第 1 章 电力电子器件

112
1-1 第1第 第第第第第第 1.1 电电电电电电电电 1.2 电电电电电 —— 电电电 1.3 电电电电电 —— 电电电 1.4 电电电电电电电 1.5 电电电电电电电电电电 1.6 电电电电电电电电电 1.7 电电电电电电电电电 1.8 电电电电电电电电电电电电电电 电电电电电电电

description

第 1 章 电力电子器件. 1.1 电力电子器件概述 1.2 不可控器件 —— 二极管 1.3 半控型器件 —— 晶闸管 1.4 典型全控型器件 1.5 其他新型电力电子器件 1.6 电力电子器件的驱动 1.7 电力电子器件的保护 1.8 电力电子器件的串联和并联使用 本章小结及作业. 第 1 章 电力电子器件 · 引言. 电力电子电路的基础 ——— 电力电子器件 本章主要内容: 概述电力电子器件的 概念 、 特点 和 分类 等问题。 - PowerPoint PPT Presentation

Transcript of 第 1 章 电力电子器件

Page 1: 第 1 章      电力电子器件

1-1

第 1 章 电力电子器件1.1 电力电子器件概述1.2 不可控器件——二极管

1.3 半控型器件——晶闸管

1.4 典型全控型器件

1.5 其他新型电力电子器件

1.6 电力电子器件的驱动

1.7 电力电子器件的保护

1.8 电力电子器件的串联和并联使用

本章小结及作业

Page 2: 第 1 章      电力电子器件

1-2

电力电子电路的基础 ——— 电力电子器件

本章主要内容:概述电力电子器件的概念、特点和分类等问题。

介绍常用电力电子器件的工作原理、基本特性、主要参数以及选择和使用中应注意问题。

第 1 章 电力电子器件 · 引言

Page 3: 第 1 章      电力电子器件

1-3

1.1 电力电子器件概述

1.1.1 电力电子器件的概念和特征

1.1.2 应用电力电子器件的系统组成

1.1.3 电力电子器件的分类

1.1.4 本章内容和学习要点

Page 4: 第 1 章      电力电子器件

1-4

1.1.1 电力电子器件的概念和特征

1 )概念 :电力电子器件( Power Electronic Device )

—— 可直接用于主电路中,实现对电能的变换或控制的电子器件。主电路( Main Power Circuit )

—— 电气设备或电力系统中,直接承担电能的变换或控制任务的电路。

电力电子器件

R L2 )同处理信息的电子器件相比的一般特征:

处理电功率的能力,一般远大于处理信息的电子器件。

通常工作在开关状态。

需要专用驱动电路。

通常要安装散热器。

Page 5: 第 1 章      电力电子器件

1-5

通态损耗是器件功率损耗的主要成因。

器件开关频率较高时 (10KHz 以上 ) ,开关损耗可能成为器件功率损耗的主要因素。

主要损耗

通态损耗

断态损耗

开关损耗关断损耗

开通损耗

1.1.1 电力电子器件的概念和特征 电力电子器件的损耗

Page 6: 第 1 章      电力电子器件

1-6

电力电子系统:由控制电路、驱动电路、保护电路 和以电力电子器件为核心的主电路组成。

图 1-1 电力电子器件在实际应用中的系统组成

检测电路

驱动电路

RL

主电路

V1

V2

保护电路

在主电路和控制电路中附加一些电路,以保证电力电子器件和整个系统正常可靠运行

1.1.2 电力电子系统组成

电气隔离

控制单元

Page 7: 第 1 章      电力电子器件

1-7

半控型器件( Thyristor ) —— 通过控制信号可以控制其导通而不能控制其

关断。全控型器件( IGBT,MOSFET)

—— 通过控制信号既可控制其导通又可控制其关 断,又称自关断器件。不可控器件 (Power Diode)

—— 不能用控制信号来控制其通断 , 因此也就不需要驱动电路。

1.1.3 电力电子器件的分类

按可控程度,分为以下三类:

Page 8: 第 1 章      电力电子器件

1-8

1.1.3 电力电子器件的分类

电流驱动型

—— 通过从控制端注入或者抽出电流来实现导通或者 关断的控制。

电压驱动型 —— 仅通过在控制端和公共端之间

施加一定的电压信号就可实现导通或者关断的控制。

驱动

SCR

按照驱动电路信号的性质,分为两类:

IGBT

电压信号

电流信号

Page 9: 第 1 章      电力电子器件

1-9

( 1 )单极型器件——由一种载流子参与导电的器件。如: MOSFET (多子导电)。

( 2 )双极型器件——由电子和空穴两种载流子参与导电的器件。如: GTO 、 GTR 、 IGBT 、IGCT 。

按照载流子参与导电的情况,分为两类:

1.1.3 电力电子器件的分类

Page 10: 第 1 章      电力电子器件

1-10

本章内容 :介绍各种器件的工作原理、基本特性、主要参数以及选择和使用中应注意的一些问题。集中讲述电力电子器件的驱动、保护和串、并联使用这三个问题。

学习要点 :最重要的是掌握器件基本特性。掌握电力电子器件的型号命名法,以及其参数和特性曲线的使用方法。

1.1.4 本章学习内容与学习要点

Page 11: 第 1 章      电力电子器件

1-11

1.2.1 PN结与电力二极管的工作原理

1.2.2 电力二极管的基本特性

1.2.3 电力二极管的主要参数

1.2.4 电力二极管的主要类型

1.2 不可控器件—电力二极管

Page 12: 第 1 章      电力电子器件

1-12

Power Diode 结构和原理简单,工作可靠,自 20 世纪 50 年代初期就获得应用。

分类

1.2 不可控器件—电力二极管 · 引言

二极管及模块

整流二极管

快恢复二极管肖特基二极管

Page 13: 第 1 章      电力电子器件

1-13

基 本 结 构 和 工 作原 理 与 信 息 电 子电 路 中 的 二 极 管一样。由 一 个 面 积 较 大的 PN 结 和 两 端引 线 以 及 封 装 组成的。从 外 形 上 看 , 主要 有 螺 栓 型 和 平板型两种封装。 图 1-2 电力二极管的外形、结构和电气

图形符号 a) 外形 b) 结构 c) 电气图形符号

1.2.1 PN 结与电力二极管的工作原理

A

K

A K

a)

I

KAP N

J

b)

c)

A K

Page 14: 第 1 章      电力电子器件

1-14

1.2.1 PN 结与电力二极管的工作原理

PN 结的正向导通状态 PN 结在正向电流较大时压降仍然很低,维持在 1V 左右。 PN 结的反向截止状态 PN 结的单向导电性。这是主 要特征。 PN 结的反向击穿 PN 结的电容效应: PN 结的电荷量随外加电压而变化,呈现电容效应,称为

结电容 CJ 。

Page 15: 第 1 章      电力电子器件

1-15

1.2.2 电力二极管的基本特性

主要指其伏安特性门槛电压 UTO ,正向电流 IF

开始明显增加所对应的电压。

正向电压降 UF ,与 IF 对应的电力二极管两端的电压。

承受反向电压时,只有微小而数值恒定的反向漏电流。

图 1-4 电力二极管的伏安特性

1) 静态特性I

O

IF

UTO UF U

其电流与端电压的关系

U

I

Page 16: 第 1 章      电力电子器件

1-16

2) 动态特性 —— 二极管的电压、电流随时

间变化的特性 —— 结电容的存在导致开关过程

1.2.2 电力二极管的基本特性

b)

