レーザー誘起プラズマにより生成する衝撃波を 利用した宇宙推進器の研究

Click here to load reader

download レーザー誘起プラズマにより生成する衝撃波を 利用した宇宙推進器の研究

of 141

description

2014/3/6 第 17 回 若手科学者による プラズマ研究会 嶋村耕平 (D3) 、 ジョセフオフォス、小紫公也 東京大学新領域創成科学研究科 先端エネルギー工学専攻 小泉宏之 東京大学先端科学技術研究センター. レーザー誘起プラズマにより生成する衝撃波を 利用した宇宙推進器の研究. 発表 内容. レーザー推進機の推力発生機構解明 流体可視化・プラズマ診断 エネルギー変換に関する研究成果 まとめ. レーザー推進 ( 地上宇宙間 ) と2つの推進 方式. 圧力変換方式 ( Myrabo ) - PowerPoint PPT Presentation

Transcript of レーザー誘起プラズマにより生成する衝撃波を 利用した宇宙推進器の研究

Ion engine for Small Spacecraft:

2014/3/617

(D3) , 2013117# / 56

# / 1917JAEA2014/3/6, 2013117# / 56() (Myrabo)(Pulse Detonation Engine ) (Kare, Parkin)

,1/10

SSTO: single-stage-to-orbitObjectiveMethodologyResults &DiscussionsConclusionsOverview# / 1917JAEA2014/3/6, 2013117# / 56PDEPDE(04)(04)()

BlastWaveThrustLaserLSDWaveIgnitionEnergyConversionThrustGenerationAirIntakePDE1224411LSD (laser-supported detonation) ObjectiveMethodologyResults &DiscussionsConclusionsOverview# / 1917JAEA2014/3/6, 2013117# / 56LSDLaserLSDLaserLSD

km/sLSD

ObjectiveMethodologyResults &DiscussionsConclusionsOverview# / 1917JAEA2014/3/6, 2013117# / 56

2

3(ICCD)TTL

OverviewMethodologyResults &DiscussionsIntroductionObjectiveConclusions# / 1917JAEA2014/3/6, 2013117# / 56

10.6 um, 10J 1-2 us, 5 us

OverviewMethodologyResults &DiscussionsIntroductionObjectiveConclusions# / 1917JAEA2014/3/6, 2013117# / 56

5 mm*OverviewMethodologyResults &DiscussionsIntroductionObjectiveConclusions# / 1917JAEA2014/3/6, 2013117# / 56

*2OverviewMethodologyResults &DiscussionsIntroductionObjectiveConclusions# / 1917JAEA2014/3/6, 2013117# / 56

CO2 Laser@10 J473nm785nmOverviewMethodologyResults &DiscussionsIntroductionObjectiveConclusions# / 1917JAEA2014/3/6, 2013117# / 56

ICCD 473nm785nm

OverviewMethodologyResults &DiscussionsIntroductionObjectiveConclusions# / 1917JAEA2014/3/6, 2013117# / 56

380-600 nmOverviewMethodologyResults &DiscussionsIntroductionObjectiveConclusions# / 1917JAEA2014/3/6, 2013117# / 56

ShockLaserShock

100 ns.

OverviewMethodologyResults &DiscussionsIntroductionObjectiveConclusions# / 1917JAEA2014/3/6, 2013117# / 56

OverviewResults &DiscussionsIntroductionObjectiveMethodologyConclusions# / 1917JAEA2014/3/6, 2013117# / 5610 mm40 (Mori, 2004)LSD(1/2)

OverviewResults &DiscussionsIntroductionObjectiveMethodologyConclusions# / 1917JAEA2014/3/6, 2013117# / 56(1mm) (2/2)(1mm)10mmEi =2.0 J, f = 3.75Ei =10 J,f = 3.3Pressure (kPa)101805030101bw=Ebw/Ei (%)4038382444Eab(J)0.980.970.910.829.8Ebw/Eab (%)817883594510mm

OverviewResults &DiscussionsIntroductionObjectiveMethodologyConclusions# / 1917JAEA2014/3/6, 2013117# / 56

OverviewResults &DiscussionsIntroductionObjectiveMethodologyConclusions# / 1917JAEA2014/3/6, 2013117# / 561023 m-3

(1/2)

TriggerPushFilipe Carvalho,20121OverviewResults &DiscussionsIntroductionObjectiveMethodologyConclusions# / 1917JAEA2014/3/6, 2013117# / 56(2/2)

1mm Argon1mm Air11mm Air

1OverviewResults &DiscussionsIntroductionObjectiveMethodologyConclusions# / 1917JAEA2014/3/6, 2013117# / 5640%

K. Shimamura et.al, Internal Structure of Laser Supported Detonation Waves by Two-Wavelength Mach-Zehnder Interferometer. J. appl. Phys. 109 (2011)K. Shimamura et.al,. Precursor ionization and propagation velocity of a laser-absorption wave in 1.053 and 10.6 m wavelengths radiation, IEEE Transactions on Plasma Science, Oct. 2014 (Accepted)

B. Wang,et al, Energy conversion in a glass-laser-induced blast wave in air,J. Appl. Phys.,vol. 108, no. 12, Dec, 2010# / 1917JAEA2014/3/6, 2013117# / 56# / 1917JAEA2014/3/6, 2013117# / 56(25-30), ,

JAXA, (2)

(8)

# / 1917JAEA2014/3/6, 2013117# / 56

, 10, , Vol. 60, No. 3, pp. 141 147, 2012.

