үл задрах олон гишүүнтийн тухай

12
Монгол Улсын Боловсролын Их Сургууль Математик Статистикийн Сургууль Сэдэв:Үл задрах олон гишүүнт, Гауссын лемм ,Эйзенштэйний шинжүүр Гүйцэтгэсэн:...................................../МФ-1 Б.Буяндэлгэр / Шалгасан:......................................./Ш.Батхишиг/ Улаанбаатар хот

Transcript of үл задрах олон гишүүнтийн тухай

Page 1: үл  задрах олон гишүүнтийн тухай

Монгол Улсын Боловсролын Их Сургууль

Математик Статистикийн Сургууль

Сэдэв:Үл задрах олон гишүүнт, Гауссын лемм ,Эйзенштэйний шинжүүр

Гүйцэтгэсэн:...................................../МФ-1 Б.Буяндэлгэр /

Шалгасан:......................................./Ш.Батхишиг/

Улаанбаатар хот

2014 он

Page 2: үл  задрах олон гишүүнтийн тухай

Оршил

Алгебр тооны онол хичээлийн хүрээнд “Үл задрах олон гишүүнт , Гауссын лемм,

Эйзенштейний шинжүүр” сэдвийн дагуу бие даалтаа хийж гүйцэтгэлээ.Үүнд: Олон

гишүүнт ямар үед үл задардаг , Эйзенштейний шинжүүр гэж юу болох ямар нөхцөлд

биелдэг зэргийг авч үзэх болно.Энэ бие даалтын ач холбогдол нь оюутан өөрөө бие даан

суралцаж өөрийн мэдлэгээ нэмэгдүүлэхэд чиглэсэн болно.Нэг сэдвийг судласнаар энэ

хичээлийг улам сайн ойлгож , энэ нь цаашлаад дараа дараагийн хичээлийг судлахад

илүү дөхөмтэй болоход туслана.

Page 3: үл  задрах олон гишүүнтийн тухай

Үл задрах олон гишүүнтийн тухай:

Тодорхойлолт:

f=h g ,g , f , h∈ F [x ] гэдгээс deg g = 0 ˅ deg h = 0 ( өөрөөр хэлбэл g(x ) ˅h ( x )∈F гэж гардаг бол

f (x) -ийг F талбарт эсвэл F [x ] дээр үл задрах(үл эмхэтгэгдэх олон гишүүнт) гэдэг (( f ∈ P (F [ x ] ))

.Өөрөөр хэлбэл f нь x- ээс хамаарсан F талбар дээрх хоёр олон гишүүнтийн үржвэр болж чадахгүй

гэсэн үг.F⊆E ба f нь E [x ] дээр үл задрах олон гишүүнт бол F [x ] д)ээр үл задрах олон гишүүнт

байх нь ойлгомжтой. Харин үүний урвуу нь хүчинтэй байх албагүй.

Тухайлбал: x2+1=( x+i )(x−i)гэж C [x ] дээр задардаг бол x2+1 нь R[ x ] дээр үл задрах харин Z2[x ]

дээр x2+1=(x+1)2 гэж задрах олон гишүүнт болох жишээтэй.

Нэг зэргийн олон гишүүнт бүхэн үл задрах олон гишүүнт байна. Өөрөөр хэлбэл Q дээр α∈Q

бүрийн хувьд x+α нь үл кадрах олон гишүүнт байна. R[ x ] дээр үл задрах олон гишүүнтийн зэрэг

2-оос үл хэтэрнэ, харин C [x ] дээр үл задрах олон гишүүнтийн зэрэг 1 л байна гэх мэт.

Жишээ 1. Z2 дээр 2 зэргийн бүх үл задрах олон гишүүнтийг ол.

x2+1, x2+ x−¿үүд Z2[x ] дээр үл задарна. Харинf=¿ x2+ x+1-ийн хувьд 0≠ f (0 )=f (1)∈ Z2 тул f=¿

x2+ x+1 нь 2 зэргийн ганц үл задрах олон гишүүнт нь болов.∎

Санамж 1. f ( x ) , g (x)∈Z [x ] ба Z [ x ]дээр f ∣g бол ‾f (x) ∣

Гауссын Лемм

Лемм (Гаусс)- φ ,ψ∈Z [x ] ба f=φψ=∑i=0

n

¿ai xi=0 (p ) бол эсвэл φ≡0 (p )˅ψ≡0( p) байна.

Эсрэгээс нь φ=∑0

m

b i xi≢0( p) ба 𝜓¿∑

0

l

c i xi≢0( p) гэе . bs, ckнь bs≢0( p), , ck≢0 ( p) байх хамгийн

бага дугаартай коэффициентүүд байг 0 ≡ak+ s…… +bs+1

ck−1+bs ck+bs−1 ck+1…….≡bs ck≢0( p) зөрчил гарав.Иймд φ≡0 (p )˅ψ≡0( p) байна.

