Βάσεις Γνώσεων

61
Βάσεις Γνώσεων Datalog Proof Theory – Evaluation Paradigms Πάνος Βασιλειάδης [email protected] Απρίλης 2003 www.cs.uoi.gr/~pvassil/courses/ knowledge_bases/

description

Βάσεις Γνώσεων. Datalog Proof Theory – Evaluation Paradigms Πάνος Βασιλειάδης [email protected] Απρίλης 200 3. www.cs.uoi.gr/~pvassil/courses/knowledge_bases/. Model vs. Proof Theory. Θυμηθείτε τη διαφορά : - PowerPoint PPT Presentation

Transcript of Βάσεις Γνώσεων

Page 1: Βάσεις Γνώσεων

Βάσεις Γνώσεων

Datalog Proof Theory – Evaluation ParadigmsΠάνος Βασιλειάδης

[email protected] Απρίλης 2003

www.cs.uoi.gr/~pvassil/courses/knowledge_bases/

Page 2: Βάσεις Γνώσεων

2

Model vs. Proof Theory

Θυμηθείτε τη διαφορά:Model theory & Interpretation: μια πρόταση είναι αληθής αν είναι true για κάθε πιθανό κόσμο

Proof theory: ... αν η πρόταση προκύπτει ως παραγωγή από ένα κανόνα και κάποια αξιώματα

Οι τεχνικές είναι ισοδύναμες

Page 3: Βάσεις Γνώσεων

3

Datalog Proof Theory

Έστω R ένας κανόνας της μορφής L0:- L1,…,Ln, και F1,…,Fn μια λίστα από ground facts. Αν υπάρχει μια αντικατάσταση θ τ.ώ. L1θ=F1,…, Lnθ=Fn, μπορούμε σε ένα βήμα να συνάγουμε το L0θ.Μόλις περιγράψαμε ένα γενικό μηχανισμό παραγωγών, ανξάρτητο από τους εμπλεκόμενους κανόνες και γεγονότα, τον οποίο ονομάζουμε Στοιχειώδη Παραγωγή (Elementary Production – EP)

Page 4: Βάσεις Γνώσεων

4

Παράδειγμα

Έστω R: p(X,Z) :- p(X,Y), p(Y,Z)

και τα ground facts p(a,b) και p(b,c)

Με την αντικατάσταση θ={X/a,Y/b,Z/c} μπορώ σε ένα βήμα να υπολογίσω το νέο fact p(a,c)

Έστω R’: p(X,Y) :- p(Y,X)

και το ground fact p(a,a)

Με την αντικατάσταση θ={X/a,Y/a} μπορώ σε ένα βήμα να υπολογίσω το γνωστό fact p(a,a) και τίποτε άλλο!

Page 5: Βάσεις Γνώσεων

5

Αλγόριθμος

Υπάρχει αλγόριθμος που ελέγχει αν ο κανόνας ΕΡ μπορεί να εφαρμοστεί σε ένα Datalog rule και ένα σύνολο από ground facts. Αν το ΕΡ εφαρμόζεται, ο αλγόριθμος επιστρέφει τα ground facts που παράγονται από τον ΕΡ. Αλλιώτικα, επιστρέφει το dummy

Παραθέτουμε ξανά και τον MGU (για επανάληψη)

Page 6: Βάσεις Γνώσεων

6

Αλγόριθμος Produce(R,F1,…,Fn)

INPUT: Datalog rule L0:-L1,…,Ln και μια λίστα από ground facts F1,…,Fn

OUTPUT: τα ground facts που παράγονται από την εφαρμογή του EP αν ο ΕΡ εφαρμόζεται -- a dummy , αλλιώς

BEGINFOR i = 0 TO n DO Ki Li ; //copy Li στο βοηθητικό KiFOR i = 1 TO n DO{

λ = MGU(Ki,Fi);IF λ = THEN RETURN ;

ELSE FOR j = 0 TO n DO Kj = Kjλ ;} RETURN K0

END

Page 7: Βάσεις Γνώσεων

7

Αλγόριθμος MGU(L,M)INPUT: literals L=ψ(t1,...,tn),M=ψ(t'1,...,t'n)OUTPUT: ο mgu θ αν τα L,M είναι unifiable,

a dummy , αλλιώςBEGIN

θ={}i=1;unifies=true;REPEAT

IF tiθti'θIF ti'θ is a variable θ θ{ti'θ/tiθ} ELSEIF tiθ is a variable θ θ{tiθ/ti'θ}ELSE unifies false;

i i + 1;UNTIL i> n OR unifies = false;IF unifies RETURN θ, ELSE RETURN

END

Page 8: Βάσεις Γνώσεων

8

Παράδειγμα

Έστω R: p(X,Z) :- p(X,Y), p(Y,Z) και τα ground facts p(a,b) και p(b,c), ήτοι, έχουμε ότι n = 2

