第三章 线性系统的时域分析法

52
1 第第第 第第第 第第第第第第 3.1 典典典典典典典典典 第第 3.2 典典典 典典典典典 一统 3.3 典典典 典典典典典 3.4 典典典 典典 3.5 典典典典典 3.6 典典典典典典

description

第三章 线性系统的时域分析法. 3.1 典型输入信号和时域 指标 3.2 一阶系统的时域响应 3.3 二阶系统的时域响应 3.4 高阶系统分析 3.5 稳定性分析 3.6 稳态误差分析. 3.1 典型输入信号和时域指标. 分析和设计控制系统的首要工作是确定系统的数模,一旦获得系统的数学模型,就可以采用几种不同的方法去分析系统的性能。 线性系统:. 时域分析法,. 根轨迹法,. 频率法. 非线性系统:. 描述函数法 ,. 相平面法. 采样系统:. z 变换法. 状态空间法. 多输入多输出系统:. - PowerPoint PPT Presentation

Transcript of 第三章 线性系统的时域分析法

Page 1: 第三章 线性系统的时域分析法

1

第三章 线性系统的时域分析法

3.1 典型输入信号和时域指标

3.2 一阶系统的时域响应

3.3 二阶系统的时域响应

3.4 高阶系统分析

3.5 稳定性分析

3.6 稳态误差分析

Page 2: 第三章 线性系统的时域分析法

2

分析和设计控制系统的首要工作是确定系统的数模,一旦获得系统的数学模型,就可以采用几种不同的方法去分析系统的性能。

线性系统:

3.1 典型输入信号和时域指标

时域分析法,根轨迹法,频率法

非线性系统:

多输入多输出系统:

描述函数法, 相平面法

采样系统: z 变换法

状态空间法

Page 3: 第三章 线性系统的时域分析法

3

对线性系统,时域分析法的要点是: ( 1 )建立数模(微分方程式,传递函数) ( 2 )选择合适的输入函数(典型信号)。取决于系统常见工作状态,同时,在所有的可能的输入信号中,选取最不利的信号作为系统的典型输入信号。 ( 3 )求出系统输出随时间变化的关系 C(s) = G(s)R(s) c(t) = L−1[C(s)]

( 4 )根据时间响应确定系统的性能,包括稳定性快速性和准确性等方面指标,看这些指标是否符合生产工艺的要求。

Page 4: 第三章 线性系统的时域分析法

4

目前,常用的典型外作用有以下几种:

01

00)(1

t

tt

0

00)(

tt

ttf

( 2 )单位斜坡函数 其数学表达式为

( 3 )单位脉冲函数 其数学表达式为

01

00)(

t

tt

( 1 )单位阶跃函数 其数学表达式为

t

1(t)

0

1

t

f(t)

0

t

(t)

0

Page 5: 第三章 线性系统的时域分析法

5

( 4)单位匀加速函数其数学表达式为

0

2

100

)( 2 tt

ttf

( 5)正弦函数其数学表达式为

f(t) = Asinωt

t

f(t)

0

t

f(t)

0

Page 6: 第三章 线性系统的时域分析法

6

  任何一个实际控制系统的时间响应,都由过渡过程和稳态过程两部分组成 :

( 2 )稳态过程:时间 t 趋于无穷大时的响应过程,稳态过程表征输出量最复现输入量的程度,用稳态性能描述。

( 1 )过渡过程:系统从刚加入输入信号后,到系统输出量达到稳态值前的响应过程,称为过渡过程或动态过程。 在这一期间,由于系统具有惯性、摩擦以及其它一些原因,输出量不可能完全复现输入量的变化。根据结构和参数选择情况,过渡过程表现为衰减、发散或等幅振荡形式,如图所示。显然,一个可以运行的控制系统,其过渡过程必须是衰减的(稳定的)。

Page 7: 第三章 线性系统的时域分析法

7

c(t)

t 0

c(t)

t 0

c(t)

t 0

Page 8: 第三章 线性系统的时域分析法

8

用 tr , tp , p , ts 四个性能指标来衡量瞬态响应的好坏。

p

c(t)

t 0

1

0.5

0.05或0.02

tr tp tstd

Page 9: 第三章 线性系统的时域分析法

9

凡是可用一阶微分方程描述的系统,称为一阶系统。

)()()(

trtcdt

tdcRC

T = RC ,时间常数。其典型结构图及传递函数为:

)()()(

trtcdt

tdcT

1

1

)(

)()(

TssR

sCs

3.2 一阶系统的时域分析

R C r(t) c(t)

1Ts﹣+

R(s)

C(s)

Page 10: 第三章 线性系统的时域分析法

10

t

c(t)

 0  T   2T 3T 4T

当输入信号 r(t)=1(t) 时,系统的响应 c(t) 称作其单位阶跃响应。

01

t ec(t) T

t

sTssRssC

1

1

1)()()(

3.2.1 3.2.1 单位阶跃响单位阶跃响应应

响应曲线在 [0 ,) 的时间区间中始终不会超过其稳态值,把这样的响应称为非周期响应。

0.632

0.95 0.9820.8651.0

Page 11: 第三章 线性系统的时域分析法

11

一阶系统的瞬态响应指标调整时间 ts

定义:︱ c(ts) 1 ︱ = ( 取 5% 或 2%)

T

t s

e

%)2(4

%)5(3

Tt

Tt

s

s

一阶系统响应具备两个重要的特点: ① 可以用时间常数T 去度量系统输出量的数值。 ② 响应曲线的初始斜率等于 1/T 。

 0  T   2T 3T 4T

t

c(t)

0.632

0.95 0.9820.8651.0

Page 12: 第三章 线性系统的时域分析法

12

3.2.2 3.2.2 单位斜坡响应单位斜坡响应 [ r(t) = t ]

1

11

1

1)(

2

22

Ts

T

s

T

ssTssC

)0( )( / tTeTttc Tt

t

c(t)

0

r(t)=

t

c(t) = t ﹣T + Te﹣t/T

稳态响应是一个与输入斜坡函数斜率相同但在时间上迟后了一个时间常数 T 的斜坡函数。

T

T

Page 13: 第三章 线性系统的时域分析法

13

表明过渡过程结束后,其稳态输出与单位斜坡输入之间,在位置上仍有误差,一般叫做跟踪误差。比较阶跃响应曲线和斜坡响应曲线:比较阶跃响应曲线和斜坡响应曲线:

在阶跃响应中,输出量与输入量之间的位置误差随时间而减小,最终趋于 0,而在初始状态下,位置误差最大,响应曲线的斜率也最大; 在斜坡响应中,输出量与输入量之间的位置误差随时间而增大,最终趋于常值 T,在初始状态下,位置误差和响应曲线的斜率均等于 0。其原因在稳态误差的计算中说明。

 0

t

c(t)1.0

t

c(t)

0

r(t)=

t

T

T

Page 14: 第三章 线性系统的时域分析法

14

3.2.33.2.3  单位脉冲响应  单位脉冲响应 [[R(s)=1]

1

1)(

TssC

它恰是系统的闭环传函,这时输出称为脉冲响应函数,以h(t) 标志。

T

t

eT

tCth

1

)()( 脉冲

求系统闭环传函提供了实验方法,以单位脉冲输入信号作用求系统闭环传函提供了实验方法,以单位脉冲输入信号作用于系统,测定出系统的单位脉冲响应,可以得到闭环传函。于系统,测定出系统的单位脉冲响应,可以得到闭环传函。

)()( tCdt

dtC 斜坡 阶跃 )()( tC

dt

dtC 阶跃脉冲

)()( trdt

dtr 斜坡阶跃 )()( tr

dt

dtr 阶跃脉冲 对应

T 2T 3Tt

h(t)

0

1/T

0.368/T

0.135/T0.05/T

Page 15: 第三章 线性系统的时域分析法

15

线性定常系统的重要性质

)()()( sRsGsC B

)()()(])(

[)()(1 ssCssRsGdt

tdrLsGsC BB

dt

tdctc

)()(1

2. 在零初始条件下,当系统输入信号为原来输入信号时间的积分时,系统的输出则为原来输出对时间的积分,积分常数由零初始条件决定。

)(1)(

)(])([)()(2 sCss

sRsGdttrLsGsC BB

dttyty )()(2

1. 当系统输入信号为原来输入信号的导数时,这时系统的输出则为原来输出的导数。

Page 16: 第三章 线性系统的时域分析法

16

3.3.13.3.1   二阶系统单位阶跃响应单位阶跃响应1. 1. 二阶系统的数学模型二阶系统的数学模型标准化二阶系统的结构图为:  

