コンクリート工学研究室 岩城 一郎

16
塩塩 塩塩塩塩塩塩塩塩塩塩塩 塩塩

description

塩害. コンクリート工学研究室 岩城 一郎. 塩害とは?. 劣化要因: 塩化物イオン 劣化現象:コンクリート中の鋼材の腐食が塩化物イオンにより促進され,コンクリートのひび割れやはく離,鋼材の断面減少を引き起こす劣化現象 劣化指標: 鋼材位置における塩化物イオン濃度. 塩害劣化のメカニズム. 海洋構造物の劣化 融雪剤による道路構造物の劣化 (上図)酒田河川 国道工事事務所 HP (下図)三浦尚,  融雪剤による鉄筋 コンクリート構造物の劣化,コンクリート工学, Vol.38 , No.6 , 2000. 塩害による劣化進行過程. 腐食ひび割れの発生. 腐食の開始 - PowerPoint PPT Presentation

Transcript of コンクリート工学研究室 岩城 一郎

Page 1: コンクリート工学研究室 岩城 一郎

塩害コンクリート工学研究室

岩城 一郎

Page 2: コンクリート工学研究室 岩城 一郎

塩害とは?劣化要因:塩化物イオン劣化現象:コンクリート中の鋼材の腐

食が塩化物イオンにより促進され,コンクリートのひび割れやはく離,鋼材の断面減少を引き起こす劣化現象

劣化指標:鋼材位置における塩化物イオン濃度

Page 3: コンクリート工学研究室 岩城 一郎

塩害劣化のメカニズム海洋構造物の劣化

融雪剤による道路構造物の劣化

(上図)酒田河川 国道工事事務所HP

(下図)三浦尚,  融雪剤による鉄筋 コンクリート構造物の劣化,コンクリート工学,Vol.38 , No.6 ,2000

Page 4: コンクリート工学研究室 岩城 一郎

塩害

によ

る劣

化部

材の

性能

低下

腐食ひび割れの発生

使用期間(供用年数)

潜伏期 進展期 加速期 劣化期

塩化物イオンの拡散初期含有塩化物イオン濃度

鋼材の腐食速度(ひび割れあり)

鋼材の腐食速度(ひび割れなし)

塩害による劣化進行過程

腐食の開始(鋼材位置における塩化物イオン

濃度≧鋼材腐食発生限界濃度)

Page 5: コンクリート工学研究室 岩城 一郎

塩害の影響を受ける構造物 海洋構造物  -  海中:塩化物イオンの供給は多い,酸素の供給は十分でない.  -  海上大気中:酸素の供給は多い,塩化物イオンの供給は十分でない.  -  飛沫帯( Splash Zone ):乾湿繰返し作用があり,塩化物イオン

および酸素の両者の供給が十分 飛来塩分の影響を受ける構造物  コンクリート表面における塩化物イオン濃度は海岸からの距離に依

存.汀線(海と陸が交わる線)から最低 1km までは考慮する必要あり.

融雪剤( NaCl )の影響を受ける構造物   1991 年 4 月スパイクタイヤの使用禁止による融雪剤散布量の急増

→海洋構造物より厳しい場合あり.今後,劣化事例が増える恐れあり.

海砂を用いた構造物  -  山陽新幹線での報道  -  細骨材の塩化物含有量の限度の標準: 0.04% (細骨材の絶乾質量

に対する百分率, NaCl 換算した値)→この値以下であれば,不動態被膜を破壊することはないとの実績より. 

  -  瀬戸内海沿岸各県では環境保護の目的で海砂の採取禁止の方向

Page 6: コンクリート工学研究室 岩城 一郎

塩害による劣化の事例

 

図-2.2.7 健全度 1.0の状況(ブロック 0102,左:山側面,右は拡大写真) 海洋構造物の損傷事例

海砂の影響を受けた構造物の  損傷事例( Friday, 2006.2.10 )

融雪剤の影響を受けた構造物の損傷事例                      KEN-Platz   HP より

Page 7: コンクリート工学研究室 岩城 一郎

各要因と塩害との関係 セメントの種類  混和材(特に高炉スラグ微粉末)の使用は,塩

化物イオンの侵入に対して非常に効果がある.フリーデル氏塩の固定化

  ※フリーデル氏塩として固定化された塩化物イオンは,鉄筋の腐食には関与しない.スラグは塩化物をフリーデル氏塩として固定化する能力が格段に高い.