L0: p(X,Z) L1: p(X,Y) L2:p(Y,Z) F1:p(a,b) F2:p(b,c)K0: p(X,Z) K1: p(X,Y) K2:p(Y,Z)

i = 1, οπότε λ = MGU(K1,F1) που βγάζει λ = {Χ/a,Y/b}Τότε K0: p(a,Z) K1: p(a,b) K2:p(b,Z)

i = 2, οπότε λ = MGU(K2,F2) που βγάζει λ = {Z/c}Τότε K0: p(a,c) K1: p(a,c) K2:p(b,c)

Ο αλγόριθμος τότε σταματά (n=2) και επιστρέφει p(a,c)

Page 9: Βάσεις Γνώσεων

9

Η σειρά είναι σημαντική!!!

ΠΡΟΣΟΧΗ: η σειρά των facts στον αλγόριθμο PRODUCE είναι σημαντική!!

Αν αλλάξουμε τη σειρά, μπορεί να μη βγει το ίδιο αποτέλεσμα!

Προσέξτε ότι στον αλγόριθμο λέμε «λίστα» και όχι «σύνολο»

Page 10: Βάσεις Γνώσεων

10

Παράδειγμα

Έστω R: p(X,Z) :- p(X,Y), p(Y,Z) και τα ground facts p(b,c) και p(a,b), ήτοι, απλώς αλλάξαμε τη σειρά των ground facts

L0: p(X,Z) L1: p(X,Y) L2:p(Y,Z) F1: p(b,c) F2: p(a,b)K0: p(X,Z) K1: p(X,Y) K2:p(Y,Z)

i = 1, οπότε λ = MGU(K1,F1) που βγάζει λ = {Χ/b,Y/c}Τότε K0: p(b,Z) K1: p(b,c) K2:p(c,Z)

i = 2, οπότε λ = MGU(K2,F2) που βγάζει λ = [διότι K2:p(c,Z) και F2: p(a,b)]

Ο αλγόριθμος τότε σταματά (n=2) και επιστρέφει

Page 11: Βάσεις Γνώσεων

11

1ος Αλγόριθμος Παραγωγής

Υπάρχει απλός αλγόριθμος ο οποίος, δοθέντος ενός πεπερασμένου συνόλου S από κανόνες και ground facts, παράγει όλα τα ground facts που μπορούν να παραχθούν σε ένα βήμα από το S, εφαρμόζοντας τον κανόνα ΕΡ.

Ο αλγόριθμος, για κάθε κανόνα, ελέγχει αν κάθε δυνατός συνδυασμός ground facts μπορεί να κάνει match με τα literals του body του κανόνα αυτού.

Page 12: Βάσεις Γνώσεων

12

Αλγόριθμος Infer1(S)

INPUT: ένα πεπερασμένο σύνολο S από rules και ground factsOUTPUT: όλα τα ground facts που παράγονται από την εφαρμογή του EP

σε ένα βήμαBEGIN

result {} ;FOR each rule R: L0 :- L1,…,Ln of S DO

FOR each possible n-tuple <F1,…,Fn> of ground facts of S DO{new PRODUCE(R,F1,…,Fn);IF new THEN result result {new};

}RETURN result

END

Page 13: Βάσεις Γνώσεων

13

Παράδειγμα

Έστω οι κανόνες R1: p(X,Z) :- p(X,Y), p(Y,Z), R2: p(X,Y) :- p(Y,X) και τα ground facts p(a,b), p(b,c), p(c,d), p(d,e)

Με τον αλγόριθμο INFER1 μπορούμε, σε ένα βήμα να υπολογίσουμε τα εξής ground facts:

p(a,c), p(b,d), p(c,e), p(b,a), p(c,b), p(d,c), p(e,d) από R1 από R2

Page 14: Βάσεις Γνώσεων

14

Παραγόμενα γεγονότα (inferred facts)

Έστω ότι το S είναι ένα σύνολο από Datalog clauses (rules & facts). Τότε, ένα ground fact G, παράγεται (can be inferred) από το S αν

το GS, ή

το G μπορεί να παραχθεί από το S, εφαρμόζοντας τον κανόνα ΕΡ για ένα πεπερασμένο αριθμό επαναλήψεων

Συμβολισμός: S├ G

Page 15: Βάσεις Γνώσεων

15

Τυπικός Ορισμός

Η σχέση ├ για ένα σύνολο από Datalog clauses S και ένα ground fact G, μπορεί να ορισθεί τυπικά:

S├ G αν GS.

S├ G αν υπάρχει ένας κανόνας R και ένα σύνολο από ground facts F1,…, Fn τ.ώ., i[1..n] S├ Fi και το G μπορεί να παραχθεί σε ένα βήμα από την εφαρμογή του ΕΡ στα R και F1,…, Fn

σε καμία άλλη περίπτωση δεν έχω S├ G.