UFP

ui

iF

uF

tfr

t0

2V

图 1-5 电力二极管的动态过程波形 a) 正向偏置转换为反向偏置

b) 零偏置转换为正向偏置

延迟时间: td= t1- t0,

电流下降时间: tf= t2- t1

反向恢复时间: trr= td+ tf

恢复特性的软度:下降时间与延迟时间 的比值 tf /td ,或称恢复系数,用 Sr表示。

IF

UF

tF

t0

trr

td tf

t1

t2

tUR

URP

IRP

diF

dt

diRdt

Page 17: 第 1 章      电力电子器件

1-17

正向压降先出现一个过冲 UFP ,经过一段时间才趋于接近稳态压降的某个值(如 2V )。

正向恢复时间 tfr 。

电流上升率越大, UFP越高 。

UFP

ui

iF

uF

tfr t0

2V

图 1-5(b) 开通过程

1.2.2 电力二极管的基本特性

开通过程

关断过程须经过一段短暂的时间才能重新获得反向阻断能力,进入截止状态。关断之前有较大的反向电流出现,并伴随有明显的反向电压过冲。

IF

UF

tF

t0

trr

td tf

t1

t2

tUR

URP

IRP

diF

dt

diRdt

图 1-5(b) 关断过程

Page 18: 第 1 章      电力电子器件

1-18

1.2.3 电力二极管的主要参数

额定电流——在指定的管壳温度和散热条件下,其允许流过的最大工频正弦半波电流的平均值。

IF(AV) 是按照电流的发热效应来定义的,使用时应按有效值相等的原则来选取电流定额,并应留有一定的裕量。

工频正弦半波电流正向电流有效值 IF 是对应平均电流 IF(AV) 的 1.

57倍。

1) 正向平均电流 IF(AV)

0)( )(sin2

1 mmAVF

IttdII

2)()sin(

2

10

2 mmF

ItdtII

( )

21.57

2mF

F AV m

II

I I

i

mI

2

tIm sin

t

工频正弦半波电流波形

需记住

Page 19: 第 1 章      电力电子器件

1-19

在指定温度下,流过某一指定的稳态正向电流时对应的正向压降。

3 ) 反向重复峰值电压 URRM

对电力二极管所能重复施加的反向最高峰值电压。

使用时,应当留有两倍的裕量。

4 )反向恢复时间 trr

trr= td+ tf

1.2.3 电力二极管的主要参数

2 )正向压降 UF

Page 20: 第 1 章      电力电子器件

1-20

结温是指管芯 PN 结的平均温度,用 TJ表示。

TJM 是指在 PN 结不致损坏的前提下所能承受的最高平均温度。

TJM 通常在 125~175C范围之内。

6) 浪涌电流 IFSM

指电力二极管所能承受最大的连续一个或几个工频周期的过电流。一般是额定电流十几倍。

1.2.3 电力二极管的主要参数

5 )最高工作结温 TJM

Page 21: 第 1 章      电力电子器件

1-21

1) 普通二极管( General Purpose Diode )

又称整流二极管( Rectifier Diode )多用于开关频率不高( 1kHz 以下)的整流电路其反向恢复时间较长(大于 100us )正向电流定额和反向电压定额可以达到很高DATASHEET

1.2.4 电力二极管的主要类型

Page 22: 第 1 章      电力电子器件

1-22

简称快速二极管

其反向恢复时间 trr短。从性能上可分为快速恢复和超快速恢复两个等级。前者 trr 为数百纳秒或更长,后者则在 100ns 以下,甚至达到 20~30ns 。DATASHEET 1 2 3

1.2.41.2.4 电力二极管的主要类型电力二极管的主要类型2) 快恢复二极管 ( Fast Recovery Diode——FRD )

Page 23: 第 1 章      电力电子器件

1-23

弱点反向耐压低,多用于 200V 以下。

优点反向恢复时间很短( 10~40ns )。

正向导通压降低( 0.3~0.5V)。

正向恢复过程中不会有明显的电压过冲。

1.2.4 电力二极管的主要类型3. 肖特基二极管 以金属和半导体接触形成的势垒为基础的二极管称为肖特基势垒二极管( Schottky Barrier Diode ——SBD )。

Page 24: 第 1 章      电力电子器件

1-24

1.3 半控器件—晶闸管

1.3.1 晶闸管的结构与工作原理

1.3.2 晶闸管的基本特性

1.3.3 晶闸管的主要参数

1.3.4 晶闸管的派生器件

Page 25: 第 1 章      电力电子器件

1-25

1.3 半控器件—晶闸管 · 引言

1956 年美国贝尔实验室发明了晶闸管。1957 年美国通用电气公司开发出第一只晶闸管产品。1958 年商业化。开辟了电力电子技术迅速发展和广泛应用的崭新时代。20 世纪 80 年代以来,开始被全控型器件取代。能承受的电压和电流容量最高,工作可靠,在大容量的场合具有重要地位。

晶闸管( Thyristor ):晶体闸流管,可控硅整流器( Silicon Controlled Rectifier——SCR )

Page 26: 第 1 章      电力电子器件

1-26

图 1-6 晶闸管的外形、结构和电气图形符号a) 外形 b) 结构 c) 电气图形符号

1.3.1 晶闸管的结构与工作原理

外形有螺栓型和平板型两种封装。有三个联接端,阳极 A 、阴极 K 和门极(控制端) G 。螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便。平板型晶闸管可由两个散热器将其夹在中间。

AA

G

G K K

b) c)a)

A

G

K

KG

A

P1

N1

P2

N2

J1

J2

J3

Page 27: 第 1 章      电力电子器件

1-27

1.3.1 晶闸管的结构与工作原理常用晶闸管的结构

螺栓型晶闸管 晶闸管模块

平板型晶闸管外形及结构

Page 28: 第 1 章      电力电子器件

1-28

1.3.1 晶闸管的基本特性

承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。

承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通(导通条件)。

晶闸管一旦导通,门极就失去控制作用。

要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下或施加反向电压(关断条件) 。

为什么?

晶闸管工作时的特性如下:

Page 29: 第 1 章      电力电子器件

1-29

1.3.1 晶闸管的结构与工作原理

式中 1 和 2 分别是晶体管 V1 和 V2

的共基极电流增益; ICBO1 和 ICBO2 分别是 V1 和 V2 的共基极漏电流。由以上式可得 :

图 1-7 晶闸管的双晶体管模型及其工作原理a) 双晶体管模型 b) 工作原理

按晶体管的工作原理 ,得:

111 CBOAc III

222 CBOKc III

GAK III

21 ccA III

( 1-2 )

( 1-1 )

( 1-3 )( 1-4 )

2 G CBO1 CBO2A

1 21 ( )

I I II

( 1-5 )

