射頻電子 - [第三章] 史密斯圖與阻抗匹配

70
高頻電子電路 第三 密圖與阻抗匹配 李健榮 助理教授 Department of Electronic Engineering National Taipei University of Technology

Transcript of 射頻電子 - [第三章] 史密斯圖與阻抗匹配

Page 1: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

高頻電子電路第三章史密斯圖與阻抗匹配

李健榮助理教授

Department of Electronic EngineeringNational Taipei University of Technology

Page 2: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

大綱

• 諧振器、Q值與諧振頻寬

• 阻抗匹配網路:L型、T型、π型與串接L型網路

• 史密斯圖• 串並聯LC於史密斯圖上的軌跡

• 使用史密斯圖進行阻抗匹配• 固定Q值軌跡與阻抗匹配

Department of Electronic Engineering, NTUT2/70

Page 3: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

串聯諧振器(Series Resonators)

• 串聯諧振電路

I R L

C

( ) 1inZ R j L

j Cω ω

ω= + +

CV

+

21

2RP I R=

21

4mW I L=

2 2 2

2 2 2

1 1 1 1

4 4 4e C

CW V C I I

C Cω ω= = =

在諧振頻率時, :0 02 fω π= m eW W= 0

1

LCω =

( )0inZ Rω =

當電感與電容平均儲能相等時,串聯電路的輸入阻抗將只剩下純電阻性的成分。

• 品質因素 (Quality Factor, Q):

average energy stored

energy loss/secm e

R

W WQ

Pω ω+ =≜

當諧振發生時, 0ω ω=

00 0

0

2 2 1m e

R R

W W LQ

P P R CR

ωω ωω

= = = =

XQ

R= 其中 0

0

1 or X L

ω=

此時,

Q是一種度量諧振器損耗多寡的參數,電路損耗越低代表Q值越高。

Department of Electronic Engineering, NTUT3/70

Page 4: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

在諧振頻率時, :

此時,

並聯諧振器

2

2R

VP

R=

21

4eW V C=2 2

2

2 2 2

1 1 1

4 4 4m L

V VW I L L

L Lω ω= = =

0 02 fω π= m eW W= 0

1

LCω =

( )0

1inY

Rω =

LI

LR C

( ) 1 1inY j C

R j Lω ω

ω= + +

V

+

• 並聯諧振電路

當電感與電容平均儲能相等時,並聯電路的輸入導納將只剩下純電導性的成分。

• 品質因素 (Quality Factor, Q):

average energy stored

energy loss/secm e

R

W WQ

Pω ω+ =≜

BQ

G=

00

1 or B C

ω=

1G

R=

當諧振發生時, 0ω ω=

其中

Department of Electronic Engineering, NTUT4/70

Page 5: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

與串聯RL與RC電路比較

L R

C R1X

QR CRω

=≜雖然Q可以被定義,但是無法定義出諧振頻率,因RC與RL電路並不會發生諧振(沒有能量互丟的現象),因此不屬於諧振電路。

• 串聯RL與RC電路可沿用Q之定義

• 並聯RL與RC電路

B RQ

G Lω=≜

BQ CR

Gω=≜

L

R

C

R

X LQ

R R

ω=≜

Department of Electronic Engineering, NTUT5/70

Page 6: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

定義諧振頻寬

• 以串聯諧振器為例,當 0ω ω→

( ) 1inZ R j L

j Cω ω

ω= + +

0ω ω ω= + ∆令 0ω∆ → 0

1

LCω =

( )2 2 20 0

2 2 2

11 1inZ R j L R j L R j L

LC

ω ω ωω ω ω ωω ω ω

− = + − = + − = +

( )( )0 0 02

0 0

22 2

QRR j L R jL R j L R j

ω ω ω ω ω ωω ω ωω ω ω

+ − ⋅∆= + + = + ∆ = + ∆

≃ 0LQ

R

ω=其中

其中 而

I L R

C

( )inZ ω

CV

+

• 定義頻寬為0

2BW

ωω∆

0

0

22in

BW QRZ R j R jBW QR

ωω

⋅= + = + ⋅

inZ

0ωω

R

2R

2 ω∆

當 1BW

Q= 2inZ R jR R= + =

003-dB Bandwidth BW

Q

ωω= ⋅ = 13-dB Bandwidth in % BW

Q= =

Department of Electronic Engineering, NTUT6/70

Page 7: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

並聯諧振器的3-dB頻寬

• 以並聯諧振電路為例,當 0ω ω→

( ) 1 1 12inY j C jC

R j L Rω ω ω

ω= + + + ∆≃

0

2BW

ωω∆

≜定義

( ) 0

0

1 12

2in

BW Q QY j jBW

R R R R

ωωω

⋅= + = +

當 1BW

Q=

1 1 2inY j

R R R= + =

003-dB Bandwidth BW

Q

ωω= ⋅ =

13-dB Bandwidth in % BW

Q= =

inY

0ωω

1

R

2

R

2 ω∆

關於關於關於關於Q的重要觀念的重要觀念的重要觀念的重要觀念::::