Page 4: үл  задрах олон гишүүнтийн тухай

Гауссын леммийг a ,b∈Z , p∈P ба p ∣abбол a≡0( p) ˅ b≡0 (p )−ийнөргөтгөлчгэж хэлж ойлгож

болно.f , g∈Z¿үүдийн хуваагдлыг авч үзэхэд f , g нь хоёул примитив

Мөрдөлгөө 1. φ ,ψ нь примитив олон гишүүнтүүд бол φ ∙ψ мөн примитив олон гишүүнт байна.

Мөрдөлгөө 2. φ ,ψ∈Z¿ бол c (φ ∙ψ )=c байна.

φ=a0φ0=c (φ )φ0 ,ψ=b0ψ0 ¿c (ψ )ψ0 , φ0 , ψ0∈Z¿ примитив олон гишүүнт гэж болно.

c (φ ∙ψ )=a0b0c (φ0ψ0 ¿ → a0b0=¿ c ¿

Мөрдөлгөө 3. f (x)∈Z [x ] нь ℤ дээр үл задрах олон гишүүнт бол дээр мөн үл задарна.ℚ

f=gh ,g ,h∈Q [x ] гэе af =b g0h0 , g0 ,h0∈Z [ x] примитив олон гишүүнтүүд ба a ,b∈Z үзэж болно.

c (af )=ac (f )=bc(g0h0)→b

Иймд af =b g0h0=ac ( f )g0h0∣ : a⤇ f =c (f ) g0h0болж өгсөн нөхцөлд зөрчинө.

Жишээ: f ( x )=12 x3+16 x2−7 x−6=¿)(4x2−2

3x−4

3)

Теорем1 : Дурын натурал тоо n зэрэгтэй бүхэл тоон коэффициенттэй ,

рацианал тоон талбарт (хэрэг дээрээ Z дээр ) үл задрах олон гишүүнт орошин

байна.Энэ теоремийн баталгаа дараах теоремоос шууд мөрдөн гарна.

Ейзенштейний шинжүүр 2

f ( x )=axn+a1xn−1+¿……….+an¿ бүхэл тоон коэффициенттэй олон гишүүнт бөгөөд дараах

нөхцөлүүд зэрэг биелэгдэж байхаар ядаж ганц аргаар анхны p - тоог сонгон

авч болдог0 бол f (x), Q талбар дээр үл задрах олон гишүүнт байна. Үүнд :

а) ахмад коэффициент а0, p−¿ тоонд үл хувааддаг.

б) p ∣ai i=1 ,……. ,n(бусадбүхкоэффициент p хуваагддагh)

в) Сул гишүүн an, p2 үл хуваагдана.

Page 5: үл  задрах олон гишүүнтийн тухай

Баталгаа: Хэрэв . f ( x ) нь Q- талбарт задардаг бол теорем ёсоор. f ( x ) өөрөөсөө

бага зэргийн хоёр бүхэл коэффициенттэй олон гишүүнтийн үржьэрт

тавигдана. . f ( x )=(b¿¿0xk+b1x k−1+… ..+bk )¿(c0 xe+c1xe−1+… ..+ce¿¿ ) үнд: l , k<n , k+1=n

Олон гишүүнтийн тэнцүүгийн тодорхойлолт ёсоор (1) дараах тэнцэтгэлүүд

гарна.

an=bk . ce

an−1=bk ce−1+…..ck−1 ce

………………………………………….

an−1=Σbm . cv

m+v=n−i

………………………………………….

a1=b0 c1b0

a0=b0c0

p ∣an p ∣bkce илэрхийллээс p ∣bkэсвэл p ∣ce болно.

Энэ хоёр зэрэг биелж үл болно.Учир нь p2∤an билээ.

p ∣ceба байсан гэе. Энэ үед (bk p¿=1 тул 2-р тэнцэтгэлээс p ∣ce−1 3-р тэнцлээс нь

p ∣ce−1 гэх мэт мөрдөн гарна.Цааш нь үргэлжлүүлэхэд (e+1¿−p өөрөөр хэлбэл:

an−e=bk c0+bk−1 c1+bk−2 c2+…… тэнцлээс c0 p−¿тоонд хуваагдахыг харна.

Сүүлчийн тэнцэл ёсоор p ∣a0болж , а) нөхцөлд харшилна.Иймээс f ( x ) олон

гишүүнт а), б), в), гурван нөхцөлийг зэрэг хангадаг бол үл

задарна.Ейзенштейний теорем батлагдав.∎

Одоо теорем 1-ийг баталъя. p дурын анхны тоо ба n натурал тоо бол xn−p олон

гишүүнт Эйзенштейний теоремийн бүх нөхцөлийг хангах учир Q талбар дээр

үл задарна.Теорем 1 батлагдав.∎

Page 6: үл  задрах олон гишүүнтийн тухай

Эйзенштейний зарчим зөвхөн хүрэлцээтэй, гарцаагүй нөхцөл болж

чадахгүй.Теорем 1 –ын гурван нөхцөл биелэхгүй үед олон гишүүнт задрах ч ,

үл задрах ч байж болно.