正反馈过程

Page 30: 第 1 章      电力电子器件

1-30

1.3.1 晶闸管的结构与工作原理

在低发射极电流下 是很小的,

而当发射极电流建立起来之后,

迅速增大(小于 1)。

阻断状态: IG=0 , 1+2 很小 ( )。流过晶闸管的漏电流稍大于两

个晶体管漏电流之和。

开通状态:注入触发电流使晶体管的发射极电流增大以致 1+2趋近

于 1,流过晶闸管的电流 IA ,将趋近于无穷大,实现饱和导通。 IA 实

际由外电路决定。

1

eI

2

1

1

Page 31: 第 1 章      电力电子器件

1-31

1.3.2 晶闸管的基本特性

( 1 )正向特性

IG=0 时,为正向阻断状态。正向电压超过正向转折电压 Ubo ,则漏电流急剧增大,器件开通。

随着门极电流幅值的增大,正向转折电压降低。

晶闸管本身的压降很小,在 1V左右。

UDSM , UDRM

正向导通

雪崩击穿

O +UA-

UA

-IA

IA

IHIG2 IG1 IG=0

UboUDSM

UDRM

URRMURSM

1 ) 静态特性

图 1-8 晶闸管的伏安特性IG2>IG1>IG

Page 32: 第 1 章      电力电子器件

1-32

1.3.2 晶闸管的基本特性

反向特性类似二极管的反向特性。

反向阻断状态时,只有极小的反相漏电流流过。

当反向电压达到反向击穿电压后,可能导致晶闸管发热损坏。

图 1-8 晶闸管的伏安特性IG2>IG1>IG

正向导通

雪崩击穿

O +UA-

UA

-IA

IA

IHIG2 IG1 IG=0

UboUDSM

UDRM

URRMURSM

( 2 )反向特性

Page 33: 第 1 章      电力电子器件

1-33

1.3.2 晶闸管的基本特性

1) 开通过程延迟时间 td (0.5~1.5s)

上升时间 tr (0.5~3s)

开通时间 tgt 以上两者之和, tgt=td+ tr ( 1-6 )

100%90%

10%

uAK

t

tO

0 td tr

trr tgrURRM

IRM

iA

2) 关断过程

反向阻断恢复时间 trr

正向阻断恢复时间 tgr

关断时间 tq 以上两者之和tq=trr+tgr ( 1-7)

普通晶闸管的关断时间约200-300 s

2 ) 动态特性

图 1-9 晶闸管的开通和关断过程波形

触发脉冲

Page 34: 第 1 章      电力电子器件

1-34

1.3.3 晶闸管的主要参数

断态重复峰值电压 UDRM

—— 在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压。

反向重复峰值电压 URRM

—— 在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。

通态(峰值)电压 UT

—— 晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压。

通常取晶闸管的 UD

RM 和 URRM 中 较 小的标值作为该器件的额定电压。选用时,一般取额定电压为正常工作时晶闸管所承受峰值电压 2~3倍。

使用注意:

1 )电压定额

Page 35: 第 1 章      电力电子器件

1-35

1.3.3 晶闸管的主要参数

通态平均电流 IT(AV )

—— 在环境温度为 40C 和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。标称其额定电流的参数。

—— 使用时应按有效值相等的原则来选取晶闸管。维持电流 IH

—— 使晶闸管维持导通所必需的最小电流。擎住电流 IL

—— 晶闸管刚从断态转入通态并移除触发信号后, 能维持导通所需的最小电流。对同一晶闸管来说,通常 IL 约为 IH 的 2~4 倍。

浪涌电流 ITSM

——指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流 。

2 )电流定额

LIHI

Page 36: 第 1 章      电力电子器件

1-36

1.3.3 晶闸管的主要参数例:额定电流为 100A 的晶闸管通以如下波形的电流 (阴影 ) ,计算晶闸

管实际允许流过的电流平均值。解:根据题义, IT(AV)=100A ,所以允许流过的电流有效值为: IT=1.57 IT(AV)=157A

对于实际的电流波形,其电流平均值为:

电流有效值为:

i

mI

2

tI m sin

t2

2 2)(sin

2

1 mmd

IttdII

22)()sin(

2

1

2

2 mm

ItdtII

所以 22.22

22

m

m

d I

I

I

I

根据电流有效值相等的原则:

AIII Td 15722.2 则实际允许流过的电流平均值为:

AId 7.7022.2

157

Page 37: 第 1 章      电力电子器件

1-37

1.3.3 晶闸管的主要参数

断态电压临界上升率 du/dt

——指在额定结温和门极开路的情况下,不导致晶闸管从断态到通 态转换的外加电压最大上升率。

—— 电压上升率过大,使充电电流足够大,就会使晶闸管误导通 。

通态电流临界上升率 di/dt

——指在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。

—— 如果电流上升太快,可能造成局部过热而使晶闸管损坏。

3 )动态参数

Page 38: 第 1 章      电力电子器件

1-38

1.3.4 晶闸管的派生器件

开关时间以及 du/dt 和 di/dt耐量都有明显改善。普通晶闸管关断时间数百微秒,快速晶闸管数十微秒,高频晶闸管 10s左右。DATASHEET

1 )快速晶闸管( Fast Switching Thyristor—— FST)

Page 39: 第 1 章      电力电子器件

1-39

1.3.4 晶闸管的派生器件2 )双向晶闸管( Triode AC Switch——TRIAC 或 Bidirectio

nal triode thyristor )

图 1-10 双向晶闸管的电气图形符号和伏安特性

a) 电气图形符号 b) 伏安特性

a) b)

I

O U

IG=0

G

T1

T2

可认为是一对反并联联接的普通晶闸管的集成。

有两个主电极 T1 和 T2 ,一个门极 G 。

在第I和第 III 象限有对称的伏安特性。

不用平均值而用有效值来表示其额定电流值。

DATASHEET

Page 40: 第 1 章      电力电子器件

1-40

1.3.4 晶闸管的派生器件3) 逆导晶闸管( Reverse Conducting Thyristor—

—RCT )

a)

KG

A

b)

UO

I

IG=0

图 1-11 逆导晶闸管的电气图形符号和伏安特性

a) 电气图形符号 b) 伏安特性

将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件。

具有正向压降小、关断时间短、高温特性好、额定结温高等优点。

Page 41: 第 1 章      电力电子器件

1-41

1.3.4 晶闸管的派生器件4) 光控晶闸管( Light Triggered Thyristor——LTT )

A

G

K

a)

AK

光强度强 弱

b)

O U

IA

图 1-12 光控晶闸管的电气图形符号和伏安特性

a) 电气图形符号 b) 伏安特性

又称光触发晶闸管,是利用一定波长的光照信号触发导通的晶闸管。

光触发保证了主电路与控制电路之间的绝缘,且可避免电磁干扰的影响。

因此目前在高压大功率的场合。

Page 42: 第 1 章      电力电子器件

1-42

1.4 典型全控型器件

1.4.1 门极可关断晶闸管

1.4.21.4.2 电力晶体管电力晶体管

1.4.31.4.3 电力场效应晶体管电力场效应晶体管

1.4.41.4.4 绝缘栅双极晶体管绝缘栅双极晶体管

Page 43: 第 1 章      电力电子器件

1-43

1.4 典型全控型器件 · 引言

门极可关断晶闸管——在晶闸管问世后不久出现。

20 世纪 80 年代以来,电力电子技术进入了一个崭新时代。

典型代表——门极可关断晶闸管 GTO、电力晶体管GTR、电力场效应晶体管 MOSFET、绝缘栅双极晶体管 IGBT。

Page 44: 第 1 章      电力电子器件

1-44

1.4 典型全控型器件 · 引言常用的典型全控型器件

电力 MOSFET

IGBT 单管及模块

Page 45: 第 1 章      电力电子器件

1-45

1.4.1 门极可关断晶闸管

晶闸管的一种派生器件,电流驱动型器件。

可以通过在门极施加负的脉冲电流使其关断。

GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用。

DATASHEET

门极可关断晶闸管( Gate-Turn-Off Thyristor —

GTO )