1. Q值越高、損耗越低、頻寬越窄2. Q值越低、損耗越高、頻寬越寬

Department of Electronic Engineering, NTUT7/70

Page 8: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

Loaded-Q與Unloaded Q

LRResonantCircuit

Unloaded Q

• 串聯RLC電路

• 並聯RLC電路

( )0

0

1L

L L

X LQ

R R R C R R

ωω

= = =+ +

( )00

////L

L L

B R RQ C R R

G Lω

ω= = =

• 定義Qe為外部Q (external Q)

0

0

1e

L L

LQ

R R C

ωω

= = for series RLC

00

Le L

RQ R C

ω= =

1 1 1

L eQ Q Q= +

for parallel RLC

for both cases

負載效應

負載Q是無負載Q與外部Q的並聯。

Department of Electronic Engineering, NTUT8/70

Page 9: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

阻抗匹配

MatchingNetwork

in sZ R=

+

−sV

sR

LZo sZ R=

0inΓ =Goal:

• 假設匹配網路為理想無損耗的情況下,為了達到最大功率傳輸的目的,匹配網路是要設計來將ZL轉換為Z0 (matched with the transmission line)

或 Rs (matched with the source impedance when no line connected)。

• 當負載與傳輸線阻抗匹配時,將有最大功率傳輸至負載(assuming thegenerator is matched)。

Department of Electronic Engineering, NTUT9/70

Page 10: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

八種雙元件L型匹配網路

LZ1C

2C

LZL

C

LZ1L

2L

LZC

L

LZC

L

LZ2C

1C

LZL

C

LZ2L

1L

Department of Electronic Engineering, NTUT10/70

Page 11: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

L型匹配 – Case (a) Rs < 1/GL

+

−sV

sRjX

jBLY

L L LY G jB= +inZ

目標在於求匹配元件之電抗X與電受B,能使 Case (a) 1s LR G<

in sZ R= 0Γ =

+

−sV

sRjX

( )Lj B B+ LG

L

L

B BQ

G

+=l

Series RC or RL

Parallel RC or RL

ss

XQ

R=

( )1

in sL L

Z jX RG jB jB

= + =+ +

實部: ( ) 1s L LR G X B B+ + =

虛部: ( ) 0s L LR B B XG+ − =

阻抗匹配時,由匹配網路往負載端視入的輸入阻抗虛部為0。

Ls

s L

B BXQ Q Q

R G

+= = = =l

( )2 1 1s LR G Q + = 11

s L

QR G

= ± −

選擇1

1ss L

Q Q QR G

= = = + −l

11s s

s L

X R Q RR G

= = −

11L L L L

s L

B G Q B G BR G

= − = − − (>0, 電容)(<0, 電感)

(>0, 電感)

當Q被決定了,X與B也就決定了。

Department of Electronic Engineering, NTUT11/70

Page 12: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

L型匹配 – Case (b) Rs > RL

+

−sV

sRjX

jB LZ

L L LZ R jX= +inY

Case (b)s LR R> 目標在於求匹配元件之電抗X與電受B,能使

1in sY R= 0Γ =或

s sQ BR= L

L

X XQ

R

+=l

+

−sV

sR( )Lj X X+

jB LR

Parallel RC or RL

Series RC or RL

( )1 1

inL L s

Y jBR jX jX R

= + =+ +

( )s L s LBR X X R R+ = −

( ) 0L s LX X BR R+ − =虛部:

實部:

阻抗匹配時,由匹配網路往負載端視入的輸入導納虛部為0。

Ls s

L

X XQ BR Q Q

R

+ = = = =l

2L s LQ R R R= − 1s

L

RQ

R= ± −

選擇 1ss

L

RQ Q Q

R= = = + −

l

1sL L L L

L

RX R Q X R X

R= − = − −

11s

s s L

RQB

R R R= = −

(>0, 電感)(<0, 電容)

(>0, 電容)

當Q被決定了,X與B也就決定了。

Department of Electronic Engineering, NTUT12/70

Page 13: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

(1)已知串聯,要轉並聯:

串聯與並聯轉換

sRsjX

pR

pjX

ss

s

XQ

R=

s s sZ R jX= +

pp

p

RQ

X=

p pp

p p

R jXZ

R jX

⋅=

+

pss p

s p

RXQ Q Q

R X= = = =

p ps p s s

p p

R jXZ Z R jX

R jX

⋅= = + =

+

( )21s pR Q R+ =

等效

彼此互轉

( )21p sR R Q= +

pp

p

RX

Q=

(2)已知並聯,要轉串聯:

21p

s

RR

Q=

+

s s sX R Q=

Department of Electronic Engineering, NTUT13/70

Page 14: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

匹配頻寬 (I)