Η αναδρομή κρύβεται στην ύπαρξη των ground facts F1,…, Fn.

Page 16: Βάσεις Γνώσεων

16

Παράδειγμα

Έστω το σύνολο S από clauses με τους κανόνες R1: p(X,Z):- p(X,Y), p(Y,Z), R2: p(X,Y) :- p(Y,X) και τα ground facts p(a,b), p(b,c), p(c,d), p(d,e)

Αφού p(a,b)S τότε S ├ p(a,b)

Αφού σε ένα βήμα μπορούμε να παράξουμε το p(b,a) από το R2 και p(a,b), τότε S ├ p(b,a)

Από τα p(a,b) και p(b,a), και από το R1 μπορούμε να παράξουμε το p(a,a), οπότε S ├ p(a,a)

Page 17: Βάσεις Γνώσεων

17

Απόδειξη

Η ακολουθία διαδοχικών εφαρμογών του ΕΡ, την οποία ακολουθούμε για να παράξουμε ένα ground fact G, την ονομάζουμε απόδειξη (proof).

Κάθε απόδειξη μπορεί να αναπαρασταθεί από ένα δέντρο, αποκαλούμε δέντρο απόδειξης (proof tree).

Οι κόμβοι του δέντρου αναπαριστούν clauses και οι ακμές του δέντρου αναπαριστούν παραγωγές.

Page 18: Βάσεις Γνώσεων

18

Δέντρο Απόδειξης - Κόμβοι

Υπάρχουν δύο ειδών κόμβοιΚάποιοι που αναπαριστούν τα clauses του αρχικού συνόλου SΚάποιοι που αναπαριστούν τα ground facts που παράγονται από το S

Τα φύλλα του δέντρου είναι τα clauses (rules & facts) του S. Το επόμενο επίπεδο (ακριβώς πάνω από τα φύλλα) είναι τα ground facts που παράγονται σε ένα βήμα από το S Κάθε εσωτερικό επίπεδο περιέχει

κόμβους που αναπαριστούν ground facts που παράγονται σε ένα βήμα από τους κόμβους του αμέσως επόμενου (χαμηλότερου) επιπέδου, ή κόπιες κόμβων από χαμηλότερα επίπεδα

Page 19: Βάσεις Γνώσεων

19

Δέντρο απόδειξης -- Ακμές

Κάθε παραγωγή είναι ένα σύνολο ακμών του δέντρου που συνδέει το παραγόμενο γεγονός με τα παράγωγα clauses του αμέσως επόμενου χαμηλότερου επιπέδου.

Επειδή πρόκειται για δέντρο, κάθε κόμβος ενός επιπέδου συνδέεται με ακριβώς ένα κόμβο του αμέσως ανώτερου επιπέδου =>

Αν κάποιο clause εμπλακεί σε πολλές παραγωγές, απλά δημιουργούμε όσες κόπιες του χρειάζονται

Page 20: Βάσεις Γνώσεων

20

Παράδειγμα – Δείξτε το p(a,a)

Έστω το σύνολο S από clauses με τους κανόνες R1: p(X,Z):- p(X,Y), p(Y,Z), R2: p(X,Y) :- p(Y,X) και τα ground facts p(a,b), p(b,c), p(c,d), p(d,e)

Αφού p(a,b)S τότε S ├ p(a,b)

Αφού σε ένα βήμα μπορούμε να παράξουμε το p(b,a) από το R2 και p(a,b), τότε S ├ p(b,a)

Από τα p(a,b) και p(b,a), και από το R1 μπορούμε να παράξουμε το p(a,a), οπότε S ├ p(a,a)

Page 21: Βάσεις Γνώσεων

21

Proof Tree για το p(a,a)

p(a,b)R2: p(X,Y) :- p(Y,X)

p(b,a)

p(a,a)

p(a,b)R1: p(X,Z) :- p(X,Y), p(Y,Z)

Μέλη του S

Κόπιες του p(a,b)

Page 22: Βάσεις Γνώσεων

22

Θεώρημα

Ο κανόνας ΕΡ είναι πλήρης και συνεπής (sound and complete) ήΓια ένα σύνολο από Datalog clauses S και ένα ground fact G, S├ G αν και μόνο αν S╞ Gή ακόμα, αν cons(S) είναι όλα τα ground facts που συνάγονται λογικά από το S, τότε cons(S)={G|G ground fact και S├ G}

Για πεπερασμένα σύνολα clauses (π.χ., το S) το cons(S) είναι πεπερασμένο και μπορεί να υπολογισθεί από τον παρακάτω αλγόριθμο

Page 23: Βάσεις Γνώσεων

23

Αλγόριθμος Infer(S)