Page 46: 第 1 章      电力电子器件

1-46

1.4.1 门极可关断晶闸管

结构:与普通晶闸管的相同点: PNPN四层半导体结构,外部引出阳极、阴极和门极。和普通晶闸管的不同点: GTO 是一种多元的功率集成器件。

图 1-13 GTO 的内部结构和电气图形符号 a) 各单元的阴极、门极间隔排列的图形 b) 并联单元结构断面示意图 c) 电气图形符

1 ) GTO 的结构和工作原理

Page 47: 第 1 章      电力电子器件

1-47

1.4.1 门极可关断晶闸管工作原理:

与普通晶闸管一样,可以用图 1-7所示的双晶体管模型来分析。

图 1-7 晶闸管的双晶体管模型及其工作原理

1+2=1 是器件临界导通的条件。

由 P1N1P2 和 N1P2N2 构成的两个晶体管 V1 、 V2 分别具有共基极电流增益 1 和 2 。

Page 48: 第 1 章      电力电子器件

1-48

1.4.1 门极可关断晶闸管

GTO 能够通过门极关断的原因是其与普通晶闸管有如下区别:设计 2 较大,使晶体管 V2 控 制灵敏,易于 GTO 关断。

导通时 1+2 更接近 1 (普通晶闸管 1+2≥1.15,而 GTO, 1+2 ≈1.05),导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。

多元集成结构,使得 P2 基区横向电阻很小,能从门极抽出较大电流。

图 1-7 晶闸管的工作原理

Page 49: 第 1 章      电力电子器件

1-49

1.4.1 门极可关断晶闸管

GTO 导通过程与普通晶闸管一样,只是导通时饱和程度较浅( 1+2 ≈1.05 )。2 较大, GTO 关断过程中有强烈正反馈使器件退出饱和而关断。多元集成结构还使 GTO 比普通晶闸管开通过程快,承受 di/dt 能力强 。

由上述分析我们可以得到以下结论:

Page 50: 第 1 章      电力电子器件

1-50

1.4.1 门极可关断晶闸管

开通过程:与普通晶闸管相同关断过程:与普通晶闸管有所不同储存时间 ts ,使等效晶体管退出饱和。下降时间 tf

尾部时间 tt — 残存载流子复合。通常 tf比 ts 小得多,而 tt

比 ts 要长。门极负脉冲电流幅值越大, ts越短。

Ot

0 t

iG

iA

IA

90%IA

10%IA

tttftstd tr

t0 t1 t2 t3 t4 t5 t6

图 1-14 GTO 的开通和关断过程电流波形

2) GTO 的动态特性

Page 51: 第 1 章      电力电子器件

1-51

1.4.1 门极可关断晶闸管3) GTO 的主要参数

—— 延迟时间与上升时间之和。延迟时间一般约 1

~2s ,上升时间则随通态阳极电流的增大而增大。

—— 一般指储存时间和下降时间之和,不包括尾部时间。下降时间一般小于 2s 。

( 2 ) 关断时间 toff

( 1 )开通时间 ton

不少 GTO都制造成逆导型,类似于逆导晶闸管,需承受反压时,应和电力二极管串联 。

许多参数和普通晶闸管相应的参数意义相同,以下只介绍意义不同的参数。

Page 52: 第 1 章      电力电子器件

1-52

1.4.1 门极可关断晶闸管

( 3 )最大可关断阳极电流 IATO

( 4 ) 电流关断增益 off

off 一般很小,只有 5左右,这是 GTO 的一个主要缺

点。 1000A 的 GTO 关断时门极负脉冲电流峰值要 200A 。

——GTO额定电流,以绝对瞬时值表示。

—— 最大可关断阳极电流与门极负脉冲电流最

大值 IGM 之比称为电流关断增益。

( 1-8 )GM

ATOoff I

I

Page 53: 第 1 章      电力电子器件

1-53

1.4.2 电力晶体管

电力晶体管( Giant Transistor——GTR ,直译为巨型晶体管)是电流驱动型器件。耐高电压、大电流的双极结型晶体管( Bipolar Junction Transistor——BJT ),英文有时候也称为 Power BJT 。DATASHEET 1 2

   应用20 世纪 80 年代以来,在中、小功率范围内取代晶闸管,但目前又大多被 IGBT 和电力 MOSFET取代。

术语用法:

Page 54: 第 1 章      电力电子器件

1-54

与普通的双极结型晶体管基本原理是一样的。主要特性是耐压高、电流大、开关特性好。通常采用至少由两个晶体管按达林顿接法组成的单元结构。采用集成电路工艺将许多这种单元并联而成 。

1.4.2 电力晶体管1 ) GTR 的结构和工作原理

图 1-15 GTR 的结构、电气图形符号和内部载流子的流动 a) 内部结构断面示意图 b) 电气图形符号 c) 内部载流子的流动

Page 55: 第 1 章      电力电子器件

1-55

1.4.2 电力晶体管

在应用中, GTR 一般采用共发射极接法。集电极电流 ic 与基极电流 ib 之比为

( 1-9 ) ——GTR 的电流放大系数,反映了基极电流对集电极电流的

控制能力 。

当考虑到集电极和发射极间的漏电流 Iceo 时, ic 和 ib 的关系为 ic= ib +Iceo ( 1-10 )

单管 GTR 的 值比小功率的晶体管小得多,通常为 10左右,采用达林顿接法可有效增大电流增益。

b

c

i

i

空穴流

电子流

c)

Eb

Ec

ib

ic=ib

ie=(1+ib

1 ) GTR 的结构和工作原理

Page 56: 第 1 章      电力电子器件

1-56

1.4.2 电力晶体管

(1)  静态特性共发射极接法时的典型输出特性:截止区、放大区和饱和区。

在电力电子电路中 GTR 工作在开关状态。

在开关过程中,即在截止区和饱和区之间过渡时,要经过放大区。

截止区

放大区

饱和区

O

Ic

ib3

ib2

ib1ib1<ib2<ib3

Uce

图 1-16 共发射极接法时 GTR的输出特性

2 ) GTR 的基本特性

Page 57: 第 1 章      电力电子器件

1-57

1.4.2 电力晶体管

开通过程

延迟时间 td 和上升时间 tr ,

二者之和为开通时间 ton 。

加快开通过程的办法 。关断过程储存时间 ts 和下降时间 tf ,二者之和为关断时间 toff 。加快关断速度的办法。GTR 的开关时间在几微秒以内,比晶闸管和 GTO都短很多 。

ib Ib1

Ib2

Icsic

0

0

90% Ib1

10% Ib1

90% Ics

10% Ics

t0 t1 t2 t3 t4 t5 t

t

toff

ts tf

ton

trtd

图 1-17 GTR 的开通和关断过程电流波形

(2)  动态特性

Page 58: 第 1 章      电力电子器件

1-58

1.4.2 电力晶体管

前已述及:电流放大倍数、直流电流增益 hFE 、集射

极间漏电流 Iceo 、集射极间饱和压降 Uces 、开通时间 ton 和

关断时间 toff (此外还有 ) :