+

−sV

sRjX

jBLY

L L LY G jB= +inZ

in s

in s

Z R

Z R

−Γ =+

+

−sV

sRjX

( )Lj B B+ LG+

−sV

sRjX eqjB

eqR2

1 1

1eqL

RG Q

=+

( )211 L

eqeq

G QB

QR Q

+= =

Case (a) 1s LR G<

把匹配後的完整網路想辦法轉成「串聯」或「並聯」RLC電路,就可以直接使用諧振器頻寬的定義來計算匹配頻寬。

並聯準備轉成串聯

Department of Electronic Engineering, NTUT14/70

Page 15: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

匹配頻寬 (II)

阻抗匹配時的中心頻率 0

1

LCω ω= =

( )0

1in eq s

eq

Z jX R RjB

ω ω= = + + =

虛部虛部虛部虛部:1

0eq

jXjB

+ = 1eqXB =

令0X Lω= 0eqB Cω=

實部實部實部實部: eq sR R= 2

1 1

1 sL

RG Q

=+

11

L s

QG R

= ± −

+

−sV

sRjX eqjB

eq sR R=

inQ1

2L inQ Q=

• 定義RLC諧振器的 QL與 Qin: ( )21in s Leq

XQ R Q G Q Q

R= = ⋅ ⋅ + =

1

2L inQ Q=而

• 找出 的 3-dB頻寬:Γ令 X Lω= eqB Cω=

當 0ω ω→ ,令 0ω ω ω= + ∆ 0

1

LCω =0ω∆ →

1

21 2 22

eqin s

in s ss

eq

jXjBZ R jL

Z R jL RjX RjB

ωω

+− ∆Γ = =+ ∆ ++ +

其中 及

Department of Electronic Engineering, NTUT15/70

Page 16: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

匹配頻寬 (III)

( )2 ω= ∆

2 2 sL Rω∆ = 02 22 s sR R

L X

ωω∆ = =

3-dB Bandwidth in % BW=

0

22 2 1 2

11

s

L

s L

RBW

X Q Q

R G

ωω∆= = = = =

1 2 2

11L

s L

BWQ Q

R G

= = =−

Γ

0ωω

1

2

12 ω∆

11

s L

QR G

= −

Case (a)1

sL

RG

<

1s

L

RQ

R= −

Case (b)

s LR R>

• 找出 的 3-dB頻寬 :Γ

Case (b)s LR R>

同理可求得:

Department of Electronic Engineering, NTUT16/70

Page 17: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

範例 – L型匹配 (I)

• 下圖電路請以L型網路匹配之,並求出3-dB匹配頻寬。

1 20001 1

50s L

QR G

= ± − = ± −

1, choose case (a)s

L

RG

<

6.245Q = +6

6

50 6.245 2 100 10

6.245 / 2000 0 2 100 10s

L L

X R Q L

B G Q B C

ππ

= = ⋅ = ⋅ × ⋅ = − = − = ⋅ × ⋅

1st Solution: choose

MatchingNetwork

( )100in sZ f MHz R= =

+

−sV

50 sR = Ω 2000 LR = Ω

( )100 0in f MHzΓ = =Goal:

LR

LR4.9696 pFC =

496.96 nHL =

+

−sV

50 sR = Ω

-9

12

496.96 10 (H) 496.96 (nH)

4.9696 10 (F) 4.9696 (pF)

L

C −

= × =

= × =

6.245= ±

Department of Electronic Engineering, NTUT17/70

Page 18: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

範例 – L型匹配 (II)

6

6

50 ( 6.245) 1/ (2 100 10 )

( 6.245) / 2000 0 1/ (2 100 10 )s

L L

X R Q C

B G Q B L

ππ

= = ⋅ − = − ⋅ × ⋅ = − = − − = − ⋅ × ⋅

6.245Q = − 2nd Solution: choose

12

9

5.097 10 (F) 5.097 (pF)

509.7 10 (H) 509.7 (nH)

C

L

= × =

= × =

LR+

−sV

50 sR = Ω

509.7 nHL =

5.097 pFC =

3dB

1 2 232%

| | 6.245L

BWQ Q

= = = =

Department of Electronic Engineering, NTUT18/70

Page 19: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

三元件匹配(High Q匹配、窄頻匹配)

Case (a) π型匹配

+

−sV

sR2jX

3jB L L LY G jB= +

, inZ Γ

1jB

+

−sV

sR1jX

LZ L L LZ R jX= +2jB

3jX

Case (b) T型匹配

LY

, inZ Γ

目標在於求匹配元件之電抗X2與電受B1、B3,能使 in sZ R= 0Γ =或

目標在於求匹配元件之電抗X1、X3 與電受B2,能使 in sZ R= 0Γ =或

Department of Electronic Engineering, NTUT19/70

Page 20: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

π型匹配 –兩個L型的結合

+

−sV

sR

2ajX

3jB LY L L LY G jB= +

VR

1jB

2bjX

VR

2 2 2a bX X X= +

1V

L

RG

<V sR R<

• π型網路可拆分成兩個“L型”網路來進行分析:

+

−sV

sR2ajX

1jB VR

in sZ R= 0Γ =

3jB LY

L L LY G jB= +2bjX

+

−sV

sR

in VZ R= 0Γ =

VR : 虛擬電阻(designed by yourself)

Department of Electronic Engineering, NTUT20/70

Page 21: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

π型匹配 – Q值與匹配頻寬

1 1s

V

RQ

R= ± − 2

11

V L

QR G

= ± −11

2BW

Q= 2

2

2BW

Q=

( )1 2min ,BW BW BW≃

28/51

+

−sV

sR2ajX

1jB VR

in sZ R= 0Γ =

3jB LY

L L LY G jB= +2bjX

+

−sV

sR

in VZ R= 0Γ =

• 因RV同時小於Rs與(1/GL),因此我們可以透過設計RV值來得到高Q匹配(窄頻)。

• 我們也可以反過來說,如果要求匹配頻寬為BW,我們便可以反推虛擬電阻值RV

應該要設計為多少。

Department of Electronic Engineering, NTUT21/70

Page 22: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

T型匹配 –兩個L型的結合

+

−sV

sR

1jX

LZ L L LZ R jX= +

VR

2ajB

3jX

2bjB

VR V LR R>V sR R>

sR

+

−sV

1jX

in sZ R= 0Γ =

2ajB VR LZ

L L LZ R jX= +3jX

2bjB+

−sV

VR

in VZ R= 0Γ =

VR : 虛擬電阻(designed by yourself)

• T型網路可拆分成兩個“L型”網路來進行分析:

Department of Electronic Engineering, NTUT22/70

Page 23: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

T型匹配 – Q值與匹配頻寬

1 1V

s

RQ

R= ± − 2 1V

L

RQ

R= ± −1

1

2BW

Q= 2

2

2BW

Q=

( )1 2min ,BW BW BW≃

sR

+

−sV

1jX

in sZ R= 0Γ =

2ajB VR LZ

L L LZ R jX= +3jX

2bjB+

−sV

VR

in VZ R= 0Γ =

• 因RV同時大於Rs與(1/RL),因此我們可以透過設計RV值來得到高Q匹配(窄頻)。

• 我們也可以反過來說,如果要求匹配頻寬為BW,我們便可以反推虛擬電阻值RV

應該要設計為多少。

Department of Electronic Engineering, NTUT23/70

Page 24: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

範例 – π與T型匹配網路

• 使用π型與T型網路進行匹配,並要求匹配頻寬 BW < 5%。

MatchingNetwork

( )100in sZ f MHz R= =

+

−sV

50 sR = Ω 2000 LR = Ω

( )100 0in f MHzΓ = =Goal:

LR

Department of Electronic Engineering, NTUT24/70

Page 25: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

範例 – π型匹配網路 (I)

+

−sV

50sR = Ω2ajX

1jB 1.249Ω

( )100 50inZ f MHz= = Ω ( )100 0f MHzΓ = =

VR

1

501 1 6.247

1.2492s

V

RQ

R= ± − = ± − = ± 2

1 20001 1 40

1.2492V L

QR G

= ± − = ± − = ±

3jB

2bjX+

−sV

1.249VR = Ω

( )100 1.2492inZ f MHz= = Ω ( )100 0f MHzΓ = =

LG

1

2000LG =Ω

1 2max(| |,| |) max( 50 / 1, 2000 / 1) 2000 / 1v v vQ Q Q R R R= = − − = −2

5% 1.249 (2000 / ) 1

v

v

BW RR

= ≤ ⇒ ≤ Ω−

Case (a) π型匹配

1 6.247Q = + 1 1 0sB Q R Cω= = 198.85 pFC =

2 1 0a VX R Q Lω= = 12.42 nHL =

1 6.247Q = −( )1 1 01sB Q R Lω= = −

203.95 pFC =( )2 1 01a VX R Q Cω= = −12.74 nHL =

2 40Q = + 3 2 0L LB G Q B Cω= − = 31.83 pFC =

2 2 0b VX R Q Lω= = 79.53 nHL =

2 40Q = −( )3 2 01L LB G Q B Lω= − = − 79.58 nHL =

( )2 2 01b VX R Q Cω= = − 31.85 pFC =

Department of Electronic Engineering, NTUT25/70

Page 26: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

範例 – π型匹配網路 (II)

2 kΩ198.85 pF

12.42 nH

+

−sV

50 Ω 79.53 nH

31.83 pF 2 kΩ198.85 pF

12.42 nH

+

−sV 79.58 nH

31.85 pF

2 kΩ12.74 nH

203.95 pF

+

−sV

50 Ω 79.53 nH

31.83 pF 2 kΩ12.74 nH

203.95 pF

+

−sV

50 Ω 31.85 pF

79.58 nH

50 Ω

Department of Electronic Engineering, NTUT26/70

Page 27: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

範例 – π型匹配網路 (III)

Department of Electronic Engineering, NTUT27/70

Page 28: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

範例 – T型匹配網路 (I)