闭环传递函数为

22

2

2

2

2)2(

1

)2()(

nn

n

n

n

n

n

ssss

sss

二阶系统有两个结构参数 ( 阻尼比 ) 和 n( 无阻尼振荡频率 ) 。二阶系统的性能分析和描述,都是用这两个参数表示的。

3.3 二阶系统的时域分析

s(s+2n

)

R(s)

C(s)n2

﹣+

Page 17: 第三章 线性系统的时域分析法

17

微分方程式为:

对于不同的二阶系统,阻尼比和无阻尼振荡频率的含义是不同的。

)()()()(

2

2

trtcdt

tdcRC

dt

tcdLC

22

2

22 212

1

)(

)()(

nn

n

ssTssTsR

sCsΦ

零初条件

LCT L

CR

2Tn /1

例如 RLC 电路R

Cr(t) c(t)

L

Page 18: 第三章 线性系统的时域分析法

18

j

0

22  二阶系统的闭环极点 二阶系统的闭环极点二阶系统的闭环特征方程,即 s 2 + 2n s + n

2 = 0

其两个特征根为: 122,1 nns

上述二阶系统的特征根表达式中,随着阻尼比 的不同取值,特征根有不同类型的值,或者说在 s 平面上有不同的分布规律。分述如下:

s1s2

(1) >1 时,特征根为一对不等值的负实根,位于 s 平面的负实轴上,使得系统的响应表现为过阻尼的。

Page 19: 第三章 线性系统的时域分析法

19

(3) 0 < < 1 时,特征根为一对具有负实部的共轭复根, 位于 s 平面的左半平面上,使得系统的响应表现为欠阻 尼的。

(2) =1 时,特征根为一对等值的负实根,位于 s 平面的负实轴上,使得系统的响应表现为临界阻尼的。

j

0s1= s2 = n

n

s1

s2

jd

n

j

0

122,1 nns

Page 20: 第三章 线性系统的时域分析法

20

j

0

(4) = 0 时,特征根为一对幅值相等的虚根,位于 s 平面的虚轴上,使得系统的响应表现为无阻尼的等幅振荡过程。

jn

j

0

(5) < 0 时,特征根位于 s 平面的右半平面,使得系统的响应表现为幅值随时间增加而发散。

122,1 nns

Page 21: 第三章 线性系统的时域分析法

21

j

0s1s2

j

0

s1=s2

n

s1

s2

jd

n

j

0

j

0

jn

阻尼比取不同值时,二阶系统根的分

Page 22: 第三章 线性系统的时域分析法

22

3. 3. 单位阶跃响应单位阶跃响应

22

2

2)(

nn

n

sss

由式 ,其输出的拉氏变换为

ssssRssC

nn

n 1

2)()()( 22

2

))(()(

21

2

ssssssC n

式中 s1 , s2 是系统的两个闭环特征根。 对上式两端取拉氏反变换,可以求出系统的单位阶跃响应表达式。阻尼比在不同的范围内取值时,二阶系统的特征根在 s 平面上的位置不同,二阶系统的时间响应对应有不同的运动规律。下面分别加以讨论。

Page 23: 第三章 线性系统的时域分析法

23

( 1 )欠阻尼情况

dnnn jjs 22,1 1

sjsjssC

dndn

n 1

))(()(

2

ttetc dd

tn

sin1

cos1)(2

j

n

s1

s2

jd

n 0

ss dn

n 1

)( 22

2

2222 )()(

1

dn

n

dn

n

ss

s

s

)0( )sin(1

11

2

tte d

tn

Page 24: 第三章 线性系统的时域分析法

24

欠阻尼二阶系统的单位阶跃响应由两部分组成:稳态分量为 1 ,表明系统在 1(t) 作用下不存在稳态位置误差; 瞬态响应是阻尼正弦项,其振荡频率为阻尼振荡频率,而其幅值则按指数曲线衰减,两者均由参数和 n

