σημειωσεις Π 1 τζανες-ηλιοπουλος

99
Σημειώσεις στο Μάθημα: Απειροστικός Λογισμός Ι Απόστολος Γιαννόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Αθήνα 2005-2006

Transcript of σημειωσεις Π 1 τζανες-ηλιοπουλος

Page 1: σημειωσεις Π 1 τζανες-ηλιοπουλος

Σημειώσεις στο Μάθημα:

Απειροστικός Λογισμός Ι

Απόστολος Γιαννόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

Αθήνα 2005-2006

Page 2: σημειωσεις Π 1 τζανες-ηλιοπουλος

Περιεχόμενα

1 Το σύνολο των πραγματικών αριθμών 1.1 Φυσικοί αριθμοί 1.2 Ρητοί αριθμοί 1.3 Πραγματικοί αριθμοί 1.4 Συνέπειες του θεωρήματος της πληρότητας 1.5 Ορισμοί και συμβολισμός 1.6 Ανισότητες 1.7 *Παράρτημα: Τομές Dedekind 2 Ακολουθίες πραγματικών αριθμών 2.1 Ακολουθίες πραγματικών αριθμών 2.2 Σύγκλιση ακολουθιών 2.3 Άλγεβρα των ορίων 2.4 Βασικά όρια και βασικά κριτήρια σύγκλισης 2.5 Σύγκλιση μονότονων ακολουθιών 2.6 Θεώρημα Bolzano-Weierstrass 2.7 Ακολουθίες Cauchy 2.8 *Ανώτερο και κατώτερο όριο ακολουθίας 3 Συνεχείς συναρτήσεις

3.1 Συναρτήσεις 3.2 Συνέχεια συνάρτησης 3.3 Βασικά θεωρήματα για συνεχείς συναρτήσεις

4 Όρια συναρτήσεων 4.1 Σημεία συσσώρευσης 4.2 Ορισμός του ορίου 4.3 Σχέση ορίου και συνέχειας 4.4 Τριγωνομετρικές συναρτήσεις 5 Παράγωγος (οι πρώτες δύο παράγραφοι είναι εντός ύλης) 5.1 Ορισμός της παραγώγου 5.2 Κανόνες παραγώγισης 5.3 Κρίσιμα σημεία 5.4 Θεώρημα μέσης τιμής 5.5 Απροσδιόριστες μορφές 5.6 Ιδιότητα Darboux για την παράγωγο 5.7 Γεωμετρική σημασία της δεύτερης παραγώγου

Page 3: σημειωσεις Π 1 τζανες-ηλιοπουλος

Keflaio 1

To sÔnolo twnpragmatik¸n arijm¸n

1.1 FusikoÐ arijmoÐ

H austhr jemelÐwsh tou sunìlou N = 1, 2, 3, . . . twn fusik¸n arijm¸ngÐnetai mèsw twn axiwmtwn tou Peano. 'Eqontac dedomèno to N, mporoÔmena d¸soume austhr kataskeu tou sunìlou Z twn akeraÐwn arijm¸n kai tousunìlou Q twn rht¸n arijm¸n. JewroÔme ìti o anagn¸sthc eÐnai exoikeiwmènocme tic prxeic kai th ditaxh sta sÔnola twn fusik¸n, twn akeraÐwn kai twnrht¸n arijm¸n. Se aut th sÔntomh pargrafo suzhtme kpoiec basikèc arqècgia touc fusikoÔc arijmoÔc.

1.1aþ Arq tou elaqÐstou kai arq thc epagwg c

Arq tou elaqÐstou. Kje mh kenì sÔnolo S fusik¸n arijm¸n èqei elqi-sto stoiqeÐo. Dhlad , uprqei a ∈ S me thn idiìthta: a ≤ b gia kje b ∈ S.

H arq tou elaqÐstou èqei wc sunèpeia thn ex c prìtash:

Je¸rhma 1.1.1. Den mporoÔme na epilèxoume peirouc to pl joc fusikoÔcarijmoÔc oi opoÐoi na fjÐnoun gnhsÐwc.

