材料科學與工程所 - 國立交通大學機構典藏:首頁 · I 鎳金屬墊層及SOP...

67
材料科學與工程所 碩士論文 鎳金屬墊層及 SOP 銅銲墊結構的共晶錫鉛銲錫 接點之電遷移研究 Electromigration study in eutectic SnPb solder joints with Ni under-bump-metallization and solder-on-pad surface finish 研究生:吳岱霖 指導教授:陳智 教授 中 華 民 國 九 十 八 年 八 月

Transcript of 材料科學與工程所 - 國立交通大學機構典藏:首頁 · I 鎳金屬墊層及SOP...

  • SOP

    Electromigration study in eutectic SnPb solder

    joints with Ni under-bump-metallization and

    solder-on-pad surface finish

  • SOP

    Electromigration study in eutectic SnPb solder joints with Ni under-bump-metallization and solder-on-pad surface finish

    Student Tai-Lin Wu

    Advisor Chih Chen

    A Thesis

    Submitted to Department of Materials Science and Engineering

    College of Engineering

    National Chiao Tung University

    in partial Fulfillment of the Requirements

    for the Degree of Master in

    Material Science and Engineering

    August 2009

    Hsinchu, Taiwan, Republic of China

  • I

    SOP

    SOP(solder on pad)

  • II

    Electromigration study in eutectic SnPb solder joints

    with Ni under-bump-metallization and solder-on-pad

    surface finish

    Student: Tai-Lin Wu Advisor: Dr. Chih Chen

    Department of Materials Science and Engineering, National Chiao

    Tung University

    Abstract

    As the performance and device density of electronic products continuous to

    increase, electromigration has become an important reliability issue.In this study,

    electromigration study is conducted in eutectic SnPb solder joints with Ni

    under-bump-metallization and solder on pad (SOP) surface finish. We observed that

    there is severe damage on the substrate side, and the damage on chip side is not

    obvious. The damages on substrate side included void formation, dissolution of

    copper, and intermetallic compound formation. The voids almost separated Cu pad

    from the solder. We used microstructure analysis and 3-dimension simulation to

    investigate the electromigration mechanism in the area between SOP/ Cu surface

    finishes and solder. The higher diffusion rate of Cu in the eutectic SnPb solder was

    responsible for the serious void formation in the surface of the SOP and the solder

    layers. Therefore, the surface becomes the weakest region during electromigration.

  • III

    CC lab

    IR ppp

    FIB

    chear

  • IV

    I AbstractII ..III ..IV ..VI ..1 1-1...1 1-2...3 ..6 2-1 ......6 2-2 ..7 2-2.1 ....7 2-2.2 8 2-2.3 8 2-2.4 TCR ..9 2-3 10 2-3-1 ...10 2-3-2 .11 2-4 ...12 UBM ..12

    2-5 ...13

    .22 3-1. ..22 3-2. ..23 3-2-1. 23 3-2-2. TCR effect .24 3-2.3 ..24 3-3 ...25 30 4-1 ..30 4-1.1 ..30 4-1.2 ..32 4-1.3 ...34 4-1.4 semi in-situ ...37 4-2 ..38 4-3 ...39

  • V

    . ..56 ... ..57

  • VI

    1-1 ..5 1-2 ..5 1-3 Kelvin structure .6 2-1 [9].14 2-2 [10].15 2-3 [12]16 2-4 (a)[14].....17 2-4 (b) 0.59 IR [14]..17 2-5 (a)-(c) 125 2.25 104 A/cm2 SEM [15]18 2-6 (a) IMC (b) [16].19 2-7 [1718].20 2-8 (a)5m 2.25 104 A/cm2 (b) 10m 3 104 A/cm2 100 100 (c) 50 m 6.75 104 A/cm2 100 100 [2122]21 3-1 ....26 3-2 TCR ...27 3-3 ....27 3-4 EDS ..28 3-5 ...29 4-1 ....41 4-2 130, 1.6 A 607 ..41 4-3 100, 1.6 A 1443 (a) SEM (b) SEM ....42 4-4 (a) 100 1.6 A 1164 OM (b) 43 4-5 130, 1.6 A 525 ..44 4-6 130, 1.6 A 525 (a) SEM (b) SEM ..45 4-7 100, 1.6 A 1164 (a) SEM (b) SEM ...46 4-8 100 1.6 A ..47 4-9 100 0.8 A semi in-situ (a) SEM (b) SEM ..48

  • VII

    4-10 ..49 4-11 TCR .....50 4-12 ..51 4-13 ..51 4-14 .....................................................52 4-15 (a) (b) ....................................................................................................................53 4-16 (a) (b) ................................................................................................54

  • 1

    1-1.