+

−sV

50 Ω1jX

( )100 50 inZ f MHz= = Ω ( )100 0f MHzΓ = =

2ajBVR

3jX

2bjB+

−sV

1 2max(| |,| |) max( ( / 50) 1, ( / 2000) 1) ( / 50) 1v v vQ Q Q R R R= = − − = −2

5% 80050 ( / 50) 1

v

v

BW RR

= ≤ ⇒ ≥ Ω−

80050VR = Ω

( )100 80050 inZ f MHz= = Ω ( )100 0f MHzΓ = =

80050VR = Ω

LR2 kΩ

1

800501 1 40

50V

s

RQ

R= ± − = ± − = ± 2

800501 1 6.247

2000V

L

RQ

R= ± − = ± − = ±

Case (b) T型匹配

1 40Q = + 1 1 0sX R Q Lω= = 3.183 µHL =

2 1 0a VB Q R Cω= = 0.795 pFC =

( )1 1 01sX R Q Cω= = − 0.796 pFC =

( )2 1 01a VB Q R Lω= = − 3.185 µHL =1 40Q = −

2 6.247Q = +3 2 0L LX R Q X Lω= − = 19.884 µHL =2 2 0b VB Q R Cω= = 0.124 pFC =

( )3 2 01L LX R Q X Cω= − = − 0.127 pFC =

( )2 2 01b VB Q R Lω= = − 20.394 µHL =2 6.247Q = −

Department of Electronic Engineering, NTUT28/70

Page 29: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

範例 – T型匹配網路 (II)

2 kΩ0.795 pF

3.183 µH

+

−sV

50 Ω 19.884 µH

0.124 pF

2 kΩ3.185 µH

0.796 pF

+

−sV

50 Ω 19.884 µH

0.124 pF

2 kΩ0.795 pF

3.183 µH

+

−sV

50 Ω 0.127 pF

20.394 µH

2 kΩ3.185 µH

0.796 pF

+

−sV

50 Ω 0.127 pF

20.394 µH

Department of Electronic Engineering, NTUT29/70

Page 30: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

範例 – T型匹配網路 (III)

Department of Electronic Engineering, NTUT30/70

Page 31: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

串接L型匹配 (Low Q匹配、寬頻匹配)

Case (a) 1s V LR R G< <

+

−sV

sR

1jX

1jB LY L L LY G jB= +

in sZ R=

2jX

2jB

0Γ =VRVR

+

−sV

sR

1jX

1jB VR

in sZ R= 0Γ =

+

−sV

VR2jX

LY

L L LY G jB= +

2jB

in VZ R= 0Γ =

VR : 虛擬電阻(designed by yourself)

• 串接L型網路當然可以拆成兩個“L型”網路來進行分析:

Department of Electronic Engineering, NTUT31/70

Page 32: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

串接L型匹配 (Low Q)

1 1V

s

RQ

R= ± − 2

11

L V

QG R

= ± −

令 1 2Q Q Q= = sV

L

RR

G= 2 2 2

2 11

s L

BWQQ

R G

= =−

+

−sV

sR

1jX

1jB VR

in sZ R= 0Γ =

+

−sV

VR2jX

LY

L L LY G jB= +

2jB

in VZ R= 0Γ =

• 我們想要最大頻寬的匹配,也就是要找到最小Q匹配(寬頻)。

Department of Electronic Engineering, NTUT32/70

Page 33: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

串接L型匹配 (Low Q)

Case (b) s V LR R R> >

+

−sV

sR

1jX

1jB LZ L L LZ R jX= +

in sZ R=

2jX

2jB

VRVR0Γ =

+

−sV

sR

1jX

1jB

in sZ R= 0Γ =

VR LZ

L LR jX+2jX

2jB+

−sV

VR

in VZ R= 0Γ =

VR : 虛擬電阻(designed by yourself)

• 串接L型網路當然可以拆成兩個“L型”網路來進行分析:

Department of Electronic Engineering, NTUT33/70

Page 34: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

串接L型匹配 (Low Q)

1 1s

V

RQ

R= ± − 2 1V

L

RQ

R= ± −

1 2Q Q Q= =V s LR R R= 2 2 2

2 11

s L

BWQQ

R G

= =−

+

−sV

sR

1jX

1jB

in sZ R= 0Γ =

VR LZ

L LR jX+2jX

2jB+

−sV

VR

in VZ R= 0Γ =

• 串接L型網路當然可以拆成兩個“L型”網路來進行分析:

Department of Electronic Engineering, NTUT34/70

Page 35: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

範例 –串接L型匹配 (I)

• 使用串接L型匹配使匹配頻寬能夠達到BW > 60%。

MatchingNetwork

( )100in sZ f MHz R= =

+

−sV

50sR = Ω 2000LR = Ω

( )100 0in f MHzΓ = =Goal:

LR

選擇RV: 50 2000 316.23V s LR R R= = ⋅ =

2 261.29%

1 2000 50 11s L

BW

R G

= = =−−

s V LR R R< <

Department of Electronic Engineering, NTUT35/70

Page 36: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

範例 –串接L型匹配 (II)

+

−sV

50 sR = Ω1jX

1jB

( )100 50 inZ f MHz= = Ω

2jX

2jB

( )100 0f MHzΓ = =

VR+

−sV

316.23 VR = Ω

( )100 0f MHzΓ = =( )100 316.23inZ f MHz= = Ω

LR

1

316.231 1 2.3075

50V

s

RQ

R= ± − = ± − = ± 2

20001 1 2.3075

316.23L

V

RQ

R= ± − = ± − = ±

1 2.3075Q = +

1 1 0sX R Q Lω= = 183.63 nHL =

1 1 0VB Q R Cω= = 11.61 pFC =

1 2.3075Q = −

( )1 1 01sX R Q Cω= = − 13.79 pFC =

( )1 1 01VB Q R Lω= = − 218.11 nHL =

2 2.3075Q = +

2 2 0VX R Q Lω= = 1.161 µHL =( )2 2 0L LB Q R B Cω= − = 1.836 pFC =

2 2.3075Q = −

( )2 2 01VX R Q Cω= = − 2.181 pFC =

( ) ( )2 2 01L LB Q R B Lω= − = − 1.379 µHL =

316.23 VR = Ω 2 kΩLR =

Department of Electronic Engineering, NTUT36/70

Page 37: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

範例 –串接L型匹配 (III)

2 kΩ11.61 pF

183.63 nH

+

−sV

50 Ω 1.161 µH

1.836 pF

2 kΩ218.11 nH

13.79 pF

+

−sV

50 Ω 1.161 µH

1.836 pF

2 kΩ11.61 pF

183.63 nH

+

−sV

50 Ω 2.181 pF

1.379 µH

2 kΩ218.11 nH

13.79 pF

+

−sV

50 Ω2.181 pF

1.379 µH

Department of Electronic Engineering, NTUT37/70

Page 38: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

範例 –串接L型匹配 (IV)

Department of Electronic Engineering, NTUT38/70

Page 39: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

若需要更大的匹配頻寬

L-ShapeMatchingNetwork

+

−sV

50 sR = Ω

LR

L-ShapeMatchingNetwork

L-ShapeMatchingNetwork

• Use multi-section L-shape matching networks to extend BW.

Department of Electronic Engineering, NTUT39/70

Page 40: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

史密斯圖史密斯圖史密斯圖史密斯圖

Department of Electronic Engineering, NTUT40/70

Page 41: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

史密斯圖的建立

( ) o

o

Z ZZ

Z Z

−Γ =+

• 史密斯圖(Smith chart)也稱為反射係數圖( plane),某一阻抗所代表的反射係數與其阻抗具有以下關係:

Γ

對所有的正實數Z都成立,而其中Zo是傳輸線特徵阻抗或系統參考阻抗,一般為50Ω。

• 定義正規化阻抗 z為

o o

Z R jXz r jx

Z Z

+= = = +

( )( )

11

1 1

r jxzU jV

z r jx

− +−Γ = = = ++ + + ( )

2 2

2 2

1

1

r xU

r x

− +=+ + ( )2 2

2

1

xV

r x=

+ +其中 及

• 反射係數

Department of Electronic Engineering, NTUT41/70

Page 42: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

史密斯圖 (Smith Chart)

r

x

( )U jVΓ = +Γ-plane

U

V

1z j=1z =

0z =

1

1

z

z

−Γ =+

1 1 1 90z j j= ⇒ = ∠

0 1 1 180z = ⇒ Γ = − = ∠

1 0z = ⇒ Γ =

1 90Γ = ∠

0Γ =1Γ = −

( )z r jx= +z-plane

1 1 1 90z j j= − ⇒ Γ = − = ∠ −

1z j= −Short Load Open

1z = ∞⇒ Γ =

1Γ =

Pure Imaginary: inductive

1 90Γ = ∠ −

Pure Imaginary: capacitive

Department of Electronic Engineering, NTUT42/70

Page 43: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

固定電阻圓(I)

r

x

( )U jVΓ = +Γ-plane

U

V

1 1z j= +

1 1z j= −0z =

0.447 63.4Γ = ∠

0.447 63.4Γ = ∠ −

( )z r jx= +z-plane

1 1z j= +1 1z j= −

0.447 63.43Γ = ∠

0.447 63.43Γ = ∠ −

1 2z j= +

1 2z j= −

1 2z j= +1 2z j= −

0.707 45Γ = ∠

0.707 45Γ = ∠ −

1j2j

1j−2j−

0.707 45Γ = ∠

0.707 45Γ = ∠ −

Department of Electronic Engineering, NTUT43/70

Page 44: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

固定電阻圓(II)