1)   最高工作电压 GTR 上电压超过规定值时会发生击穿。

击穿电压不仅和晶体管本身特性有关,还与外电路接法有关。

BUcbo> BUcex> BUces> BUcer> Buceo 。

实际使用时,最高工作电压要比 BUceo 低得多。

3 ) GTR 的主要参数

Page 59: 第 1 章      电力电子器件

1-59

1.4.2 电力晶体管

通常规定为 hFE下降到规定值的 1/2~1/3 时所对应的 Ic 。

实际使用时要留有裕量,只能用到 IcM 的一半或稍多一点。

3) 集电极最大耗散功率 PcM

最高工作温度下允许的耗散功率。

产品说明书中给 PcM 时同时给出壳温 TC ,间接表示了最高

工作温度 。

2)  集电极最大允许电流 IcM

Page 60: 第 1 章      电力电子器件

1-60

1.4.2 电力晶体管

一次击穿:集电极电压升高至击穿电压时, Ic迅速增大。

只要 Ic 不超过限度, GTR 一般不会损坏,工作特性也不变。

二次击穿:一次击穿发生时, Ic突然急剧上升,电压陡然下降。

常常立即导致器件的永久损坏,或者工作特性明显衰变 。

安全工作区( Safe Operati

ng Area——SOA )

最高电压 UceM 、集电极最大

电流 IcM 、最大耗散功率 PcM 、

二次击穿临界线限定。

SOA

O

Ic

IcMPSB

PcM

UceUceM

图 1-18 GTR 的安全工作区

4) GTR 的二次击穿现象与安全工作区

Page 61: 第 1 章      电力电子器件

1-61

1.4.3 电力场效应晶体管

分为结型和绝缘栅型通常主要指绝缘栅型中的MOS型( Metal Oxide Semiconductor FET )简称电力 MOSFET ( Power MOSFET )

  特点电压型控制器件,驱动电路简单,需要的驱动功率小。开关速度快,工作频率高( 500kHz )。电流容量小,耐压低( 200A/2000V 以下),一般只适用于功率不超过 1kW 的电力电子装置 。通态电阻具有正温度系数,易于并联。

电力场效应晶体管

Page 62: 第 1 章      电力电子器件

1-62

1.4.3 电力场效应晶体管

电力 MOSFET 的种类 按导电沟道可分为 P沟道和 N沟道。

耗尽型——当栅极电压为零时漏源极之间就存在导电沟道。

增强型——对于 N ( P )沟道器件,栅极电压大于(小于)零时才存在导电沟道。

  电力 MOSFET 主要是 N沟道增强型。

DATASHEET

1 )电力 MOSFET 的结构和工作原理

Page 63: 第 1 章      电力电子器件

1-63

1.4.3 电力场效应晶体管电力 MOSFET 的结构

是单极型晶体管。导电机理与小功率 MOS 管相同,但结构上有较大区别。采用多元集成结构,不同的生产厂家采用了不同设计。

图 1-19 电力 MOSFET 的结构和电气图形符号

Page 64: 第 1 章      电力电子器件

1-64

1.4.3 电力场效应晶体管

电力 MOSFET 大都采用垂直导电结构,又称为 VMO

SFET ( Vertical MOSFET )。

按垂直导电结构的差异,分为利用 V 型槽实现垂直导电的 VVMOSFET 和具有垂直导电双扩散 MOS 结构的VDMOSFET ( Vertical Double-diffused MOSFET )。

这里主要以 VDMOS 器件为例进行讨论。

电力 MOSFET 的结构

Page 65: 第 1 章      电力电子器件

1-65

1.4.3 电力场效应晶体管

截止:漏源极间加正电源,栅源极间电压为零。– P 基区与 N漂移区之间形成的 PN 结 J1反偏,漏源极之间无电

流流过。

导电:在栅源极间加正电压 UGS

– 当 UGS 大于 UT 时, P 型半导体反型成 N 型而成为反型层,该反型层形成 N沟道而使 PN 结 J1消失,漏极和源极导电 。

图 1-19 电力 MOSFET 的结构和电气图形符号

电力 MOSFET 的工作原理

Page 66: 第 1 章      电力电子器件

1-66

1.4.3 电力场效应晶体管

 (1) 静态特性

漏极电流 ID 和栅源间电压

UGS 的关系称为 MOSFET

的转移特性。

ID 较大时, ID 与 UGS 的关系近似线性,曲线的斜率定义为跨导 Gfs 。

0

10

20

30

50

40

2 4 6 8

a)

10

20

30

50

40

0

b)

10 20 30 5040

饱和区

非饱和区

截止区

I D/A

UTUGS/V

UDS/VUGS=UT=3V

UGS=4V

UGS=5V

UGS=6V

UGS=7V

UGS=8V

I D/A

图 1-20 电力 MOSFET 的转移特性和输出特性 a) 转移特性 b) 输出特性

2 )电力 MOSFET 的基本特性

Page 67: 第 1 章      电力电子器件

1-67

1.4.3 电力场效应晶体管

截 止 区 ( 对 应 于 GTR 的截止区)饱 和 区 ( 对 应 于 GTR 的放大区)非饱 和 区 ( 对 应 GTR 的饱和区)

工作在开关状态,即在截止区和非饱和区之间来回转换。

漏源极之间有寄生二极管,漏源极间加反向电压时器件导通。

通态电阻具有正温度系数,对器件并联时的均流有利。

图 1-20 电力 MOSFET 的转移特性和输出特性 a) 转移特性 b) 输出特性

MOSFET 的漏极伏安特性:

0

10

20

30

50

40

2 4 6 8

a)

10

20

30

50

40

0

b)

10 20 30 5040

饱和区

非饱和区

截止区I D/A

UTUGS/V

UDS/VUGS=UT=3V

UGS=4V

UGS=5V

UGS=6V

UGS=7V

UGS=8V

I D/A

Page 68: 第 1 章      电力电子器件

1-68

1.4.3 电力场效应晶体管

开通过程开通延迟时间 td(on)

上升时间 tr

开通时间 ton—— 开通延迟时间与上升时间之和

关断过程

关断延迟时间 td(off)

下降时间 tf

关断时间 toff—— 关断延迟时间和

下降时间之和

a) b)

RsRG RF

RL

iD

uGS

up

iD信号

+UE

iDO

O

O

up

t

t

t

uGSuGSPuT

td(on) trtd(off) tf

图 1-21 电力 MOSFET 的开关过程a) 测试电路 b) 开关过程波形

up—脉冲信号源, Rs— 信号源内阻,RG—栅极电阻,

RL—负载电阻, RF— 检测漏极电流

(2)   动态特性

inC

Page 69: 第 1 章      电力电子器件

1-69

1.4.3 电力场效应晶体管

MOSFET 的开关速度和 Cin充放电有很大关系。

可降低驱动电路内阻 Rs减小时间常数,加快开关速度。

不存在少子储存效应,关断过程非常迅速。

开关时间在 10~100ns 之间,工作频率可达 100kHz 以上,是主要电力电子器件中最高的。

场控器件,静态时几乎不需输入电流。但在开关过程中需对输入电容充放电,仍需一定的驱动功率。

开关频率越高,所需要的驱动功率越大。

MOSFET 的开关速度

Page 70: 第 1 章      电力电子器件

1-70

1.4.3 电力场效应晶体管3) 电力 MOSFET 的主要参数

—— 电力 MOSFET 电压定额(1)  漏极电压 UDS

(2) 漏极直流电流 ID 和漏极脉冲电流幅值 IDM

—— 电力 MOSFET 电流定额(3) 栅源电压 UGS

—— UGS>20V将导致绝缘层击穿 。

除跨导 Gfs 、开启电压 UT 以及 td(on) 、 tr 、 td(off) 和 tf 之外还有:

(4)  极间电容—— 极间电容 CGS 、 CGD 和 C

DS输入电容: Ciss= CGS+ CGD ( 1-14)转移电容: Crss= CGD ( 1-15)输出电容: Coss= CDS+ CGD ( 1-16)