INPUT: ένα πεπερασμένο σύνολο S από rules και ground factsOUTPUT: όλα τα ground facts που παράγονται από την εφαρμογή του

EP, ήτοι, το cons(S)[ΠΡΟΣΟΧΗ: όχι σε ένα βήμα, αλλά όλα]

BEGINold {} ;new S ;WHILE new old DO {

old new ;new new INFER1(new);

}RETURN all ground facts of new

END

Page 24: Βάσεις Γνώσεων

24

Παράδειγμα

Έστω οι κανόνες R1: p(X,Z) :- p(X,Y), p(Y,Z), R2: p(X,Y) :- p(Y,X) και τα ground facts p(a,b), p(b,c), p(c,d), p(d,e)

new1 = S INFER1(S) = p(a,b), p(b,c), p(c,d), p(d,e), R1: p(X,Z) :- p(X,Y), p(Y,Z), R2: p(X,Y) :- p(Y,X), p(a,c), p(b,d), p(c,e), p(b,a), p(c,b), p(d,c), p(e,d),

new2 = new1 INFER1(new1) = …

new3 = new2 INFER1(new2) = …

new4 = new3. //algorithm stops.

Page 25: Βάσεις Γνώσεων

25

Χαρακτηρισμοί υπολογιστικής μεθόδου

Bottom-up: ο αλγόριθμος INFER ξεκινά από τα φύλλα του δέντρου απόδειξης (τα ground facts του S) και χτίζει το δέντρο προς τα πάνω

Forward chaining: αν πούμε ότι α => β, ο INFER1 πρώτα υπολογίζει το α και μετά το β (ήτοι, κινείται εμπρόσθια – forward σε σχέση με την κατεύθυνση του βέλους της λογικής συνεπαγωγής).

Page 26: Βάσεις Γνώσεων

26

Inference Engine

Inference engine: αν υλοποιήσουμε τα προηγούμενα, έχουμε μια στοιχειώδη μηχανή παραγωγών.

Το αποτέλεσμα της εφαρμογής ενός προγράμματος P σε μια EDB θα είναι τα IDB facts που προκύπτουν από το INFER(P EDB).

Page 27: Βάσεις Γνώσεων

27

Backward Chaining

Έστω ένα πρόγραμμα P και ένας goal (query, δηλ.) G: ? - p(t1,…,tn) όπου το p ανήκει στα IDB predicates. Ποια ground instances του G ικανοποιούν το P EDB?Πολλοί τρόποι να απαντήσουμε την ερώτηση:

Βρες όλα τα cons(S) και απέρριψε ότι ΔΕΝ συνάγεται από το p(t1,…,tn)Χρησιμοποίησε κάποια βελτιστοποιημένη bottom-up μέθοδο Χρησιμοποίησε κάποια top-down μέθοδο

Page 28: Βάσεις Γνώσεων

28

Backward Chaining

Backward Chaining είναι μια top-down μέθοδος που σκοπό έχει να κατασκευάσει ένα proof tree, ξεκινώντας από μια ρίζα που αναπαριστά τον προς υπολογισμό goal G, και καταλήγοντας σε φύλλα που ανήκουν είτε στο P είτε στο EDB.

Υπενθυμίσεις:Ύψος δέντρου: Αριθμός επιπέδων – 1Το proof tree στα φύλλα έχει τα clauses (rules & facts) του P EDB

Page 29: Βάσεις Γνώσεων

29

Backward Chaining

Θα περιγράψουμε μία μία τις έννοιες & τεχνικέςΘα δώσουμε παραδείγματα σε κάθε βήμαΣτο τέλος θα δώσουμε το γενικό αλγόριθμο

Παράδειγμα: Έστω η EDB με τα ground facts p(a,b), p(b,c), p(c,d), p(d,e) και το πρόγραμμα P με τους κανόνες R1: p(X,Z):- p(X,Y), p(Y,Z), και R2: p(X,Y) :- p(Y,X)Στόχος: Υπολογίστε το goal ? – p(a,X)

Page 30: Βάσεις Γνώσεων

30

Backward Chaining

Ο σκοπός είναι να κατασκευάσουμε ένα proof tree, με ρίζα τον goal G, και φύλλα που ανήκουν είτε στο P είτε στο EDB.

Ξεκινάμε από τον goal G. Αν έχει instances που ανήκουν στο P EDB, φτιάχνουμε ένα proof tree για κάθε ένα από αυτά, το οποίο έχει μοναδικό κόμβο τον εαυτό τους.