Apìdeixh. Ac upojèsoume ìti uprqei mia tètoia epilog fusik¸n arijm¸n:

n1 > n2 > · · · > nk > nk+1 > · · · .

Apì thn arq tou elaqÐstou, to sÔnolo S = nk : k ∈ N èqei elqisto stoiqeÐo:autì ja eÐnai thc morf c nm gia kpoion m ∈ N. 'Omwc, nm+1 < nm kainm+1 ∈ S, to opoÐo eÐnai topo. 2

Mia deÔterh sunèpeia thc arq c tou elaqÐstou eÐnai h arq thc epagwg c:

Je¸rhma 1.1.2 (arq thc epagwg c). 'Estw S èna sÔnolo fusik¸narijm¸n me tic ex c idiìthtec:

(i) O 1 an kei sto S.

Page 4: σημειωσεις Π 1 τζανες-ηλιοπουλος

2 · To sunolo twn pragmatikwn arijmwn

(ii) An k ∈ S tìte k + 1 ∈ S.

Tìte, to S tautÐzetai me to sÔnolo ìlwn twn fusik¸n arijm¸n: S = N.

Apìdeixh. Jètoume T = N \ S (to sumpl rwma tou S) kai upojètoume ìti to TeÐnai mh kenì. Apì thn arq tou elaqÐstou, to T èqei elqisto stoiqeÐo to opoÐosumbolÐzoume me a. AfoÔ 1 ∈ S, anagkastik èqoume a > 1 opìte a − 1 ∈ N.AfoÔ o a tan to elqisto stoiqeÐo tou T , èqoume a− 1 ∈ S. Apì thn upìjesh(ii),

a = (a− 1) + 1 ∈ S.

Katal xame se topo, ra to T eÐnai to kenì sÔnolo. Sunep¸c, S = N. 2

Parat rhsh. H arq tou elaqÐstou kai to Je¸rhma 1.1.2 eÐnai logik isodÔnamecprotseic. Prospaj ste na apodeÐxete thn isodunamÐa touc.

H arq thc peperasmènhc epagwg c mac epitrèpei na apodeiknÔoume ìti kpoiaprìtash P (n) pou afor touc fusikoÔc arijmoÔc isqÔei gia kje n ∈ N. ArkeÐ naelègxoume ìti h P (1) isqÔei (aut eÐnai h bsh thc epagwg c) kai na apodeÐxoumeth sunepagwg P (k) ⇒ P (k + 1) (autì eÐnai to epagwgikì b ma). ParadeÐgmataprotsewn pou apodeiknÔontai me th mèjodo thc majhmatik c epagwg c jasunantme se ìlh th dirkeia tou maj matoc.

Je¸rhma 1.1.3 (mèjodoc thc epagwg c). 'Estw Π(n) mia (majhmati-k ) prìtash pou exarttai apì ton fusikì n. An h Π(1) alhjeÔei kai gia kjek ∈ N èqoume

Π(k) alhj c =⇒ Π(k + 1) alhj c ,

tìte h Π(n) alhjeÔei gia kje fusikì n.

Apìdeixh. To sÔnolo S = n ∈ N : Π(n) alhj c ikanopoieÐ tic upojèseic touJewr matoc 1.1.2. 'Ara, S = N. Autì shmaÐnei ìti h Π(n) alhjeÔei gia kjefusikì n. 2

AxÐzei na anafèroume dÔo parallagèc tou Jewr matoc 1.1.2. H apìdeixh toucaf netai san skhsh gia ton anagn¸sth (mimhjeÐte thn prohgoÔmenh apìdeixh -qrhsimopoi ste thn arq tou elaqÐstou).