G

D

S

CDS

CGD

CGS

Page 71: 第 1 章      电力电子器件

1-71

1.4.4 绝缘栅双极晶体管

两类器件取长补短结合而成的复合器件— Bi-MOS 器件

绝缘栅双极晶体管( Insulated-gate Bipolar Transistor——IGBT 或 IGT ) (DATASHEET 1 2 )

GTR 和 MOSFET 复合,结合二者的优点。

1986 年投入市场,是中小功率电力电子设备的主导器件。

继续提高电压和电流容量,以期再取代 GTO 的地位。

GTR 和 GTO 的特点——双极型,电流驱动,有电导调制效应,通流能力很强,开关速度较低,所需驱动功率大,驱动电路复杂。

MOSFET 的优点——单极型,电压驱动,开关速度快,输入阻抗高,热稳定性好,所需驱动功率小而且驱动电路简单。

Page 72: 第 1 章      电力电子器件

1-72

1.4.4 绝缘栅双极晶体管1) IGBT 的结构和工作原理

三端器件:栅极 G 、集电极 C 和发射极 E

图 1-22 IGBT 的结构、简化等效电路和电气图形符号a) 内部结构断面示意图 b) 简化等效电路 c) 电气图形符号

Page 73: 第 1 章      电力电子器件

1-73

1.4.4 绝缘栅双极晶体管

图 1-22a—N沟道 VDMOSFET 与 GTR 组合—— N沟道 IGBT 。IGBT比 VDMOSFET 多一层 P+ 注入区,具有很强的通流能力。简化等效电路表明, IGBT 是 GTR 与 MOSFET 组成的达林顿结构,一个由 MOSFET 驱动的厚基区 PNP 晶体管。RN 为晶体管基区内的调制电阻。

图 1-22 IGBT 的结构、简化等效电路和电气图形符号a) 内部结构断面示意图 b) 简化等效电路 c) 电气图形符号

IGBT 的结构

Page 74: 第 1 章      电力电子器件

1-74

1.4.4 绝缘栅双极晶体管

  驱动原理与电力 MOSFET 基本相同,场控器件,通断由栅射

极电压 uGE决定。

导通: uGE 大于开启电压 UGE(th) 时, MOSFET 内形成沟道,为晶

体管提供基极电流, IGBT 导通。

通态压降:电导调制效应使电阻 RN减小,使通态压降减小。

关断:栅射极间施加反压或不加信号时, MOSFET 内的沟道消

失,晶体管的基极电流被切断, IGBT 关断。

IGBT 的原理

Page 75: 第 1 章      电力电子器件

1-75

a) b)

O

有源区

正向阻断区

饱和区

反向阻断区

IC

UGE(th) UGEO

IC

URM

UFM UCE

UGE(th)

UGE增加

1.4.4 绝缘栅双极晶体管2) IGBT 的基本特性 (1) IGBT 的静态特性

图 1-23 IGBT 的转移特性和输出特性a) 转移特性 b) 输出特性

转移特性—— IC 与 U

GE 间的关系 ( 开启电压 UGE(th))

输出特性•分为三个区域:正 向阻断区、 有源区和饱和区。

Page 76: 第 1 章      电力电子器件

1-76

1.4.4 绝缘栅双极晶体管

t

t

t

10%

90%

10%

90%

U CE

IC

0

O

0

U GE U GEM

I CM

U CEM

t fv1 t fv2

t offt on

t fi1 t fi2

t d(off) t ft d(on) tr

U CE(on)

U GEM

U GEM

I CM

I CM

图 1-24 IGBT 的开关过程

IGBT 的开通过程      

与 MOSFET 的相似

开通延迟时间 td(on)

电流上升时间 tr

开通时间 ton

uCE 的下降过程分为 tfv1 和 tf

v2 两段。

tfv1——IGBT 中 MOSFET 单独工作的电压下降过程;

tfv2——MOSFET 和 PNP 晶体管同时工作的电压下降过程。

(2)   IGBT的动态特性 15V

Page 77: 第 1 章      电力电子器件

1-77

1.4.4 绝缘栅双极晶体管

图 1-24 IGBT 的开关过程

关断延迟时间 td(off )

电流下降时间 tf

关断时间 toff

电流下降时间又可分为 tfi1 和tfi2 两段。

tfi1——IGBT 器 件 内部的 M

OSFET 的关断过程, iC下降较快。tfi2——IGBT 内部的 PNP 晶体管的关断过程, iC下降较慢。

IGBT 的关断过程

t

t

t

10%

90%

10%

90%

U CE

IC

0

O

0

U GE U GEM

I CM

U CEM

t fv1 t fv2

t offt on

t fi1 t fi2

t d(off) t ft d(on) tr

U CE(on)

U GEM

U GEM

I CM

I CM

Page 78: 第 1 章      电力电子器件

1-78

1.4.4 绝缘栅双极晶体管

3) IGBT 的主要参数

—— 正常工作温度下允许的最大功耗 。

(3) 最大集电极功耗 PCM

——包括额定直流电流 IC 和 1ms脉宽最大电流 ICP 。

(2)  最大集电极电流

—— 由内部 PNP 晶体管的击穿电压确定。

(1) 最大集射极间电压 UCES

Page 79: 第 1 章      电力电子器件

1-79

1.4.4 绝缘栅双极晶体管

IGBT 的特性和参数特点可以总结如下:

开关速度高,开关损耗小。

相同电压和电流定额时,安全工作区比 GTR 大,

且 具有耐脉冲电流冲击能力。

通态压降比 VDMOSFET 低。

输入阻抗高,输入特性与 MOSFET 类似。

与 MOSFET 和 GTR相比,耐压和通流能力还可以

进一步提高,同时保持开关频率高的特点 。

Page 80: 第 1 章      电力电子器件

1-80

1.5 其他新型电力电子器件

1.5.1 MOS1.5.1 MOS 控制晶闸管控制晶闸管 MCTMCT

1.5.2 1.5.2 静电感应晶体管静电感应晶体管 SITSIT

1.5.3 1.5.3 静电感应晶闸管静电感应晶闸管 SITHSITH

1.5.4 1.5.4 集成门极换流晶闸管集成门极换流晶闸管 IGCTIGCT

1.5.5 1.5.5 功率模块与功率集成电路功率模块与功率集成电路

Page 81: 第 1 章      电力电子器件

1-81

1.5.4 集成门极换流晶闸管 IGCT

20 世纪 90 年代后期出现,结合了 IGBT 与 GTO 的优点,容量与

GTO相当,开关速度快 10倍。

可省去GTO 复杂的缓冲电路,但驱动功率仍很大。

目前正在与 IGBT 等新型器件激烈竞争,试图最终取代 GTO 在大

功率场合的位置。

DATASHEET 1 2

IGCT ( Integrated Gate-Commutated Thyristor ) ——GCT ( Gate-Commutated Thyristor )

Page 82: 第 1 章      电力电子器件

1-82

1.5.5 功率模块与功率集成电路

20 世纪 80 年代中后期开始,模块化趋势,将多个器件封装在一个模块中,称为功率模块。

可缩小装置体积,降低成本,提高可靠性。

对工作频率高的电路,可大大减小线路电感,从而简化对保护和缓冲电路的要求。

将器件与逻辑、控制、保护、传感、检测、自诊断等信息电子电路制作在同一芯片上,称为功率集成电路( Power Integrated Circuit——PIC )。

DATASHEET

基本概念

Page 83: 第 1 章      电力电子器件

1-83

1.6 电力电子器件器件的驱动

1.6.1 1.6.1 电力电子器件驱动电路概述电力电子器件驱动电路概述

1.6.2 1.6.2 晶闸管的触发电路晶闸管的触发电路

1.6.3 1.6.3 典型全控型器件的驱动电路典型全控型器件的驱动电路

Page 84: 第 1 章      电力电子器件

1-84

1.6.1 电力电子器件驱动电路概述

使电力电子器件工作在较理想的开关状态,缩短开关时间,减小开关损耗。对装置的运行效率、可靠性和安全性都有重要的意义。一些保护措施也往往设在驱动电路中,或通过驱动电路实现。