Το δέντρο έχει ύψος 0 και προφανώς περιέχει ένα υποσύνολο της απάντησης στον goal

Page 31: Βάσεις Γνώσεων

31

Backward ChainingEDB: p(a,b), p(b,c), p(c,d), p(d,e) P: R1: p(X,Z):- p(X,Y), p(Y,Z) R2: p(X,Y) :- p(Y,X)

p(a,Χ) p(a,b)

Το μόνο proof tree ύψους 0 που προκύπτει είναι αυτό με το instance του goal, p(a,b)

[τα υπόλοιπα ground facts, προφανώς δεν υπάρχει αντικατάσταση που να τα κάνει instances του goal]

Φτιάχνουμε ένα κόμβο με το goal.

Ο κόμβος αποκαλείται και top goal

Page 32: Βάσεις Γνώσεων

32

Backward Chaining

Μετά τα proof trees ύψους 0, θα φτιάξουμε δέντρα ύψους 1. Η διαδικασία λέγεται επέκταση (expansion).

Διαλέγουμε ένα rule R: L0:- L1,…,Lk τέτοιον ώστε το G και το L0 να είναι unifiable (να υπάρχει θ=mgu(G, L0), δηλ.).

Προσθέτουμε k παιδιά L1θ,…,Lkθ στον κόμβο G.

Προσθέτουμε και ένα παιδί R στον κόμβο G.

Αυτό το κάνουμε για όλες τις δυνατές επιλογές κανόνων που έχουμε

Page 33: Βάσεις Γνώσεων

33

Backward Chaining

O κόμβος της ρίζας G και τα παιδιά L1θ,…,Lkθ λέγονται goal-nodesΟ κόμβος R λέγεται rule identifierΤα δέντρα που προκύπτουν ονομάζονται search trees

O κόμβος της ρίζας G λέγεται top-goalΟι υπόλοιποι κόμβοι λέγονται subgoals

Τα search trees ΔΕΝ είναι proof trees (στα δεύτερα, τα φύλλα ανήκουν στο P EDB)!!!

Page 34: Βάσεις Γνώσεων

34

Backward ChainingEDB: p(a,b), p(b,c), p(c,d), p(d,e) P: R1: p(X,Z):- p(X,Y), p(Y,Z) R2: p(X,Y) :- p(Y,X)

p(Υ,Χ)

p(a,Χ)

p(a,Υ)R1: p(X’,Z) :- p(X’,Y), p(Y,Z)

1η επιλογή: χρησιμοποιούμε τον κανόνα R1 και βάζουμε 2 παιδιά στο p(a,X) καθώς και τον κόμβο του ίδιου του κανόνα. θ={X’/a, Z/X}

ΠΡΟΣΟΧΗ: ΜΕΤΟΝΟΜAΣΑΜΕ ΤΗ ΜΕΤΑΒΛΗΤΗ Χ ΤΟΥ R1.

H X ΣΤΟ SEARCH TREE ΕΊΝΑΙ PLACEHOLDER ΤΙΜΩΝ Χ TOY R1 !!!!

Τ1.1

ύψος α/αδέντρου

Page 35: Βάσεις Γνώσεων

35

Backward ChainingEDB: p(a,b), p(b,c), p(c,d), p(d,e) P: R1: p(X,Z):- p(X,Y), p(Y,Z) R2: p(X,Y) :- p(Y,X)

p(X,a)

p(a,Χ)

R2: p(X’,Y) :- p(Y,X’)

2η επιλογή: χρησιμοποιούμε τον κανόνα R2 και βάζουμε 1 παιδί στο p(a,X) καθώς και τον κόμβο του ίδιου του κανόνα. θ={X’/a, Υ/X}

ΠΡΟΣΟΧΗ: ΜΕΤΟΝΟΜAΣΑΜΕ ΤΗ ΜΕΤΑΒΛΗΤΗ Χ ΤΟΥ R2.

H X ΣΤΟ SEARCH TREE ΕΊΝΑΙ PLACEHOLDER ΤΙΜΩΝ Χ TOY R1 !!!!

Τ1.2

Page 36: Βάσεις Γνώσεων

36

Backward Chaining

Στη συνέχεια, μετατρέπουμε τα search trees σε proof trees.Ψάχνουμε για αντικαταστάσεις λ, τ.ώ., για όλα τα φύλλα, έστω Ci, το Ciλ να ανήκει στο P EDB.Αν βρούμε μια τέτοια λ, για κάθε goal-node κάνουμε την αντικατάσταση λ, και έχουμε το proof treeΟ top goal κόμβος Gλ ανήκει στο αποτέλεσμα (απαντά το ? - G).

Page 37: Βάσεις Γνώσεων

37

Backward ChainingEDB: p(a,b), p(b,c), p(c,d), p(d,e) P: R1: p(X,Z):- p(X,Y), p(Y,Z) R2: p(X,Y) :- p(Y,X)

p(Υ,Χ)

p(a,Χ)

p(a,Υ)

Τ1.1

R1

Page 38: Βάσεις Γνώσεων

38

Backward ChainingEDB: p(a,b), p(b,c), p(c,d), p(d,e) P: R1: p(X,Z):- p(X,Y), p(Y,Z) R2: p(X,Y) :- p(Y,X)

p(b,c)

p(a,c)

p(a,b)

Για το Τ1.1 βρίσκουμε ότι λ={Y/b,X/c} κάνει όλα τα φύλλα να ανήκουν στο P EDB.