Je¸rhma 1.1.4. 'Estw m ∈ N kai èstw S èna sÔnolo fusik¸n arijm¸n metic ex c idiìthtec: m ∈ S kai an k ∈ S tìte k + 1 ∈ S. Tìte, S ⊇ n ∈ N : n ≥m = m,m + 1, . . .. 2

Je¸rhma 1.1.5. 'Estw S èna sÔnolo fusik¸n arijm¸n me tic ex c idiìthtec:1 ∈ S kai an 1, . . . , k ∈ S tìte k + 1 ∈ S. Tìte, S = N. 2

IsodÔnama, èqoume ta ex c:

Je¸rhma 1.1.6. 'Estw Π(n) mia prìtash pou exarttai apì ton fusikì n. Anh Π(m) alhjeÔei gia kpoion m ∈ N kai an gia kje k ≥ m isqÔei h sunepagwg

Π(k) alhjeÔei =⇒ Π(k + 1) alhjeÔei,

tìte h Π(n) alhjeÔei gia kje fusikì n ≥ m.

Page 5: σημειωσεις Π 1 τζανες-ηλιοπουλος

1.1 Fusikoi arijmoi · 3

Je¸rhma 1.1.7. 'Estw Π(n) mia prìtash pou exarttai apì to fusikì n. Anh Π(1) alhjeÔei kai an gia kje k ∈ N isqÔei h sunepagwg

oi Π(1), . . . , Π(k) alhjeÔoun =⇒ Π(k + 1) alhjeÔei,

tìte h Π(n) alhjeÔei gia kje fusikì n.

H ènnoia thc majhmatik c prìtashc eÐnai bebaÐwc amfilegìmenh. Gia par-deigma, sqoliste to ex c pardeigma apì to biblÐo Eisagwg sthn 'Algebratou J. B. Fraleigh: jèloume na deÐxoume ìti kje fusikìc arijmìc èqei kpoia en-diafèrousa idiìthta (h opoÐa ton xeqwrÐzei apì ìlouc touc upìloipouc). JètoumeΠ(n) thn prìtash o n èqei kpoia endiafèrousa idiìthta kai qrhsimopoioÔmeth mèjodo thc epagwg c:

H Π(1) alhjeÔei diìti o 1 eÐnai o monadikìc fusikìc arijmìc pou isoÔtaime to tetrgwnì tou (aut h idiìthta eÐnai endiafèrousa, afoÔ xeqwrÐzei ton 1apì ìlouc touc llouc fusikoÔc arijmoÔc). Upojètoume ìti oi Π(1), . . . , Π(k)alhjeÔoun. An h Π(k + 1) den tan alhj c, tìte o k + 1 ja tan o mikrìterocfusikìc arijmìc pou den èqei kamÐa endiafèrousa idiìthta, kti pou eÐnai apìmìno tou polÔ endiafèron. 'Ara, h Π(k + 1) alhjeÔei. SÔmfwna me to Je¸rhma1.1.7, h Π(n) alhjeÔei gia kje n ∈ N.

Paradeigmata.

(a) Exetste gia poiec timèc tou fusikoÔ arijmoÔ n isqÔei h anisìthta 2n > n3.

Sqìlio. An knete arketèc dokimèc ja peisteÐte ìti h 2n > n3 isqÔei gia n = 1,den isqÔei gia n = 2, 3, . . . , 9 kai (mllon) isqÔei gia kje n ≥ 10.

DeÐxte me epagwg (qrhsimopoi¸ntac to Je¸rhma 1.1.6) ìti h 2n > n3 isqÔeigia kje n ≥ 10: gia to epagwgikì b ma upojètoume ìti h 2m > m3 isqÔei giakpoion m ≥ 10. Tìte,

2m+1 > 2m3 > (m + 1)3

an isqÔei h anisìthta1 + 3m + 3m2 < m3.

'Omwc, afoÔ m ≥ 10, èqoume

1 + 3m + 3m2 < m2 + 3m2 + 3m2 = 7m2 < m ·m2 = m3.

