 L 은 줄이는 것이 좋다 . ( 스위칭 noise)L

di

dt

Page 23: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

23

Transmission line model

• Lossless transmission line

– Inductance of a device = Magnetic flux

Electric current carried

LI

L'I

'

(L’ and ’ are inductance, and magnetic flux per line length.)

(IL) IL' X

Vt

IL'x

tIL'AD

( )1

A B

D C

I

I

V

X

Page 24: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

24

Similarly for C = Q

V Q CV VC X ( ) '

IQ

t

CV

tV C

x

tV CAD AD

( )' ' ( ) 2

From( )& ( ),1 2 V L'C VL'CAD AD '

' 2 1

V

I

L'

C

L

CAD

'Zo(char imp) =

1 C

Co

r ro o o( )

Page 25: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

25

• Reflected waveforms for inductive & capacitive discontinuity (time constant ; L/2Z, ZC/2)

Page 26: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

26

Page 27: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

27

• Magnitudes of Reflected & Transmitted components of voltage(current) wave at the transmission line discontinuity.

Vi

Vr Vt Z2Z1 Vi Vr Vt

Ii Ir It

V V Vt i r ( ),1 I I It i r ( )2V Z I

V Z I

V Z I

t t

r r

i i

2

1

1Define (reflection coeff.)=

and T(transmission coeff.)=

V

Vr

i V

Vt

i

Then, from(1), T = 1+ and from(2), 1 1

1 12 1 1

1 2

Z Z ZZ Z( ) ( )

Z Z

Z ZT

Z

Z Z2 1

2 1

2

2 1

12

Page 28: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

28

• Reflected waveforms at the unterminated transmission line ;

V-source 에 의한 VG 에 대한 영향R-divider 로 볼 때는 V=VS 로 , X-mission line 으로 볼 때는 V=VS /2 로놓는다 .

Z R

Z RS

S

9

11RS=0.1 Z 일때 : s

SG V

VVT

t 11

10

11

20

211

200

RS=10 Z 일때 : 9

11 11

2T

11

1)1(

)1(1()1(

)1()1()1( 322

S

S

SS

V=VS /2

Page 29: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

29

• When Rs=10Z, Rs=Z, and Rs=0.1Z, respectively(not in the same scale)

Page 30: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

30

Page 31: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

31

• Waveforms for finite rise-time signal

Page 32: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

32

Page 33: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

33

Page 34: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

34• Waveform propagating along lossy transmission line.

Page 35: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

35

Page 36: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

36• Transmission line 의 termination :

i) RS=0, RL=(no termination) (dotted line : RS=0.1 Zo

일때 )

Page 37: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

37

ii) Term. at receiving end (RS=0, RL=Zo)

Page 38: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

38

iii) Source-end termination

Page 39: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

39

Page 40: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

40

Page 41: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

41

v) RC-termination at receiving end : RS=0, RL=Zo(C

L>> )t

Zf

o

Page 42: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

42

iv) 기타

Page 43: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

43• Driver and termination circuits for tr. lines.i) term. at receiver end

Page 44: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

44

Page 45: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

45

Page 46: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

46ii) term. at the source end(series termination)

Page 47: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

47

Page 48: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

48

Page 49: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

49

What limits bandwidth?• Circuit speed• Impedance discontinuity

– Pad capacitance– Bonding wire– Package trace– PCB trace

• PLL & DLL jitter in the receiver• Wire limits

Page 50: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

50

Copper vs Fiber• Copper:

– Coaxial Cable, Twin-axial Cable, UTP (unshielded Twisted Pair), STP (Shielded Twisted Pair), etc.

– High bandwidth over short distance– Low cost– EMI, ground isolation, interference problem

• Fiber: – Multi-mode fiber (Step-index, Graded-index), Single-mode fiber– Light sources: Laser diode or LED– Material: Silica or plastic– High bandwidth over long distance– High cost– No interference, no crosstalk, no EMI– Interface with electrical signals through a limiting amplifier (TX)

and a trans-resistance amplifier (RX)

Page 51: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

51

Basic Electrical Problem over Wire

• Transmitter – convert bits to an analog voltage

• Channel (Wire) – propagate the voltage/current

• Receiver – convert the analog voltage to bits

Page 52: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

52

Signal Reflection & Wave Diagram

VS

RS

RL

Z0

V1+

V1-

V2+

V2

-

V1

+

V1+ = VS

Z

0RS + Z0 V1- = V1

+

RL - Z0

RL +

Z0

V2- = V1

-

RS - Z0

RS + Z0

Page 53: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

53

Unterminated Linetd

P

at P

0 td/2 3td/2

VS

VS

ZO

td

2td

VS

5td/2

Page 54: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

54

Parallel Termination

RL = ZO

td

td

2td

VS

P

at P0 td/2 3td/2

VS

VS

ZO

Page 55: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

55

Series Termination

openRS= ZO

td

td

2td

VS/2

VS

P

at P0 td/2 3td/2

VS/2 VS

VS

ZO

Page 56: 경종민 kyung@ee.kaist.ac.kr 1 Packaging and Interconnection.

56

Conclusion• Signal reflection at discontinuity points• Signal rise time must be longer than travel time for ju

stifying lumped element analysis, otherwise transmission line modelling is necessary.