Επιβάλουμε την αντικατάσταση σε όλα τα goal-nodes και το top node p(a,c) το βάζουμε στο αποτέλεσμα.

Για το Τ1.2 δεν θα βρούμε σχετική αντικατάσταση.

G1.1R1

Τ1.1

Page 39: Βάσεις Γνώσεων

39

Backward Chaining

Ας υποθέσουμε ότι έχουμε υπολογίσει όλα τα search & proof trees ύψους i.

Για να βρούμε τα search trees ύψους i+1 επεκτείνουμε όπως και πριν τα αντίστοιχα search trees ύψους i.

Στη συνέχεια, μετατρέπουμε τα search trees ύψους i+1 στα αντίστοιχα proof trees

Page 40: Βάσεις Γνώσεων

40

Backward ChainingEDB: p(a,b), p(b,c), p(c,d), p(d,e) P: R1: p(X,Z):- p(X,Y), p(Y,Z) R2: p(X,Y) :- p(Y,X)

p(Υ,Χ)

p(a,Χ)

p(a,Υ)

Τ1.1

R1

p(X,Y)R2

T2.1

Page 41: Βάσεις Γνώσεων

41

Backward ChainingEDB: p(a,b), p(b,c), p(c,d), p(d,e) P: R1: p(X,Z):- p(X,Y), p(Y,Z) R2: p(X,Y) :- p(Y,X)

p(b,a)

p(a,a)

p(a,b)

T2.1

R1

p(a,b)R2

G2.1

Search to Proof Tree:

λ={Υ/b,X/a}

Result = Result p(a,a)

Page 42: Βάσεις Γνώσεων

42

Backward ChainingEDB: p(a,b), p(b,c), p(c,d), p(d,e) P: R1: p(X,Z):- p(X,Y), p(Y,Z) R2: p(X,Y) :- p(Y,X)

p(X,a)

p(a,Χ)

Τ1.2

R2

p(a,X)R2

T2.2

Page 43: Βάσεις Γνώσεων

43

Backward ChainingEDB: p(a,b), p(b,c), p(c,d), p(d,e) P: R1: p(X,Z):- p(X,Y), p(Y,Z) R2: p(X,Y) :- p(Y,X)

p(b,a)

p(a,b)

T2.2

R2

p(a,b)R2

G2.2

Search to Proof Tree:

λ={X/b}

Result = Result p(a,b) ?

Το p(a,b) ήδη ανήκει στο result…

Page 44: Βάσεις Γνώσεων

44

Μερικοί Ορισμοί

nconst(P,EDB): ο αριθμός των διακριτών σταθερών συμβόλων που συναντάμε στο P EDBnconst(P): ο αριθμός των διακριτών predicate συμβόλων που συναντάμε στο Pmaxgrads(P): το μέγιστο arity predicate συμβόλου που συναντάμε στο Pmaxdepth(P,EDB): το μέγιστο βάθος δέντρου που χρειάζεται να παράξουμε για να σταματήσουμε το backward chaining

maxdepth(P,EDB)=npreds(P)xnconst(P,EDB)maxgrads(P)

Page 45: Βάσεις Γνώσεων

45

Γενικός Αλγόριθμος BackwardChaining(P,EDB,G)

INPUT: ένα πρόγραμμα P, μια EDB και ένας goal G: ?- p(t1,…,tn) όπου το p ανήκει στα IDB predicates.

OUTPUT: τα ground instances του G που ικανοποιούν το P EDBBEGIN

result {} ;Φτιάξε τα proof trees του G σε ύψος 0; //τα instances του G στοPEDBresult result {top goals of proof trees};FOR i=0 TO maxdepth(P,EDB){

expand search trees of depth i to depth i+1;transform these search trees in all possible ways to proof

trees;result result {top goals of proof trees};

}RETURN result

END

Page 46: Βάσεις Γνώσεων

46

Backward & Forward Chaining

Μπορεί κανείς να δείξει ότι το backward και το forward chaining είναι ισοδύναμα.

Ήτοι, παράγουν ακριβώς τα ίδια αποτελέσματα.

Με ελάχιστη τροποποίηση του παραπάνω αλγορίθμου, μπορούμε να παράγουμε, δηλ., όλα τα ground facts που συνάγονται από ένα πρόγραμμα P και μια EDB (όπως και στην περίπτωση του forward chaining, δηλ.)