驱动电路的基本任务:按控制目标的要求施加开通或关断的信号。对半控型器件只需提供开通控制信号。对全控型器件则既要提供开通控制信号,又要提供关断控制信号。

驱动电路——主电路与控制电路之间的接口

Page 85: 第 1 章      电力电子器件

1-85

1.6.1 电力电子器件驱动电路概述

提供电气隔离 光隔离一般采用光耦合器 磁隔离的元件通常是脉冲变压器

图 1-25 光耦合器的类型及接法a) 普通型 b) 高速型 c) 高传输比型

Page 86: 第 1 章      电力电子器件

1-86

1.6.1 电力电子器件驱动电路概述

按照驱动信号的性质分,可分为 电流驱动型 电压驱动型

驱动电路具体形式可为 分立元件 专用集成驱动电路。

gi分类

15V

5V

驱动电路

Page 87: 第 1 章      电力电子器件

1-87

1.6.2 晶闸管的触发电路

作用:产生符合要求的门极触发脉冲,保证晶闸管在需要的时刻由阻断转为导通。

晶闸管触发电路应满足下列要求:

脉冲的宽度应保证晶闸管可靠导通。触发脉冲应有足够的幅度。不超过门极电压、电流和功率定额,且在可靠触发区域之内。有良好的抗干扰性能、温度稳定性及与主电路的电气隔离。

t

I

IM

t1 t2 t3 t4

图 1-26 理想的晶闸管触发脉冲电流波形

t1~t2脉冲前沿上升时间( <1s )  t1~t3强脉宽度

IM强脉冲幅值( 3IGT~5IGT )t1~t4脉冲宽度   I脉冲平顶

幅值( 1.5IGT~2IGT )

晶闸管的触发电路

Page 88: 第 1 章      电力电子器件

1-88

1.6.2 晶闸管的触发电路

V2 、 V3 构成脉冲放大环节。脉冲变压器 TM 和附属电路构成脉冲输出环节。 V2 、 V3 导通时,通过脉冲变压器向晶闸管的门极和阴极之间输出触发脉冲。

图 1-27 常见的晶闸管触发电路

常见的晶闸管触发电路

Page 89: 第 1 章      电力电子器件

1-89

1.6.3 典型全控型器件的驱动电路

(1) GTO

GTO 的开通控制与普通晶闸管相似。GTO 关断控制需施加负门极电流。

图 1-28 推荐的 GTO门极电压电流波形

O t

tO

uG

iG

1) 电流驱动型器件的驱动电路

正的门极电流5V的负偏压

GTO 驱动电路通常包括开通驱动电路、关断驱动电路和门极反偏电路三部分,可分为脉冲变压器耦合式和直接耦合式两种类型。

Page 90: 第 1 章      电力电子器件

1-90

门极关断电流和阳极电压 门极关断电流和电压

Page 91: 第 1 章      电力电子器件

1-91

1.6.3 典型全控型器件的驱动电路直接耦合式驱动电路可避免电路内部的相互干扰和寄生振荡,可得到较陡的脉冲前沿。

目前应用较广,但其功耗大,效率较低。

图 1-29 典型的直接耦合式 GTO 驱动电路

Page 92: 第 1 章      电力电子器件

1-92

1.6.3 典型全控型器件的驱动电路

开通驱动电流应使 GTR 处于准饱和导通状态,使之不进入放大区和深饱和区。

关断 GTR 时,施加一定的负基极电流有利于减小关断时间和关断损耗。

关断后同样应在基射极之间施加一定幅值( 6V左右)的负偏压。

tO

ib

图 1-30 理想的 GTR 基极驱动电流波形

(2) GTR

Page 93: 第 1 章      电力电子器件

1-93

1.6.3 典型全控型器件的驱动电路GTR 的一种驱动电路,包括电气隔离和晶体管放大电路两部分。

VD1

A

V

VS0V

+10V+15V

V1

VD2

VD3

VD4

V3

V2

V4

V5

V6

R1

R2

R3R4

R5

C1

C2

图 1-31  GTR 的一种驱动电路

驱动 GTR 的集成驱动电路中, THOMSON 公司的 UAA4002 和三菱公司的 M57215BL 较为常见。

Page 94: 第 1 章      电力电子器件

1-94

1.6.3 典型全控型器件的驱动电路

电力 MOSFET 和 IGBT 是电压驱动型器件。

使 MOSFET 开通的驱动电压一般 10~15V ,使 IGBT

开通的驱动电压一般 15 ~ 20V 。

关断时施加一定幅值的负驱动电压(一般取 -5 ~ -15

V )有利于减小关断时间和关断损耗。

要有一定的瞬时电流输出能力。

在栅极串入一只低值电阻可以减小寄生振荡。

2) 电压驱动型器件的驱动电路

Page 95: 第 1 章      电力电子器件

1-95

1.6.3 典型全控型器件的驱动电路(1) 电力 MOSFET 的一种驱动电路:

电气隔离和晶体管放大电路两部分

图 1-32 电力 MOSFET 的一种驱动电路专为驱动电力 MOSFET 而设计的混合集成电路有三菱公司的 M57918L ,其输入信号电流幅值为 16mA ,输出最大脉冲电流为 +2A 和 -3A ,输出驱动电压 +15V 和 -10V 。

Page 96: 第 1 章      电力电子器件

1-96

1.6.3 典型全控型器件的驱动电路(2) IGBT 的驱动

图 1-33 M57962L 型 IGBT 驱动器的原理和接线图

常用的有三菱公司的 M579 系列(如 M57962L和 M57959L )和富士公司的 EXB 系列(如EXB840 、 EXB841 、 EXB850 和 EXB851 )。

多采用专用的混合集成驱动器。

Page 97: 第 1 章      电力电子器件

1-97

1.7 电力电子器件器件的保护

1.7.1 1.7.1 过电压的产生及过电压保护过电压的产生及过电压保护

1.7.2 1.7.2 过电流保护过电流保护

1.7.3 1.7.3 缓冲电路缓冲电路

Page 98: 第 1 章      电力电子器件

1-98

1.7.1 过电压的产生及过电压保护

外因过电压:来自雷击和系统操作过程等外因操作过电压:由分闸、合闸等开关操作引起雷击过电压:由雷击引起

内因过电压:主要来自电力电子装置内部器件的开关过程换相过电压:晶闸管或与全控型器件反并联的二极管在换相结束后,反向电流急剧减小,会由线路电感在器件两端感应出过电压。关断过电压:全控型器件关断时,正向电流迅速降低而由线路电感在器件两端感应出的过电压。

电力电子装置可能的过电压——外因过电压和内因过电压

Page 99: 第 1 章      电力电子器件

1-99

1.7.1 过电压的产生及过电压保护过电压保护措施

图 1-34 过电压抑制措施及配置位置F避雷器  D 变压器静电屏蔽层  C静电感应过电压抑制电容

RC1网侧浪涌过电压抑制用 RC 电路  RC2侧浪涌过电压抑制用反向阻断式 RC 电路RV 压敏电阻过电压抑制器  RC3网器件换相过电压抑制用 RC 电路RC4 直流侧 RC抑制电路  RCD 器件关断过电压抑制用 RCD 电路