    1-1 [1]IC

    (Chip to Module)

    (Module

    to Board)

    (Board to Mother Board)

    I/O

    (Peripheral Array)

    (Area Array)

    I/O

    (Self-Alignment)IBM 1960s

  • 2

    C4 ( Controlled Collapse Chip Connection )[2] 1-2

    (Solder Bump)

    (Sn63Pb37 183 )

    (Spalling)

    2006

    (RoHS)[3]

    [4]2005

    Pb210Pb206Bi

    Soft Error

  • 3

    1-2.

    ( Organic Solderability

    PreservativeOSP) ( Solder on PadSOP)

    ( Electroless Nickel immersion GoldENIG)( HASL )

    ( Immersion Silver)( Immersion Tin) SOP

    ( pre-solder )

    Au / Ni SOP

    ENIG

    ( Intermetallic compound

    IMC)

  • 4

  • 5

    1-1

    1-2

  • 6

    2-1

    20

    1994Skaupy Electron Wind

    K. N. Tu

    2003JAP[5]

    Paul S. Ho

    Thomas Kwok[6]Seith Wever

    Nernst-Einstein

    * *0 exp( )

    Ne Ne QJ Z jD Z jDkT kT kT

    = = (2-1)

    )exp(0**

    kTQjDZ

    kTNejDZ

    kTNeJ == (2-1)

    JTZ*

    D0Q Blech

    10, 3, 1m164966 nmh

  • 7

    0.73 0.12 eV [78]

    Kuo Ning Chiang, Chien Chen Lee APL2006

    [9]

    2-1

    Blacks Equation

    1 exp( )nQMTTF A

    j kT= (2-2)

    ln( ) ln ln QMTTF A n JkT

    = + (2-3)

    2-2

    2-2.1

    D. Gupta, K. Vieregge [10]210Pb 113Sn

    120 120

    2-2(a)400 K Arrhenius

    Pb Tracer Sn Tracer 84.8 kJmol

    77 kJmol Di0 710-10 m3s 710-12 m3s

  • 8

    150 mJm2 400 K Di0

    Arrhenius

    2-2(b)

    2-2.2

    Jong-Kai Lin, Jin-Wook Jang [11]UBM

    150 5.1 104 30

    IMC

    2-2.3

  • 9

    Everett C. C.[12]

    2-3

    2-2.4 TCR

    James Prescott Joule1841[13]

    qV

    V=IR()

    P=I2R=J2V (2-4)

    P I R J V

  • 10

    1 A

    TCR

    (Temperature Coefficient of Resistance effect)

    TCR=01

    10 TTRRoRf

    (2-5)

    S.H. Chiu [14]

    2-4

    TCR

    2-3

    2-3-1

    Everett C. C. Yeh,[15]Al/Ni(V)/Cu

    UBM1m1252.25 104 A/cm2

    UBM

  • 11

    2-5

    K. N. Tu [16]95.5Sn4.0Ag0.5Cu

    Al/Ni(V)/Cu UBM 2-6 146

    3.67103A / cm2 15%

    6

    2-3-2

    Y. H. Lin, C. M. Tsai, Y. C. Hu, Y. L. LinC. R. Kao

    J.Mater. Res. 182003[17]J. Electron. Mater. 342005[18]

    5 m

    100 2104 Acm2

    2-7

  • 12

    C. Y. Liu, Lin Ke, Y. C. ChuangS. J. WangJAP, Vol. 100

    2006[19]

    2-3-3

    M.H. Chu Chih Chen 2008 [20]

    SOP

    2-4

    UBM

    Jae-Woong Nah[21,22] 510 50 m

    20 m (2-8)

  • 13

    50 m

    50 m

    (MTTF)10 20 m

    2-5

    H.Y. Hsiao Chih Chen APL 2009 [23]

    ()

  • 14

    2-1

    1431 1.68 104 A/cm2 SEM

    [9]

  • 15

    (a) (b)

    2-2 [10]

  • 16

    2-3 [12]

  • 17

    (a)

    2-4 (a)

    (b) 0.59 IR

    [14]

  • 18

    2-5(a)-(c) 125 2.25 104 A/cm2

    SEM(d)(a)-(c)[15]

  • 19

    2-6 (a) IMC (b)

    [16]

  • 20

    2-7 [1718]

  • 21

    (a)

    (b)

    (c)

    2-8 (a) 5 m 2.25 104 A/cm2 (b) 10 m

    3 104 A/cm

    2 100 100 (c) 50

    m 6.75 104 A/cm2 100 100

    [2122]

  • 22

    3-1.