决定。 无阻尼情况 c(t) = 1 cosnt ( t > 0 )

c(t)

t 0

1

c(t)

t 0

)sin(1

11)(

2

tetc d

tn

Page 25: 第三章 线性系统的时域分析法

25

( 2 )临界阻尼情况 s1,2= n

此时响应是稳态值为 1 的非周期上升过程,其变化率t = 0 ,变化率为 0 ; t > 0 变化率为正, c(t) 单调上升; t →∞ ,变化率趋于 0 。整个过程不出现振荡。

)0( )(11)( ttωetc ntn

sssC

n

n 12

2

)(

)(

t

c(t)

0

1

nn

n

sss

112)(

Page 26: 第三章 线性系统的时域分析法

26

( 3 )过阻尼情况12

2,1 nns

响应特性包含两个单调衰减的指数项,且它们的代数和不会超过 1 ,因而响应是非振荡的。(不同于一阶系统)

1/1/1)(

21

/

12

/ 21

TT

e

TT

etc

TtTt

)1(

121

n

T)1(

122

n

T

sTsTssC n 1

11 21

2

)/)(/(

)(

)/)(/()/)(/( 221112 11

1

11

11

TsTTTsTTs

Page 27: 第三章 线性系统的时域分析法

27横坐标 nt ,曲线只是的函数。 =0,0.1,0.2,0.4,0.6,0.8,1,

2

Page 28: 第三章 线性系统的时域分析法

28

p

3.3.2 3.3.2 欠阻尼二阶系统的动态性能指标二阶系统的动态性能指标

用 tr , tp , p , ts 四个性能指标来衡量瞬态响应的好坏。 

c(t)

t 0

1

0.5

0.05或0.02

tr tp tstd

Page 29: 第三章 线性系统的时域分析法

29

21

arccos

n

rt

(1) 上升时间 tr :从零上升至第一次到达稳态值所需的时间,是系统响应速度的一种度量。 tr 越小,响应越快。

(2) 峰值时间 tp :响应超过稳态值,到达第一个峰值所需的时间。

1)sin(1

11)(

2

r

n

ttdt

r tetc

0)sin( rttd t

0)(

pttdt

tdc

ktrd

Page 30: 第三章 线性系统的时域分析法

30

tan)tan(

n

dpd t

21

n

pt

0)cos(1

)sin(1 22

pd

tdpd

tn tete pnpn

(3) 超调量 p :响应曲线偏离阶跃曲线最大值,用百分比表示。

%100)(

)()(

c

ctc pp

%100)sin(1

12

pd

tte pn

Page 31: 第三章 线性系统的时域分析法

31

%10021

ep

p 只是 的函数,其大小与自然频率 n 无关。 = 0.2 p = 52.7%

= 0.4 p = 25.4%

= 0.6 p = 9.5%

= 0.707 p = 4.3% p (4) 调节时间 ts :响应曲线衰减到与稳态值之差不超过5% 所需要的时间。

c(t) c() c() ( t ts )

)( )sin(1

12 sd

t ttte n

Page 32: 第三章 线性系统的时域分析法

32

工程上,当 0.1 < < 0.9 时,通常用下列二式近似计算调节时间。

nst

4

nst

3

) ( 1

1 2 s

t tte n

△ = 5%

△ = 2%

1)sin( td

Page 33: 第三章 线性系统的时域分析法

33

总结:

各性能指标之间是有矛盾的。

(1) ωn 一定,使 tr tp

使 ts ( 一定范围 )

必须

必须

必须(2) 一定,使 tr tp ts ωn

(3) p 只由 决定必须

%10021

ep21

n

pt

21

arccos

n

rt

nst

3

Page 34: 第三章 线性系统的时域分析法

34

例 3-1  单位负反馈随动系统如图所示

(1) 确定系统特征参数与实际参数的关系 。(2) 若 K = 16(rad/s) 、 T = 0.25(s) ,试计算系统的动态性能指标。 解 : (1) 系统的闭环传递函数为

与典型二阶系统比较可得: K/T= n2 1/T = 2 n

TKTss

TK

KsTs

Ks

//

/)( 22

s(Ts+1)

R(s)

C(s)K ﹣+

Page 35: 第三章 线性系统的时域分析法

35

(2) K = 16 , T = 0.25 时)/(8/ sradTKn

25.02

1

KT

)(24.025.018

25.0arccos2

str

)(41.025.018 2

st p

)(5.125.08

33st

ns

%47%100225.01

25.0

ep

( =0.05 )