(b) Na deiqjoÔn me epagwg oi tautìthtec

1 + 2 + · · ·+ n =n(n + 1)

2,

12 + 22 + · · ·+ n2 =n(n + 1)(2n + 1)

6,

1 + 3 + · · ·+ (2n− 1) = n2.

Sqìlio. H apìdeixh (me th mèjodo thc epagwg c) den parousizei kamÐa duskolÐaapì th stigm pou mac dÐnetai h apnthsh (to dexiì mèloc). Prospaj ste na breÐ-te mia mèjodo me thn opoÐa na grfete se kleist morf ìla ta ajroÐsmatathc morf c

S(n, k) = 1k + 2k + · · ·+ nk.

(g) DeÐxte ìti èna sÔnolo S me n stoiqeÐa èqei akrib¸c 2n uposÔnola.Apìdeixh. Jèloume na deÐxoume me epagwg thn prìtash

Page 6: σημειωσεις Π 1 τζανες-ηλιοπουλος

4 · To sunolo twn pragmatikwn arijmwn

Π(n): An to S èqei n stoiqeÐa tìte to S èqei akrib¸c 2n uposÔnola.

An n = 1 tìte to S eÐnai monosÔnolo kai èqei akrib¸c dÔo uposÔnola, to ∅ kaito S. Sunep¸c, h Π(1) alhjeÔei.

Upojètoume ìti h Π(k) alhjeÔei. 'Estw S = x1, . . . , xk, xk+1 èna sÔnolome (k + 1) stoiqeÐa. JewroÔme to sÔnolo

T = S \ xk+1 = x1, . . . , xk.To T èqei k stoiqeÐa, opìte èqei 2k uposÔnola. T¸ra, kje uposÔnolo tou Sja perièqei den ja perièqei to xk+1. Ta uposÔnola tou S pou den perièqoun toxk+1 eÐnai akrib¸c ta uposÔnola tou T , dhlad to pl joc touc eÐnai 2k. Apì thnllh pleur, kje uposÔnolo tou S pou perièqei to xk+1 prokÔptei apì kpoiouposÔnolo tou T me thn prosj kh tou xk+1 (antÐstrofa, kje uposÔnolo touT prokÔptei apì kpoio uposÔnolo tou S pou perièqei to xk+1 me thn afaÐreshtou xk+1). Dhlad , to pl joc twn uposunìlwn tou S pou perièqoun to xk+1

eÐnai 2k (ìsa eÐnai ta uposÔnola tou T ). 'Epetai ìti to sunolikì pl joc twnuposunìlwn tou S eÐnai

2k + 2k = 2 · 2k = 2k+1.

Dhlad , h Π(k + 1) alhjeÔei.Sunep¸c, h Π(n) alhjeÔei gia kje n ∈ N. 2

1.1bþ Diairetìthta

'Estw a, b ∈ Z. Lème ìti o a diaireÐ ton b kai grfoume a | b, an uprqeix ∈ Z ¸ste b = ax. Se aut thn perÐptwsh ja lème ìti o a eÐnai diairèthc toub ìti o b eÐnai pollaplsio tou a.

Je¸rhma 1.1.8 (tautìthta thc diaÐreshc). Upojètoume ìti a ∈ N kaib ∈ Z. Tìte, uprqoun monadikoÐ q, r ∈ Z ¸ste

b = aq + r kai 0 ≤ r < a.

Gewmetrik apìdeixh: 'Enac aplìc gewmetrikìc trìpoc gia na skeftìmastethn tautìthta thc diaÐreshc eÐnai o ex c: fantazìmaste mia eujeÐa pnw sthnopoÐa èqoume shmei¸sei me koukÐdec touc akeraÐouc. Shmei¸noume me pio skoÔreckoukÐdec ta pollaplsia tou a. Diadoqikèc skoÔrec koukÐdec èqoun apìstashakrib¸c Ðsh me a. Tìte, èna apì ta dÔo sumbaÐnei:

(i) O akèraioc b pèftei pnw se kpoia apì autèc tic skoÔrec koukÐdec, opìteo b eÐnai pollaplsio tou a kai r = 0.