    3-1 UBM under-bump

    metallization Ti / Cu / Ni 0.1 m / 0.5 m / 2

    m Ti / Cu Ni

    100 m 110 mUBM

    ( Contact Opening ) 90 m

    ( UBM Opening ) 110 m 65 m

    1.5 m( Pitch ) 270 m

    (Presolder) FR4

    20 m

  • 23

    3-2.

    3-2-1.

    Keithley 2400

    Data switchAgilent E34970A

    Agilent E34901A 90 100

    mV 5V

    ()

    135 m 2.2~2.5

    106 V5V

    GPIB

    LabVIEW

  • 24

    3-2-2. TCR effect

    TCR ( Temperature Coefficient of

    Resistance )

    0.2

    5025175

    3-2 TCR

    0.2 IR ( Infrared Scope )

    1

    TCR

    3-2.3

    3-3 120

    600120025004000 SiC

  • 25

    10.30.05m

    (SEM)

    JEOL 6500 (SEM)(OM)X

    (EDSEnergy Dispersive Spectroscopy)

    EDS 3-4

    (Cu,Ni)6Sn5

    3-3

    3-5ANSYS

    (mesh)

    1.6

  • 26

    105 m

    90 m

    Cu (20 m)

    eSnPb

    Ni (2 m)Cu (0.5 m)Ti (0.1 m)Al (1 m)

    3-1

  • 27

    3-2 TCR

    3-3

  • 28

    Element Atomic%Ni 15.67Cu 45.21Sn 39.12

    (Cu,Ni)6Sn5

    3-4 EDS

  • 29

    3-5

  • 30

    4-1

    4-2

    4-3

    4-1

    4-1.1

    4-1

    4-1

    SEM

    (Ni,Cu)3Sn4 (Cu,Ni)6Sn5

  • 31

    Cu6Sn5

    4-2 607 1.6

    130

    (Polarity Effect)

    4-2

    4-3(a)100

    1.6 A 1443

  • 32

    4-3(b)

    4-4(a) 100

    1.6 1164

    4-4(b)

    4-1.2

    4-5 130

    1.6 525

    EDS UBM

    (Ni,Cu)3Sn4 UBM (Cu,Ni)6Sn5

  • 33

    (

    ()

    )

    SEM

    1. ( 220

    0.18 wt%)

    2. 0.5 um

    Cu6Sn5 2 um

    Ni3Sn4

    3. ( = UBM opening (110 um)=

    bump height (105 um) )

    4-1

    2/13/1 )()(Asolder

    AcuVsolder

    Vcu= --(4-1)

  • 34

    V A

    Cu6Sn5

    5% [24] Ni3Sn4 10.7%

    [24]

    A Cu6Sn5,Cu pad = 317.6 (um2) A Ni3Sn4 = 1921.4 (um2)

    A Cu6Sn5,Cu film= 603.9 (um2)

    Atotal = A Cu6Sn5,Cu pad + A Ni3Sn4 + A Cu6Sn5,Cu film = 2842.9 (um2)

    AIMC = 2140 (um2)

    SEM

    SEM

    4-1.3

    4-6 130 1.6 525

  • 35

    SEM Passivation Opening

    2.52 104 / 4-6(a)

    4-6(b)

    (Ni,Cu)3Sn4 (Cu,Ni)6Sn5

    4-6(b)

    4-7 100 1.6 1164

    SEM 4-7(a)

    SEM

  • 36

    4-7(b) SEM

    130

    4-5(b) 4-6(b)

    Spalling

    100 130

    1.6 10

  • 37

    1000 / cm 4-8

    4-1.4 Semi In-situ

    Dasiy-chain

    Semi In-situ

    4-9(a) 130

    0.8 A Passivation Opening 2.5104

    / 4-9 (a)

    (Hillock)

    4-9 (b)

  • 38

    BEI Hillock

    Hillock

    130

    4-10

    4-2

    (183)

  • 39

    TCR

    TCR

    50 175( 25)

    4-11

    R = 81.17573 + 0.30953 Temp.