Page 36: 第三章 线性系统的时域分析法

36

例 3-2 已知单位负反馈系统的单位阶跃响应曲线如图所示,试求系统的开环传递函数。

解:由系统的单位阶跃响应曲线,直接求出超调量和峰值时间。

p = 30% tp = 0.1

3.0%10021

e 1.01 2

n

求解上述二式,得到 = 0.357 , n= 33.6 (rad/s) 。于是二阶系统的开环传递函数为

)24(

1129

)6.33357.02(

6.33

)2()(

22

sssssssG

n

n

1

c(t)

t 0

1.3

0.1

Page 37: 第三章 线性系统的时域分析法

37

s(s+2n

)

R(s)

C(s)n2

﹣+

3.3.53.3.5  二阶系统性能的改善 二阶系统性能的改善1. 误差的比例-微分控制具有误差比例-微分控制的二阶系统如图所示

系统的开环传递函数为)2(

)1()(

2

n

dn

ss

sTsG

闭环传递函数为22

2

2

)1()(

nnd

dn

ss

sTs

dnd T

2

1

Td s

++

式中 d 为系统的有效阻尼比。

Page 38: 第三章 线性系统的时域分析法

38

比例-微分控制的二阶系统有时称为有零点的二阶系统。与没有零点的二阶系统相比,超调量会增大一些。

22 2)(

nnd

n

ss

Zs

Zs

t0

1c(t)c1(t)

  上式表明,比例-微分控制的二阶系统不改变系统的自然频率,但是可以增大系统的有效阻尼比增大系统的有效阻尼比以抑制振荡。此时,相当于为系统增加了一个闭环零点。若令 Z=1/Td ,上式可以表示为

c1(t) 有零点的二阶系统。 c(t) 没有零点的二阶系统。

Page 39: 第三章 线性系统的时域分析法

392

1( )

1

sG s

s s

2

1( )

1G s

s s

(2)(1)

Page 40: 第三章 线性系统的时域分析法

40

s(s+2n)

R(s)

C(s)n2

﹣+

系统的闭环传递函数为:

22

2

2)(

nnt

n

sss

式中       为系统的有效阻尼比。fnt K2

1

2. 输出量的速度反馈控制

显然,输出量的速度反馈控制也可以在不改变系统的自然频率基础上,增大系统的有效阻尼比,减小超调量。

Kf s

﹣+

Page 41: 第三章 线性系统的时域分析法

41

与比例微分控制不同的是,输出量的速度反馈控制没有附加零点的影响,两者对系统动态性能的改善程度是不同的。

3. 两种控制方案的比较 都为系统提供了一个参数选择的自由度,兼顾了系统响应的快速性和平稳性。但是,二者改善系统性能的机理及其应用场合是不同的。简述如下: ( 1 )微分控制的附加阻尼作用产生于系统输入端误差信号的变化率,而速度反馈控制的附加阻尼作用来源于系统输出量的变化率。 微分控制为系统提供了一个实零点,可以缩短系统的初始响应时间,但在相同阻尼程度下,将比速度反馈控制产生更大的阶跃响应超调量。

Page 42: 第三章 线性系统的时域分析法

42

  (2) 比例控制位于系统的输入端,微分作用对输入噪声有明显的放大作用。当输入端噪声严重时,不宜选用比例-微分控制。同时,由于微分器的输入信号是低能量的误差信号,要求比例-微分控制具有足够的放大作用,为了不明显恶化信噪比,需选用高质量的前置放大器。 输出速度反馈控制,是从高能量的输出端向低能量的输入端传递信号,无需增设放大器,并对输入端噪声有滤波作用,适合于任何输出可测的控制场合。

Page 43: 第三章 线性系统的时域分析法

43

G(s) , H(s) 一般是复变量 s 的多项式之比,故上式可记为

3.4  高阶系统的时域分析3.4.13.4.1  高阶系统的阶跃响应 高阶系统的阶跃响应控制系统的基本结构如图所示。

)()(1

)(

)(

)()(

sHsG

sG

sR

sCs

其闭环传递函数为

G(s)R(s) C(s

)﹣+

H(s)