(ii) O akèraioc b brÐsketai anmesa se dÔo diadoqikèc skoÔrec koukÐdec, dhlad anmesa se dÔo diadoqik pollaplsia tou a, kai h apìstash r anmesaston b kai to megalÔtero pollaplsio tou a pou eÐnai mikrìtero apì ton beÐnai ènac jetikìc akèraioc pou den xepernei ton a− 1.

H austhr apìdeixh pou ja d¸soume paraktw basÐzetai se aut thn idèa: je-wroÔme to sÔnolo S twn apostsewn b − as tou b apì tic skoÔrec koukÐdecpou brÐskontai arister tou. ExasfalÐzoume ìti eÐnai mh kenì, ra èqei elqistostoiqeÐo b − aq. H koukÐda aq eÐnai aut pou brÐsketai amèswc prin apì ton b,kai h apìstash r = b− aq prèpei na eÐnai mikrìterh apì a.

Page 7: σημειωσεις Π 1 τζανες-ηλιοπουλος

1.2 Rhtoi arijmoi · 5

Apìdeixh tou Jewr matoc 1.1.8. ApodeiknÔoume pr¸ta thn Ôparxh arijm¸n q, r ∈Z pou ikanopoioÔn to zhtoÔmeno. JewroÔme to sÔnolo

S = b− as : s ∈ Z ∩ Z+

twn mh arnhtik¸n akeraÐwn thc morf c b−as. Den eÐnai dÔskolo na doÔme ìti toS eÐnai mh kenì: an b ≥ 0, tìte b−a·0 ∈ S. An b < 0, tìte b−ab = (1−a)b ∈ Z+.

Apì thn arq tou elaqÐstou to S èqei elqisto stoiqeÐo, to opoÐo sumbo-lÐzoume me r. Apì ton orismì tou S èqoume r ≥ 0 kai uprqei q ∈ Z ¸steb− aq = r. Mènei na deÐxoume ìti r < a. Ac upojèsoume ìti r ≥ a. Tìte,

b− a(q + 1) = b− aq − a = r − a ≥ 0,

dhlad , b − a(q + 1) ∈ S. 'Omwc b − a(q + 1) = r − a < r, to opoÐo eÐnai topoafoÔ o r tan to elqisto stoiqeÐo tou S.

ApodeiknÔoume t¸ra th monadikìthta twn q kai r. Ac upojèsoume ìti

b = aq1 + r1 = aq2 + r2,

ìpou 0 ≤ r1, r2 < a. QwrÐc periorismì thc genikìthtac upojètoume ìti r1 ≥ r2

(opìte q1 ≤ q2). Tìte,r1 − r2 = a(q2 − q1).

An q1 < q2, tìte a(q2 − q1) ≥ a en¸ r1 − r2 < a. 'Eqoume antÐfash, ra q1 = q2

kai r1 = r2. 2

ShmeÐwsh. Apì to Je¸rhma 1.1.8, kje akèraioc b grfetai monos manta sthmorf b = 2q + r gia kpoion q ∈ Z kai kpoion r ∈ 0, 1. Lème ìti o b eÐnairtioc an r = 0. An r = 1, tìte lème ìti o b eÐnai perittìc. Parathr ste ìtiopoiad pote dÔnamh perittoÔ akeraÐou eÐnai perittìc akèraioc.

1.2 RhtoÐ arijmoÐ

1.2aþ S¸mata

JewroÔme èna mh kenì sÔnolo Σ efodiasmèno me dÔo prxeic + (thn prìsje-sh) kai · (ton pollaplasiasmì) oi opoÐec ikanopoioÔn ta ex c:(a) Axi¸mata thc prìsjeshc. Gia kje zeugri x, y stoiqeÐwn tou Σuprqei akrib¸c èna stoiqeÐo tou Σ pou sumbolÐzetai me x + y kai lègetai -jroisma twn x, y. H prxh pou stèlnei to zeugri (x, y) sto x + y lègetaiprìsjesh kai èqei tic akìloujec idiìthtec:

• Prosetairistikìthta: gia kje x, y, z ∈ Σ isqÔei (x + y) + z = x + (y + z).