JAXAOverviewResults &DiscussionsIntroductionObjectiveMethodologyConclusions# / 1917JAEA2014/3/6, 2013117# / 56

T. Schonherr et al., Characteristics of plasma properties in an ablative pulsed plasma thruster, Physics of Plasmas, vol. 20, no. 3, pp. 8, Mar, 2013.

OverviewResults &DiscussionsIntroductionObjectiveMethodologyConclusions# / 1917JAEA2014/3/6, 2013117# / 56(25-30)

JAXA, (2)

(8)

# / 1917JAEA2014/3/6, 2013117# / 56

(99)

JAXA# / 1917JAEA2014/3/6, 2013117# / 56

JAXA# / 1917JAEA2014/3/6, 2013117# / 56

# / 1917JAEA2014/3/6, 2013117# / 56Line by lineJAXA()1,2

()

# / 1917JAEA2014/3/6, 2013117# / 56(1/2)2627281D(1D2D# / 1917JAEA2014/3/6, 2013117# / 56(2/2)2930()2D# / 1917JAEA2014/3/6, 2013117# / 56

Laser Propulsion

Space transportation!!

Deep space exploration

Airplane

Isolate island, 2013117# / 5632, 2013117# / 56(2/2)(2/2)

# / 1917JAEA2014/3/6, 2013117# / 56(2/2)

(or)

)

# / 1917JAEA2014/3/6, 2013117# / 562

2OverviewMethodologyResults &DiscussionsIntroductionObjectiveConclusions# / 1917JAEA2014/3/6, 2013117# / 56OverviewMethodologyResults &DiscussionsIntroductionObjectiveConclusions# / 1917JAEA2014/3/6, 2013117# / 56

OverviewMethodologyResults &DiscussionsIntroductionObjectiveConclusions# / 1917JAEA2014/3/6, 2013117# / 56

10.61.053AirArgon-F

2. LSD, 2013117# / 5639 = 390-600 nmGas: Air10.6 mmGas: Air1.05 mmGas: Ar1.05 mm

2. LSD, 2013117# / 561024 m-3 eV

2. LSD, 2013117# / 56221

LSD1mm

LSD

2. LSD, 2013117# / 563.LSD2, 58, 323 (2010)K. Shimamura, et al, Internal Structure of Laser SupportedDetonation Waves by Two-Wavelength Mach-Zehnder Interferometer, J. Appl. Phys. 109, 084910 (2011)K. Shimamura, et al, Precursor ionization and propagation velocity of a laser-absorption wave in 1.053 and 10.6 m wavelengths laser radiation, J. Appl. Phys., 2013117# / 56

Fig. (left)Time varying of electron density distribution(middle)Image of interferometer and LSD inside.(right) NEW LSD modelK. Shimamura et.al, Internal Structure of Laser Supported Detonation Waves by Two-Wavelength Mach-Zehnder InterferometerJ. appl. Phys. 109 (2011)

1023 m-3

LSD3.LSD, 2013117# / 563LSDLSD

Y.P.Raizer, Spark discharge, ch.3, A.A.Kulikovsky, J.Phys.D 33,1514, 2000LSD

3.LSD, 2013117# / 56LSD (i)

Za:n :ne:

LSDLSD,

3.LSD, 2013117# / 56LSD (ii)

LSDLSD

3.LSD, 2013117# / 56

LSD

3.LSD, 2013117# / 56:LSD

LSD

3.LSDExperimentAnalysis1mm Argon1mm Air11mm Air, 2013117# / 5649LSD

33.LSD, 2013117# / 564. , 2013117# / 5612

LATERALEXPANSIONParameters2 DQuasi-1DTermination timing, ms1.21.8Laser intensity, GW/m23417Mach Number5.36.32(M. Ushio, Shockwave 2008)

4. , 2013117# / 5641

1

4. , 2013117# / 56LSDS0U1r1, p1, e1r2, p2, e2Control volumeU21: ambient air2: behind LSD wave

Conservation of MassConservation of MomentumConservation of Energy4. , 2013117# / 56v-p2V-pLSD

V-p(v1,p1),2

345(U1,U2,r2,p2,e2) CJ

4. , 2013117# / 56v-p2Chapman-Jouguet (CJ) CJCJ

(Overdriven)CJ2 or

4. , 2013117# / 56LSD

HighLowLaser intensity, GW/m23417Mach Number6.35.34. , 2013117# / 56v-p

Laser intensity>Slimit=SlimitIntersection 21State variationCJPressure, atm1411

24. , 2013117# / 562LSDS > Slimit 2S = Slimit 1CJ2

44. , 2013117# / 565.

K. Shimamura, et al, Observation of a laser-supported detonation wave propagating in a tube, J. J. Appl. Phys., 2013117# / 565 11

5.

, 2013117# / 56-0.1mm

0 ~ 200 bar> 400 kHz: -196 ~ 200 603B

5.

, 2013117# / 56LSD

LSD(0