Жишээ нь: X2−4 X+3 олон гишүүнт теорем 2 –ийн нөхцөлийг хангахгүй боловч

задардаг. Харин x2+ x+1 олон гишүүнт Q талбар дээр уг теоремийн нөхцөлийг

хангахгүй бөгөөд үл задрах олон гишүүнт болно.

Бүхэл тоон коэффициенттэй nзэргийн f ( x ) олон гишүүнт үл задрах эсэхийг

шийддэг хэд хэдэн зарчим байдаг. Гэвч эдгээр бүгд Эйзенштейний зарчмын

адил зөвхөн хүрэлцээтэй нөхцөл юм.Бадтлалгүйгээр ийм зарчмаас дурдая.

Теорем (Полиагийн зарчим) g(x ) олон гишүүнтийн A=max {|a1|,|a2|,…. ,|an|} ба kнь

k ≥Aa0

+ 32 байх бүхэл тоо байг . Хэрэв g (k−1 )≠0 ба g(k) олон гишүүнт Q дээр үл

задарна.

Теорем( И.Р Шафаревич) Q талбар дээр үл задрах байсан ч p−¿анхны тооны

хувьд Z ∣ pZ талбар дээр задардаг бүхэл коэффициенттэй олон гишүүнт оршин

байна.

Page 7: үл  задрах олон гишүүнтийн тухай

Дасгал бодлого

1. a1,…….an ялгаатай бүхэл тоонууд бол f ( x )=∏1

n

¿¿)−1 нь дээр үл задарна гэж батал.ℚ

Мөрдөлгөө 3- ын үндсэн дээр дээр үл задарна гэж баталбал болно.Эсрэгээс нь ℤ f=gh, ∃g,

h∈Z [ x] , degg, degh,≥1 гэж үзье.Тэгвэл ⩝i, f ¿)

2. ℚ - дээр үл задрах олон гишүүнт болохыг харуул

f ( x )=x 4−x3+2x+1

x= y+1 гэж орлуулга хийгээд

f ( y+1 )=( y+1)4 – ( y+1)3+2 ( y+1 )+1= y4+4 y3+6 y2+4 y−( y3+3 y2+3 y+1+2 y+3)= y4+3 y3+3 y2+3 y+3

p=3- анхны тоог сонгож авна.

Эйзейнштейнийшинж ёсоор: ⤇ y4+3 y3+3 y2+3 y+3 олон гишүүнт ℚ - дээр үл задрах олон

гишүүнт болно.

3. f ( x )=¿ x4−8 x3+12 x2– 6 x+2 ℚ - дээр үл задрах олон гишүүнт болохыг харуул

p=2 – анхны тоо

1. 2 ∤ 1 2. 2 ∤ -8;12;-6;2 3.22∤ 2 Эйзейнштейнийшинж ёсоор үл задрахгүй.

4. Z2[x ] дээрх бүх 3 зэргийн үл задрах олон гишүүнтийг ол.

Page 8: үл  задрах олон гишүүнтийн тухай

f ( x )=x3+1 , g ( x )=x3+x –үүд Z2[x ] дээр задарна.Харин f ( x )=x3+x2+1-ийн хувьд

0≠ f (0 )=f (1)∈Z2 тул f ( x )=x3+x2+1 нь 3 зэргийн ганц үл задрах олон гишүүнт болно

Санамж: f ( x ) , g (x)∈Z2 дээр f ∣g бол f (x) ∣g(x ) байна.f ( x ) , g (x)∈Zm[ x].

5. n=2mба n=2m+1 байг f ( x )∈Z [x ] , degf=n нь 2m-ээс олон бүхэл тоон дээр ±1 утга

авдаг.ℚ дээр үл задрана гэж батал.

5.ℚ дээр үл задрах олон гишүүнт давхар язгууртай байж үл чадна.

Бодолт: ℚ дээр үл задрана гэдэг нь Q=0 үед шийд болох, язгуур байхгүй учир давхар

язгууртай байж чадахгүй. Жнь: x2+ x−5

Дүгнэлт

Алгебр тооны онол хичээлийн “Үл задрах олон гишүүнт,Гауссын лемм,

Ейзенштейнтийн шинжүүр ” сэдвийн дагуу энэхүү бие даалтыг хийж гүйцэтгэлээ.Энэ

бие даалтыг хийхдээ олон ном уншиж ,судлаж тэдгээрийг харьцуулан боловсруулж аль

болох ойлгомжтой,хэрэгтэй зүйлсийг оруулахыг зорьсон. Бие даалтыг гүйцэтгэхэд

бэрхшээлтэй зүйл нь дасгал бодлого бага байсан ба ихэвчлэн батлах бодлого байсан нь

төвөгтэй байсан.Мөн зарим номны бичиглэл ,тэмдэглэлгээг сайн ойлгохгүй байсан нь

бэрхшээл байлаа.

Page 9: үл  задрах олон гишүүнтийн тухай

Ашигласан материал:

1. Дээд алгебр-l,ll –Ц.Дашдорж (2009 он)2. Дээд алгебрийн курс-Мекей Санжмятав(1985 он)3. www.yandex.com.ru