• Antimetajetikìthta: gia kje x, y ∈ Σ isqÔei x + y = y + x.

• Uprqei èna stoiqeÐo tou Σ pou sumbolÐzetai me 0, ¸ste, gia kje x ∈ Σ,

x + 0 = 0 + x = x.

• Gia kje x ∈ Σ uprqei èna stoiqeÐo tou Σ pou sumbolÐzetai me −x, ¸ste

x + (−x) = (−x) + x = 0.

Page 8: σημειωσεις Π 1 τζανες-ηλιοπουλος

6 · To sunolo twn pragmatikwn arijmwn

Lème ìti to Σ me thn prxh thc prìsjeshc eÐnai antimetajetik omda. DeÐxteìti to 0 kai to −x (dojèntoc tou x) orÐzontai monos manta. O −x eÐnai oantÐjetoc tou x. H afaÐresh sto Σ orÐzetai apì thn

x− y = x + (−y) (x, y,∈ Σ).

(b) Axi¸mata tou pollaplasiasmoÔ. Gia kje zeugri x, y ∈ Σ uprqeiakrib¸c èna stoiqeÐo tou Σ pou sumbolÐzetai me x · y (gia aplìthta, xy) kailègetai ginìmeno twn x, y. H prxh pou stèlnei to zeugri (x, y) sto xylègetai pollaplasiasmìc kai èqei tic akìloujec idiìthtec:

• Prosetairistikìthta: gia kje x, y, z ∈ Σ isqÔei (xy)z = x(yz).

• Antimetajetikìthta: gia kje x, y ∈ Σ isqÔei xy = yx.

• Uprqei èna stoiqeÐo tou Σ, diaforetikì apì to 0, pou sumbolÐzetai me 1,¸ste, gia kje x ∈ Σ,

x1 = 1x = x.

• Gia kje x ∈ Σ me x 6= 0 uprqei èna stoiqeÐo tou Σ pou sumbolÐzetai mex−1, ¸ste

xx−1 = x−1x = 1.

DeÐxte ìti to 1 kai to x−1 (dojèntoc tou x 6= 0) orÐzontai monos manta. O x−1

eÐnai o antÐstrofoc tou x 6= 0. H diaÐresh sto Σ orÐzetai apì thn

x

y= xy−1 (x, y ∈ Σ, y 6= 0).

(g) H epimeristik idiìthta sundèei ton pollaplasiasmì me thn prìsjesh:gia kje x, y, z ∈ Σ, èqoume

x(y + z) = xy + xz.

Orismìc 1.2.1. Mia trida (Σ,+, ·) pou ikanopoieÐ ta parapnw lègetai s¸-ma.

Parat rhsh 1.2.2. Parathr ste ìti an mia trida (Σ,+, ·) eÐnai s¸ma, tìteto sÔnolo Σ èqei toulqiston dÔo stoiqeÐa: to oudètero stoiqeÐo 0 thc prì-sjeshc kai to oudètero stoiqeÐo 1 tou pollaplasiasmoÔ. MporoÔme mlistana d¸soume pardeigma s¸matoc (Σ, +, ·) sto opoÐo aut na eÐnai ta mìna stoi-qeÐa tou Σ: jètoume Σ = 0,1 kai orÐzoume prìsjesh kai pollaplasiasmì stoΣ jètontac

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0

kai0 · 0 = 0, 0 · 1 = 0, 1 · 0 = 0, 1 · 1 = 1.

Elègxte ìti me autèc tic prxeic to 0,1 ikanopoieÐ ta axi¸mata (a)(g) tous¸matoc.