r

x( )z r jx= +z-plane

U

V

0z jx= +

0z r= =0.5r =

1r = 3r =

0.5z jx= +1z jx= + 3z jx= +

0r = 3r =1r =0.5r =

Department of Electronic Engineering, NTUT44/70

Page 45: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

固定電抗軌跡

r

x

( )z r jx= +z-plane

U

V

0.5z j=

0.5z j=

1z j=

3z j=

0.5z j= −1z j= −

3z j= −

0j

0.5j1j

3j

0.5j− 1j−

3j−

0.5 0.5z j= +1 0.5z j= +

1.5 0.5z j= +

1 126.87Γ = ∠

0.447 116.56Γ = ∠

0.243 75.97Γ = ∠

0.2773 33.69Γ = ∠

Department of Electronic Engineering, NTUT45/70

Page 46: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

典型的史密斯圖

Short OpenLoad

+jx

-jx

Inductive

Capacitive

Department of Electronic Engineering, NTUT46/70

Page 47: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

史密斯圖上的電抗軌跡

Short OpenLoad

+jx

-jx

Inductive

Capacitive

+j0.1

+j0.2

+j0.3

+j0.4

+j0.5+j0.6 +j1.6

+j1.7+j1.8

+j2.0

+j3.0

+j4.0

+j5.0+j6.0

0.4x∆ =

0.4x∆ =

0.4x∆ =

Department of Electronic Engineering, NTUT47/70

Page 48: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

由史密斯圖讀出阻抗值

1 1 1z j= +

2 0.4 0.5z j= +

3 3 3z j= −

4 0.2 0.6z j= −

5 0z = 1z2z

3z

4z

5z

Department of Electronic Engineering, NTUT48/70

Page 49: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

找出阻抗所對應的反射係數

19.44∠ −

Γ

1 3 3z j= −

1z

0.721 19.44Γ = ∠ −

Department of Electronic Engineering, NTUT49/70

Page 50: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

找出反射係數 所對應的阻抗值

0.447 26.56Γ = ∠

2 1z j= +

26.56∠

Γ

Department of Electronic Engineering, NTUT50/70

Page 51: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

考慮導納的史密斯圖

y g jb= +

U

V

U ′

V ′z r jx= +

1 1

1y g jb

z

− Γ= = = ++ Γ

1

1z

+ Γ=− Γ

Impedance Chart (Z-Chart) Admittance Chart (Y-Chart)

jx+

jx− jb+

jb−

Short Load Open Short Load Open

Department of Electronic Engineering, NTUT51/70

Page 52: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

ZY Chart

U

V

Department of Electronic Engineering, NTUT52/70

Page 53: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

串聯電感在史密斯圖上的軌跡

0.8Lz j=

0.3 0.3z j= −

0.3 0.5inz j= +

0.3 0.3z j= −

0.3 0.5inz j= +

0.8x∆ =

-j0.3

+j0.5

Department of Electronic Engineering, NTUT53/70

Page 54: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

串聯電容在史密斯圖上的軌跡

0.8Cz j= −

0.3 0.3z j= −

0.3 1.1inz j= −

0.3 0.3z j= −

0.3 1.1inz j= −0.8x∆ = −-j0.3

-j1.1

Department of Electronic Engineering, NTUT54/70

Page 55: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

並聯電感在史密斯圖上的軌跡

1.6 1.6y j= +

1.6 0.8iny j= −

2.4Ly j= −

1.6 1.6y j= +

1.6 0.8iny j= −

2.4y∆ = −

+j1.6

-j0.8

Department of Electronic Engineering, NTUT55/70

Page 56: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

並聯電容在史密斯圖上的軌跡

1.6 1.6y j= +

1.6 5iny j= +

3.4Cy j=

1.6 1.6y j= +

1.6 5iny j= +

3.4y∆ =

+j1.6

+j5

Department of Electronic Engineering, NTUT56/70

Page 57: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

串並聯LC於史密斯圖上的軌跡

Higher impedanceLower impedance

Series L

Series C

Shunt L

Shunt C

+jx

-jx

Inductive

Capacitive

Short

Open

Lower admittanceHigher admittance

-jb

+jb

Department of Electronic Engineering, NTUT57/70

Page 58: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

八種雙元件L型匹配網路

LZ1C

2C

LZL

C

LZ1L

2L

LZC

L

LZC

L

LZ2C

1C

LZL

C

LZ2L

1L

Department of Electronic Engineering, NTUT58/70

Page 59: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

匹配到參考阻抗(史密斯圖中心點)

• 大部分系統的參考阻抗 50 refZ = Ω

1z2z

3z

4z

5z

Goal

Goal circle (r=1)

Goal circle (g=1)

Department of Electronic Engineering, NTUT59/70

Page 60: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

匹配範例 (I)

( )10 10 LZ j= + Ω

0.2 0.2Lz j= +

Goal

0.2j

0.4j

0.2x j∆ =

2j−

0j

2y j∆ =

0.2 0.4z j= +

( )50 refZ = Ω

C

L

01@ 500 MHzinz f= =

0.2

0.2j

0.2j

0.5j−

02 0.2 50 10f Lπ = × Ω =

0

12 2 0.04

50f Cπ = × =

Ω

3.18 nHL =

12.74 pFC =

C

L 10 Ω

3.18 nH

3.18 nH

12.74 pF

Department of Electronic Engineering, NTUT60/70

Page 61: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

匹配範例 (II)