Page 44: 第三章 线性系统的时域分析法

44

式中 0 < k <1 。即系统有 q 个实极点和 r 对共轭复数极点。取拉氏变换,并设全部初始条件为零,得到系统单位阶跃响应的时间表达式:

r

kkdk

tk

q

i

tpi teBeAAtc kki

110 )sin()(

q

i

r

kkkki

m

jj

ssps

zs

a

b

sR

sCs

1 1

22

1

0

0

)2()(

)(

)(

)()(

根据能量的有限性,分子多项式的阶次 m 不高于分母多项式的阶次 n 。对上式进行因式分解,可以表示为

nnnn

mmmm

asasasa

bsbsbsb

sD

sMs

11

10

11

10

)(

)()(

Page 45: 第三章 线性系统的时域分析法

45

上式表明,如果系统的所有闭环极点都具有负实部,系统时间响应的各暂态分量都将随时间的增长而趋近于零,这时称高阶系统是稳定的。3.4.23.4.2  闭环主导极点 闭环主导极点 1 )高阶系统瞬态响应各分量的衰减快慢由 pi , kn 决定,也即闭环极点负实部的绝对值越大,相应的分量衰减越快。 2 )各分量所对应的系数由系统的零极点分布决定。 当某一极点越靠近零点,而远离其他极点和原点,则相应系数越小,该瞬态分量的影响就越小;

式中       ; k =arccos k ; Ak 、 Bk 是与C(s) 在对应闭环极点上的留数有关的常数。

21 kkdk

Page 46: 第三章 线性系统的时域分析法

46

  当某一极点远离零点,越靠近其他极点和原点,则相应系数越大,该瞬态分量的影响就越大; 一个零点和一个极点距离非常近,把这一对零极点称为偶极子。 3 )系统的零极点共同决定了系统瞬态响应曲线的形状。 根据上述,把系数很小的分量系数很小的分量,远离虚轴衰减很快远离虚轴衰减很快的分量的分量常常忽略,高阶系统就可用低阶系统来近似估计。 4 )对系统瞬态响应起主导作用的极点,称为主导主导极点。极点。 应用闭环主导极点的概念,可以把一些高阶系统近似为一阶或二阶系统,以实现对高阶系统动态性能的近似评估。

Page 47: 第三章 线性系统的时域分析法

47

  一般情况,高阶系统具有振荡性,所以主导极点常常是一对共轭复数极点。找到了一对共轭复数极点,高阶系统的动态性能就可以应用二阶系统的性能指标来近似估计。

Page 48: 第三章 线性系统的时域分析法

48

试求阶跃响应。

解:sss

sRsGsC1

)10)(1(

10)()()(

101

1 91

910

sss

c(t) = 1 1.1e t + 0.11e 10t

≈ 1 1.1e t

主导极点是 s = 1 ,这时系统传递函数近似为

t

c(t)

0

1

例 3-3 已知闭环传递函数为

)10)(1(

10)(

sssG

1

1)(

ssG

Page 49: 第三章 线性系统的时域分析法

49

1( )

1G s

s

)10)(1(

10)(

sssG

Page 50: 第三章 线性系统的时域分析法

50

)10)(1(

)8.01(10)(

ss

ssG

例 3-4 已知闭环传递函数为

试求阶跃响应。

解:

j

0110 1.25

sss

ssRsGsC

1

)10)(1(

)8.01(10)()()(

10

78.0

1

22.01

sss

c(t) = 1 0.22e t 0.78e 10t

Page 51: 第三章 线性系统的时域分析法

51

t

c(t)

0

1

0.22

0.78 0.78e 10t

0.22e t

( 1 )零点不影响系统动态响应分量的个数,也不影响系统的稳定性; ( 2 )零点改变了系统动态响应的形状; ( 3 )过渡过程要快。零点起微分加快作用。

Page 52: 第三章 线性系统的时域分析法

52

零极点分布对系统动态响应的影响 :

1 )极点决定系统固有运动属性。 2 )零点决定运动模态的比重。 3 )若闭环零、极点离虚轴较远,则对系统的动态性能影响不大。反之,则影响较大。 4 )增加闭环零点,将会提高系统的响应速度。闭环零点越靠近虚轴,这种作用将会越显著。 5 )增加闭环极点,将会延缓系统的动态响应,也即响应速度变慢。且离虚轴愈近,其作用愈显著。