水セメント比  水セメント比が小さいほど,拡散係数が低減さ

れるため,塩分の侵入に対して効果的である. ひび割れの存在  ひび割れにより,塩化物イオンの侵入が促進す

ることは自明

Page 8: コンクリート工学研究室 岩城 一郎

従来の研究対象 現在の研究対象

欠陥 なし あり腐食形態 ミクロセル マクロセル特長 アノードは全面的 アノードが局所化腐食速度 遅い 速い

概念図

マクロセル

コンクリート

アノード カ

Cl -

カカ

コンクリート

Cl -

カ ア カ ア カ ア

ミクロセルミクロセルミクロセル

腐食形態と腐食速度(金沢工業大学宮里准教授作成)

Page 9: コンクリート工学研究室 岩城 一郎

塩化物イオンの侵入に対する予測拡散理論を適用( Fick の第2 法則)

2

2

x

CD

t

C

ここで, C :液相の塩化物イオン濃度,t:時間,x:コンクリート表面からの距離, D :塩化物イオンの拡散係数上式を初期条件 C(x,0)=0 ,および境界条件 C(0,t)=C0 , C0:一定のもとに解くと次式を得る.

)2(1),( 0

tD

xerfCtxC

ここで, C(x,t) :深さ x(cm) ,時間 t (年)における塩化物イオン濃度( kg/m3 ), C0 :表面における塩化物イオン濃度( kg/m3 ), D :塩化物イオンの見かけの拡散係数( cm2/年),( C(x,t) は,コンクリート中の液相における実際の塩化物イオン濃度のことではなく,コンクリート単位容積当たりの全塩化物量を指しており,コンクリート中の塩素が塩化物イオンの形態で移動するメカニズムを正確に表したものではない.)erf :誤差関数     duezerf

z u 0

22)(

C0 は海岸からの距離によって異なり, D は水セメント比とセメントの種類による関数で与えられる.

Page 10: コンクリート工学研究室 岩城 一郎

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1km海岸からの距離( )

C0

kg/m

(3 )

飛沫帯

海岸からの距離と構造物表面の塩化物イオン 濃度との関係(示方書〔施工編〕)

・ さらに構造物の高さ方向の影響を考慮

Page 11: コンクリート工学研究室 岩城 一郎

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0.2 0.3 0.4 0.5 0.6 0.7 0.8

W /C塩

化物

イオ

ン拡

散係

数 D

(cm2/y

ea

r)

 ●   普通ポルトランドセメントコンクリート ▲   早強ポルトランドセメントコンクリート ■  混和材料(BS, SF)を用いたコンクリート

普通ポルトランドセメントの場合: log D = - 3.9(W/C)2 + 7.2(W/C) - 2.5混和材料( BS , SF )の場合: log D = - 3.0(W/C)2 + 5.4(W/C) - 2.2

水セメント比と塩化物イオン拡散係数の関係

注)一桁程度軽くばらつく!!

2002年版コンクリート標準示方書改定資料

Page 12: コンクリート工学研究室 岩城 一郎

腐食性環境による影響( OPC , W/C=0.5 )

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70mmコンクリート表面からの距離( )

kg/m

塩分

濃度

(3 )

0.11351050100

供用年数OPC W/ C 0.5飛沫帯, , =

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70mmコンクリート表面からの距離( )

kg/m

3塩

分濃

度(

0.11351050100

供用年数1km OPC W/ C 0.5海岸より , , =

Page 13: コンクリート工学研究室 岩城 一郎

水セメント比による影響(飛沫帯, OPC )

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70mmコンクリート表面からの距離( )

kg/m

塩分

濃度

(3 )

0.11351050100

供用年数OPC W/ C 0.5飛沫帯, , =

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70mmコンクリート表面からの距離( )

kg/m

塩分

濃度

(3 )

0.11351050100

供用年数OPC W/ C 0.3飛沫帯, , =

Page 14: コンクリート工学研究室 岩城 一郎

セメントの種類による影響(飛沫帯, W/C=0.5 )

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70mmコンクリート表面からの距離( )

kg/m

塩分

濃度

(3 )

0.11351050100

供用年数OPC W/ C 0.5飛沫帯, , =

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70mmコンクリート表面からの距離( )

kg/m

塩分

濃度

(3 )

0.11351050100

供用年数BS W/ C 0.5飛沫帯, , =

Page 15: コンクリート工学研究室 岩城 一郎

セメントの種類による影響(飛沫帯, W/C=0.3 )

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70mmコンクリート表面からの距離( )

kg/m

塩分

濃度

(3 )

0.11351050100

供用年数OPC W/ C 0.3飛沫帯, , =

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70mmコンクリート表面からの距離( )

kg/m

塩分

濃度

(3 )

0.11351050100

供用年数BS W/ C 0.3飛沫帯, , =

Page 16: コンクリート工学研究室 岩城 一郎

塩害に対する対策コンクリートに含まれる塩化物イオン

の量をできるだけ少なくする.水セメント比の低いコンクリートを用

いる.混合セメントを使用する.かぶりを十分にとる.ひび割れ幅を制御する(小さくする).→それでもだめなとき(飛沫帯等),樹脂塗装鉄筋の使用,電気化学的防食工法の採用(補修・補強で講義)