( )10 10 LZ j= + Ω

0.2 0.2Lz j= +

Goal

0.2j

0.4j−

0.6x j∆ = −

2j

0j

2y j∆ = −

0.2 0.4z j= −

LC 0.2

0.2j

01@ 500 MHzinz f= =

0.6j−

( ) 1

02 0.6 50 30f Cπ − = × Ω =

( ) 1

0

12 2 0.04

50f Lπ − = × =

Ω

10.6 pFC =

7.95 nHL =

LC

10.6 pF

7.95 nH

10 Ω

3.18 nH

Department of Electronic Engineering, NTUT61/70

Page 62: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

匹配範例 (III)

1 L

C

( )8 12 mSoutY j= −

Goal( )50 Ω

0.4 0.6outy j= −

Department of Electronic Engineering, NTUT62/70

Page 63: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

匹配至任意阻抗

LZC

L

50 20 inZ j= + Ω

100 100 LZ j= + Ω

Goal

100 refZ = Ω

LZ

C

L

0.5 0.2 inZ j= + Ω

1 1 Lz j= + Ω

Department of Electronic Engineering, NTUT63/70

Page 64: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

頻率變高時的阻抗變化軌跡 (I)

L

R

C

R

L

RC

LR

C

( )1inZ R j Lω ω= +

( ) ( )11 50

inin

Zz r jx

ωω = = +

Ω( )1in aZ ω

( )1in bZ ω

( )2inZ ω

( )2in aZ ω

( )2in bZ ω

( )3inZ ω

( )3in aZ ω

( )1

1inZ R j

ω= −

( )3in bZ ω ( )4inZ ω( )4in bZ ω

( )4in aZ ω

Department of Electronic Engineering, NTUT64/70

Page 65: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

頻率變高時的阻抗變化軌跡 (II)

( )2inZ ω ( )1inZ ω

( )4inZ ω ( )3inZ ω

( )1in bZ ω

( )1in aZ ω

( )2in bZ ω

( )2in aZ ω

( )4in bZ ω

( )3in bZ ω

( )3in aZ ω( )4in aZ ω

L R

CL R

RCRC

L

Department of Electronic Engineering, NTUT65/70

Page 66: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

固定Q軌跡 (I)

n

X xQ

R r= =

1nQ =

2nQ =

Short Open

Department of Electronic Engineering, NTUT66/70

Page 67: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

固定Q軌跡 (II)

Short Open

very intensivevery intensive

intensive

Department of Electronic Engineering, NTUT67/70

Page 68: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

匹配頻寬與Q值的要求 (I)

• 前面我們已經知道,在阻抗匹配時:2

nL

QQ =

• 在特定的匹配頻寬BW要求下,QL的值應設計為: 0

1

L

f BWQ

=

• 範例:設計一個T型匹配網路,使其能將負載阻抗 轉到50 LZ = Ω10 15 inZ j= − Ω

10.4

LQ= 1

2.50.4LQ = =

在阻抗匹配時: 2.52

nL

QQ = =

5nQ =所以匹配網路本身的節點Q值應該要為

0L

fQ

BW=

並且能達到匹配頻寬40%的要求。

在下一頁我們會看到如何利用Smith Chart與固定Q軌跡來完成這個匹配條件。

Department of Electronic Engineering, NTUT68/70

Page 69: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

匹配頻寬與Q值的要求 (II)

Department of Electronic Engineering, NTUT69/70

Page 70: 射頻電子 - [第三章] 史密斯圖與阻抗匹配

本章總結

• 阻抗匹配即是在於將負載阻抗ZL透過阻抗變換將其轉至與源阻抗Zs成共軛,以達最大功率傳輸之目的。換言之,我們也可以說,阻抗匹配是將源阻抗Zs透過阻抗變換將其轉至與負載阻抗ZL成共軛,以達最大功率傳輸之目的。

• 常用的匹配網路包含有L型、π型、T型與串接L型網路。 L型匹配頻寬中等,且頻寬無法調整。π型與T型具有可設計頻寬的優點,且匹配頻寬比L型還窄。串接L型匹配網路可增加頻寬,但缺點是需要以電路尺寸來換取頻寬。

• 在現今電腦輔助設計發達的時代,雖然史密斯圖已經很少被用來計算反射係數或阻抗,但它對於微波工程師仍然是一種非常有幫助的設計工具。

• 高Q值的電路具有較窄的頻寬,反之,低Q值的電路則具有較高的頻寬。因此,Q值越高的電路,對於頻率飄移或元件變異會更敏感。

• 越低的Q值雖然表示了電路的頻寬越寬,但也暗示了損耗的增加。

Department of Electronic Engineering, NTUT70/70