电力电子装置可视具体情况只采用其中的几种。其中 RC3 和 RCD 为抑制内因过电压的措施,属于缓冲电路范畴。

Page 100: 第 1 章      电力电子器件

1-100

1.7.2 过电流保护过电流——过载和短路两种情况保护措施

负载

触发电路开关电路过电流继电器

交流断路器

动作电流整定值

短路器电流检测

电子保护电路

快速熔断器 变流器 直流快速断路器电流互感器变压器

同时采用几种过电流保护措施,提高可靠性和合理性。电子电路作为第一保护措施,快熔仅作为短路时的部分 区段的保护,直流快速断路器整定在电子电路动作之后实现保护,过电流继电器整定在过载时动作。

图 1-37 过电流保护措施及配置位置

Page 101: 第 1 章      电力电子器件

1-101

1.7.2 过电流保护

全保护:过载、短路均由快熔进行保护,适用于小功率装置或器件裕度较大的场合。短路保护:快熔只在短路电流较大的区域起保护作用。

对重要的且易发生短路的晶闸管设备,或全控型器件,需采用电子电路进行过电流保护。常在全控型器件的驱动电路中设置过电流保护环节,响应最快 。

快熔对器件的保护方式:全保护和短路保护两种

Page 102: 第 1 章      电力电子器件

1-102

1.7.3 缓冲电路

关断缓冲电路( du/dt抑制电路)——吸收器件的关断过电压和换相过电压,抑制 du/dt ,减小关断损耗。开通缓冲电路( di/dt抑制电路)——抑制器件开通时的电流过冲和 di/dt ,减小器件的开通损耗。复合缓冲电路——关断缓冲电路和开通缓冲电路的结合。按能量的去向分类法:耗能式缓冲电路和馈能式缓冲电路(无损吸收电路)。通常将缓冲电路专指关断缓冲电路,将开通缓冲电路叫做di/dt抑制电路。

缓冲电路 (Snubber Circuit) : 又称吸收电路,抑制器件的内因过电压、 du/dt 、过电流和 di/dt ,减小器件的开关损耗。

Page 103: 第 1 章      电力电子器件

1-103

b)

t

uCEiC

O

didt抑制电路无 时

didt抑制电路有 时

有缓冲电路时

无缓冲电路时

uCE

iC

1.7.3 缓冲电路缓冲电路作用分析无缓冲电路:有缓冲电路:

图 1-38  di/dt抑制电路和充放电型 RCD缓冲电路及波形

a) 电路 b) 波形

A

DC

B

无缓冲电路

有缓冲电路

uCE

iC

O

图 1-39 关断时的负载线

Page 104: 第 1 章      电力电子器件

1-104

1.7.3 缓冲电路充放电型 RCD 缓冲电路,适用于中等容量的场合。

图 1-38  di/dt抑制电路和充放电型 RCD缓冲电路及波形

a) 电路

其中 RC 缓冲电路主要用于小容量器件,而放电阻止型 RCD 缓冲电路用于中或大容量器件。

图 1-40 另外两种常用的缓冲电路

a) RC吸收电路 b) 放电阻止型 RCD吸收电路

Page 105: 第 1 章      电力电子器件

1-105

1.8 电力电子器件器件的串联和并联使用

1.8.1 1.8.1 晶闸管的串联晶闸管的串联

1.8.2 1.8.2 晶闸管的并联晶闸管的并联

1.8.3 1.8.3 电力电力 MOSFETMOSFET 和和 IGBTIGBT 并联运行的特点并联运行的特点

Page 106: 第 1 章      电力电子器件

1-106

1.8.1 晶闸管的串联

问题:理想串联希望器件分压相等,但因特性差异,使器件电压分配不均匀。静态不均压:串联的器件流过的漏电流相同,但因静态伏安特性的分散性,各器件分压不等。

动态不均压:由于器件动态参数和特性的差异造成的不均压。

目的:当晶闸管额定电压小于要求时,可以串联。

Page 107: 第 1 章      电力电子器件

1-107

1.8.1 晶闸管的串联静态均压措施:

选用参数和特性尽量一致的器件。采用电阻均压, Rp 的阻值应比器件阻断时的正、反向电阻小得多。

b)a)

R

C

R

CVT1

VT2

RP

RP

I

O UUT1

IR

UT2

VT1

VT2

图 1-41 晶闸管的串联a) 伏安特性差异  b) 串联均压措施

动态均压措施:选择动态参数和特性尽量一致的器件。用 RC 并联支路作动态均压。采用门极强脉冲触发可以显著减小器件开通时间的差异。

Page 108: 第 1 章      电力电子器件

1-108

1.8.2 晶闸管的并联

问题:会分别因静态和动态特性参数的差异而电流分配不均匀。

  均流措施:挑选特性参数尽量一致的器件。

采用均流电抗器。

用门极强脉冲触发也有助于动态均流。

当需要同时串联和并联晶闸管时,通常采用先串后并的方法联接。

目的:多个器件并联来承担较大的电流

Page 109: 第 1 章      电力电子器件

1-109

1.8.3 电力 MOSFET 和 IGBT 并联运行的特点

Ron具有正温度系数,具有电流自动均衡的能力,容易并联。注意选用 Ron 、 UT 、 Gfs 和 Ciss尽量相近的器件并联。电路走线和布局应尽量对称。可在源极电路中串入小电感 ,起到均流电抗器的作用。

IGBT 并联运行的特点在 1/2 或 1/3额定电流以下的区段,通态压降具有负温度系数。在以上的区段则具有正温度系数。并联使用时也具有电流的自动均衡能力,易于并联。

电力 MOSFET 并联运行的特点

Page 110: 第 1 章      电力电子器件

1-110

图 1-42 电力电子器件分类“树”

本章小结主要内容

全面介绍各种主要电力电子器件的基本结构、工作原理、基本特性和主要参数等。集中讨论电力电子器件的驱动、保护和串、并联使用。

电力电子器件类型归纳单极型:电力 MOSFET 和 SIT

双极型:电力二极管、晶闸管、 GTO 、 GTR 和 SITH

复合型: IGBT 和 MCT

分类: DATASHEET

Page 111: 第 1 章      电力电子器件

1-111

本章小结

特点:输入阻抗高,所需驱动功率小,驱动电路简单,工作频率高。

电流驱动型:双极型器件中除 SITH 外 特点:具有电导调制效应,因而通态压降低,导通

损耗小,但工作频率较低,所需驱动功率大 , 驱动电路较复杂。

电压驱动型:单极型器件和复合型器件,双极型器件中的 SITH

Page 112: 第 1 章      电力电子器件

1-112

本章小结 IGBT 为主体,第四代产品,制造水平 2.5kV / 1.8

kA ,兆瓦以下首选。仍在不断发展,与 IGCT 等新器件激烈竞争,试图在兆瓦以上取代 GTO 。

GTO :兆瓦以上首选,制造水平 6kV / 6kA 。

光控晶闸管:功率更大场合, 8kV / 3.5kA ,装置最高达 300MVA ,容量最大。

电力 MOSFET :长足进步,中小功率领域特别是低压,地位牢固。

功率模块和功率集成电路是现在电力电子发展的一个共同趋势。

当前的格局 :