    4-3

    ANSYS 4-12

    1.6

    4-12

    ( 1)

    63178 /

  • 40

    3 4 19881 /

    15473 /

    1 2

    10 3 4

    1.3

    4-13

    1 21215 / 2

    14824 /

    4-12 3 4 4-12

    1 2

    4-14

    25418 /

  • 41

    4-15 (a)

    4-15 (b)

    4-16 (a)

    ,

    4-16 (a). 4-16 (a)

    , 4-16 (b)

  • 42

    4-1

    e

    4-2 130, 1.6 A 607

  • 43

    e(a)

    e

    (b)

    4-3 100, 1.6 A 1443

    (a) SEM

    (b) SEM

  • 44

    (a)

    First cross-section plane

    Second cross-section plane(b)

    void

    4-4

    (a) 100 1.6 A 1164 OM

    (b)

  • 45

    Element

    Sn

    Totals

    (Ni,Cu)3Sn4

    (Cu,Ni)6Sn5

    e

    4-5 130 , 1.6 A 525

  • 46

    e(a)

    e(b)

    4-6 130, 1.6 A 525

    (a) SEM

    (b) SEM

  • 47

    e(a)

    e(b)

    4-7 100, 1.6 A 1164

    (a) SEM

    (b) SEM

  • 48

    4-8 100 1.6 A

  • 49

    e(a)

    e(b)

    4-9 100 0.8 A semi in-situ

    (a) SEM

    (b) SEM

  • 50

    Chipside

    TMTM

    EM

    Substrateside

    EM

    e

    e ePbSn Sn Pb

    TM

    EM

    TM

    EM

    4-10

  • 51

    4-11 TCR

  • 52

    34

    12

    1 2 3 4current density

    (A/cm2) 63178 6106 19881 15473

    4-12

    1 2

    1 2current density

    (A/cm2) 21215 14824

    4-13

  • 53

    4-14

  • 54

    4-15 (a) (b)

  • 55

    4-16 (a)

    (b)

  • 56

  • 57

    1. Intel Technology Journal, 9, 4, (2005). 2. V. B. Fiks, Soviet Physics Solid State, 1, pp.14-28, (1959). 3. European Union Waste in Electrical and Electronic Equipment (WEEE)

    Directive, 3rd Draft, May (2000). 4. Japanese Ministry of Health and Welfare Waste Regulation on

    Un-Reusable Pb, June (1998). 5. K.N.Tu, Recent advances on electromigration in VLSI of interconnects,

    J. Appl. Phys, 94, pp. 5451-5473, (2003). 6. P. S. Ho and T. Kwok, Rep. Prog. Phys., vol. 52, pp. 301-348, (1989). 7. I. A. Blech and C. Herring, Appl. Phys. Lett. 29, 131,(1976).

    8. T. L. Shao, S. W. Liang, T. C. Lin, and Chih Chen,WEEEDirective,

    3rd Draft, May (2000).

    9. Y.L.LIN, Y.S. LAI, C.M. TSAI, and C.R. KAO Journal of ELECTRONIC MATERIALS, Vol. 35, No. 12, (2006).

    10. D. Gupta, K. Vieregge, and Gust, V.47, No. 1, pp.5-12, (1999). 11. J. K. Lin, J.W. Jang, and Jerry White, ECTC (2003).pp.816-821. 12. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius, and H. Balkan, Appl. Phys.

    Lett. Vol. 80, 580, (2002). 13. Joule, J.P. Philosophical Magazine, Vol. 19, PP. 260; Scientific Papers

    65(1841). 14. S. H. Chiu, T. L. Shao, and Chih Chen, Appl. Phys. Lett.88,022110,

  • 58

    (2006). 15. E. C. C. Yeh, W. J. Choi, and K. N. Tu, P. Elenius, and H. Balkan,

    Appl.Phys. Lett. Vol.80, Issue4, pp. 580-582 (2002). 16. Lingyun Zhang, Shengquan Ou, Joanne Huang, K. N. Tu, Stephen

    Gee and Luu Nguyen, Appl. Phys. Lett. Vol.88, Issue, 012106 (2006). 17. H. Lin, C. M. Tsai, Y. C. Hu, Y. L. Lin, and C. R. Kao, J.Electron.

    Mater. Vol. 34, 27, (2005). 18. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, J. Mater. Res. Vol. 18,

    2544, (2003). 19. C. Y. Liu, Lin Ke, Y. C. Chuang, and S. J. Wang, JAP Vol. 100,

    083702, (2006). 20. M.H. Chu and Chih Chen, Failure mechanism in SnCu solder bumps

    with Al/Ni(V)/Cu thin-film UBM and OSP surface finishes (2008) 21. Jae-Woong Nah, J. O. Suh, and K. N. Tu, Seung Wook Yoon, Vempati

    Srinivasa Rao, and Vaidyanathan Kripesh and Fay Hua J. Appl. Phys. Vol.100, Issue 12, 123513 (2006).

    22. Jae-Woong Nah, Kai Chen, J. O. Suh, and K. N. Tu, ECTC (2007)

    pp. 1450-1455. 23. H.Y. Hsiao and Chih Chen, Appl. Phys. Lett. 94, 092107 (2009). 24. Howard D. Blair, Tsung-Yu Pan, John M. Nicholson, ECTC (1998)

    pp.259-267.