Page 47: Βάσεις Γνώσεων

47

Εξειδικεύσεις του Backward Chaining

Ο αλγόριθμος που περιγράψαμε είναι ο πιο γενικός. Υπάρχουν διάφορες εξειδικεύσεις σε θέματα όπως

Τι δέντρα παραγωγών χρησιμοποιούνται ?

Αν η διάσχιση & παραγωγή των δέντρων γίνεται με BFS, DFS, κλπ

Ποια η συνθήκη τερματισμού?

Subtree factoring: η αποφυγή επανυπολογισμού δέντρων που έχουν ήδη υπολογισθεί

Page 48: Βάσεις Γνώσεων

48

SLD-refutation

Η SLD-refutation είναι μια ειδική περίπτωση top-down τεχνικής.Η γενική ιδέα είναι ότι αν σου δώσω ένα goal G, έστω το ?- p(a,X), τότε αυτός αναπαριστά τη δήλωση Χ p(a,X). Ο σκοπός της τεχνικής είναι να ανταποδείξει τον goal (να βγάλει το goal false), ήτοι, να βρει σταθερές α τ.ώ., PEDB ╞ p(a,α).Κάθε τέτοια ανταπόδειξη λέγεται αναίρεση (refutation) του G από το PEDB.

Page 49: Βάσεις Γνώσεων

49

SLD-refutation

“Linear Refutation with Selection Function for Definite Clauses”

Η γενική ιδέα είναι ότι κατασκευάζω ένα δέντρο με top-down τρόπο.

Ζωγραφίζω το δέντρο ανάποδα: τα φύλλα που ζωγραφίζω στην κορυφή αναπαριστούν τον αρχικό goal που θέλω να ανταποδείξω

Η ρίζα που ζωγραφίζεται στον πάτο αναπαριστά μια λογική αντίφαση την οποία συμβολίζω με □

Page 50: Βάσεις Γνώσεων

50

SLD-refutation

Συνάρτηση Επιλογής (Selection function): ένα mapping, που δοθέντος ενός goal, επιστρέφει ένα από τα literals του

Συνήθως (π.χ., στην Prolog) αυτό είναι το πιο αριστερό στον ορισμό του goal

Άλλη εναλλακτική είναι αυτό που έχει μέσα τα πιο πολλά constants

Page 51: Βάσεις Γνώσεων

51

Resolvent (ελληνικά: διαλυτικό)

Έστω ένας goal Ε={Κ1,…,Κi,…,Κκ} (στη γενική περίπτωση ο goal μπορεί να είναι σύνθετος) και έστω η συνάρτηση επιλογής του s(E)=Κi.Αν R: L0:-L1…,Ln και υπάρχει θ=mgu(Ki,L0), τότε το resolvent των Ε και R με βάση την συνάρτηση επιλογής s είναι

H={Κ1θ,…,Κi-1θ,L1θ,…, Lnθ,Κi+1θ,…,Κκθ}

Αν αντί για R έχω ένα fact F={L} τότεH={Κ1θ,…,Κi-1θ,Κi+1θ,…,Κκθ}

Εν γένει μπορώ να έχω πολλά resolvents. Αν κρατήσω σταθερά τη συνάρτηση επιλογής και τον αλγόριθμο mgu, όμως, έχω ακριβώς ένα resolvent

Page 52: Βάσεις Γνώσεων

52

Resolvent

Η διαδικασία έχει το εξής νόημα:Ξεκινάω από ένα goal και προσπαθώ τον goal αυτόν να τον κάνω unify με ήδη γνωστά rules & factsΑν συναντήσω ένα rule, προσπαθώ να κάνω unify το head (Left Hand Side) του rule με το goal. Επειδή ο goal είναι σύνθετος, κάθε φορά η συνάρτηση επιλογής μου λέει ποιο από τα predicates του goal θα φύγει, και θα αντικατασταθεί με το RHS του unified, πλέον, ruleΑν συναντήσω ένα fact, προσπαθώ να κάνω unify το literal που θα μου δώσει η συνάρτηση επιλογής με το fact αυτό. Αν αυτό επιτύχει, η διαδικασία του unification μου επιτρέπει να «καρφώσω» κάποιες μεταβλητές σε σταθερέςΌλη η διαδικασία σκοπό έχει, μέσω των αντικαταστάσεων λόγω unification να μετασχηματίσει τον αρχικό goal σε ground fact(s), ελπίζοντας ότι θα προκύψει αντίφαση με ήδη γνωστά facts

Page 53: Βάσεις Γνώσεων

53

SLD-refutation

Έστω ένα σύνολο από clauses S, ένας goal G και συνάρτηση επιλογής του s. Η SLD-refutation του S{G} μέσω της s είναι τρεις πεπερασμένες ακολουθίες από (α) goals G=G0,…,Gn=□ (β) clauses C1,…,Cn (γ) substitutions θ1,…,θn τ.ώ.:

Κάθε clause Ci είναι είτε clause του S είτε βαριάντα (ήτοι, με μόνη διαφορά τα ονόματα των μεταβλητών) ενός clause του S

Κάθε goal Gi είναι resolvent των clauses Gi-1 και Ci με βάση την συνάρτηση επιλογής s

Κάθε θi είναι mgu των Gi-1 και Ci

Page 54: Βάσεις Γνώσεων

54

SLD-refutation – Γενική ιδέα

C1G=G0

G1

θ1

C2

G2

θ2

Cn

Gn=□

θn…

Page 55: Βάσεις Γνώσεων

55

Παράδειγμα

Παράδειγμα: Έστω η EDB με τα ground facts p(a,b), p(b,c), p(c,d), p(d,e) και το πρόγραμμα P με τους κανόνες R1: p(X,Z):- p(X,Y), p(Y,Z), και R2: p(X,Y) :- p(Y,X)

Στόχος: Υπολογίστε το goal ? – p(a,X)

Έστω ότι η συνάρτηση επιλογής s διαλέγει το πιο δεξιά literal ενός goal

Page 56: Βάσεις Γνώσεων

56

Παράδειγμα

R1’: p(X’,Z):-p(X’,Y),p(Y,Z){not p(a,X)}

{not p(a,Y),not p(Y,X)}

θ1:{X’/a, Z/X}

R2’: p(X’,Y’):-p(Y’,X’)

p(a,b)

{not p(a,Y),not p(X,Y)}θ2:{X’/Y,Y’/X}

not p(a,b)

p(a,b)

θ3:{X/a,Y/b}

θ4:{ }

EDB: p(a,b), p(b,c), p(c,d), p(d,e) P: R1: p(X,Z):- p(X,Y), p(Y,Z) R2: p(X,Y) :- p(Y,X)

Page 57: Βάσεις Γνώσεων

57

Παράδειγμα

Στο πρώτο επίπεδο: μετονομάζουμε τη μεταβλητή Χ του κανόνα R1, ώστε να μην υπάρχει conflict με το Χ του goal => R1’: p(X’,Z):-p(X’,Y),p(Y,Z) θ1={X’/a, Z/X} είναι ο mgu του not p(a,X) και LHS του R1’, οπότε R1’θ={ p(α’,Χ), not p(a,Y), not p(Y,X)}το resolvent του πρώτου goal G0 και του C1=R1’ προκύπτει αν αφαιρέσω το πιο δεξιά literal του goal (ήτοι, το μοναδικό not p(a,X)) και βάλω στη θέση του τα L1θ,…, Lnθ του R1’θ. ΠΡΟΣΟΧΗ: ΟΧΙ το L0θ!Τότε G1={ not p(a,Y), not p(Y,X)}

Page 58: Βάσεις Γνώσεων

58

Παράδειγμα

Στο δεύτερο επίπεδο κάνω τα ίδια. Προσέξτε την ενοποίηση: ενοποιώ το not p(Y,X) (σημ: το οποίο μου το δίνει η συνάρτηση επιλογής, η οποία, κάθε φορά επιστρέφει το πιο δεξιά literal) με το R2’Προσέξτε ότι βγάζω το πιο δεξιά literal του goal και βάζω το ένα και μοναδικό Liθ=L1θ στη θέση τουΣτο τρίτο και στο τέταρτο επίπεδο ενοποιώ με facts, οπότε κάθε φορά ο resolvent έχει ένα στοιχείο λιγότερο.

Page 59: Βάσεις Γνώσεων

59

Αντιπαράδειγμα

Στο τέταρτο επίπεδο προκύπτει αντίφαση => βρήκα αναίρεση του αρχικού goal => υπάρχει τουλάχιστο ένα fact που ικανοποιεί το goal, το οποίο λέω αντιπαράδειγμαΠράγματι, το p(a,b) προκύπτει ως το p(a,X)θ1θ2θ3θ4Γενικά, το αντιπαράδειγμα ενός goal G={p(t1,…,tn)} προκύπτει ως το p(t1,…,tn)θ1θ2...θκΚάθε αναίρεση υπολογίζει ακριβώς ένα αντιπαράδειγμαΑποδεικνύεται ότι μπορούμε να υπολογίσουμε όλα τα αντιπαραδείγματα και τότε η SLD-refutation υπολογίζει ακριβώς τα ίδια facts με τις forward και backward chaining τεχνικές που προείπαμε.

Page 60: Βάσεις Γνώσεων

APPENDIX

Page 61: Βάσεις Γνώσεων

61

Least Fixpoint Iteration

Υπάρχει μια ωραιότατη θεωρία που δεν προλαβαίνουμε να πούμε...

Fixpoint ενός συνόλου από clauses S είναι ένα Herbrand model για το S

Least Fixpoint: το cons(S)