Page 9: σημειωσεις Π 1 τζανες-ηλιοπουλος

1.2 Rhtoi arijmoi · 7

1.2bþ Diatetagmèna s¸mata

'Ena s¸ma (Σ, +, ·) lègetai diatetagmèno an uprqei èna uposÔnolo Θ tou Σ,pou lègetai to sÔnolo twn jetik¸n stoiqeÐwn tou Σ, ¸ste:

• Gia kje x ∈ Σ isqÔei akrib¸c èna apì ta akìlouja:

x ∈ Θ, x = 0, −x ∈ Θ.

• An x, y ∈ Θ tìte x + y ∈ Θ kai xy ∈ Θ.

To sÔnolo Θ orÐzei mia ditaxh sto s¸ma Σ wc ex c: lème ìti x < y (isodÔnama,y > x) an kai mìno an y−x ∈ Θ. Grfontac x ≤ y (isodÔnama, y ≥ x) ennooÔme:eÐte x < y x = y. Apì ton orismì,

x ∈ Θ an kai mìno an x > 0.

Apì tic idiìthtec tou Θ èpontai oi ex c idiìthtec thc ditaxhc <:

• Gia kje x, y ∈ Σ isqÔei akrib¸c èna apì ta akìlouja:

x < y, x = y, x > y.

• An x < y kai y < z, tìte x < z.

• An x < y tìte gia kje z isqÔei x + z < y + z.

• An x < y kai z > 0, tìte xz < yz.

• 1 > 0.

H apìdeixh aut¸n twn isqurism¸n af netai san 'Askhsh gia ton anagn¸sth.

1.2gþ RhtoÐ arijmoÐ

To sÔnolo Q twn rht¸n arijm¸n eÐnai to

Q =m

n: m ∈ Z, n ∈ N

.

JumhjeÐte ìtim

n=

m′

n′an kai mìno an mn′ = nm′,

kai ìti oi prxeic + kai · orÐzontai wc ex c:

m

n+

m1

n1=

mn1 + m1n

nn1,

m

n· m1

n1=

mm1

nn1.

Tèloc,m

n<

m1

n1an kai mìno an m1n−mn1 ∈ N.

H tetrda (Q, +, ·, <) eÐnai tupikì pardeigma diatetagmènou s¸matoc. Ta sÔ-nola N kai Z twn fusik¸n kai twn akeraÐwn (me tic gnwstèc prxeic) den ikano-poioÔn ìla ta axi¸mata tou s¸matoc (exhg ste giatÐ).

Page 10: σημειωσεις Π 1 τζανες-ηλιοπουλος

8 · To sunolo twn pragmatikwn arijmwn

L mma 1.2.3. Kje rhtìc arijmìc q grfetai se angwgh morf q = mn ,

ìpou o monadikìc fusikìc pou diaireÐ tìso ton m ìso kai ton n eÐnai o 1.

Apìdeixh. JewroÔme to sÔnolo

E(q) =

n ∈ N : uprqei m ∈ Z ¸ste q =m

n

.

To E(q) eÐnai mh kenì uposÔnolo tou N (giatÐ q ∈ Q), ra èqei elqisto stoiqeÐo,ac to poÔme n0. Apì ton orismì tou E(q) uprqei m0 ∈ Z ¸ste q = m0

n0.

Ac upojèsoume ìti uprqei fusikìc d > 1 ¸ste d | m0 kai d | n0. Tìte,uprqoun m1 ∈ Z kai n1 ∈ N ¸ste m0 = dm1 kai n0 = dn1 > n1. Tìte,

q =m0

n0=

dm1

dn1=

m1

n1,

dhlad n1 ∈ E(q). Autì eÐnai topo, diìti n1 < n0. 2

Anaparstash twn rht¸n arijm¸n sthn eujeÐa. H idèa ìti oi arij-moÐ mporoÔn na jewrhjoÔn san apostseic odhgeÐ se mia fusiologik antistoÐ-qish touc me ta shmeÐa miac eujeÐac. JewroÔme tuqoÔsa eujeÐa kai epilègoumeaujaÐreta èna shmeÐo thc, to opoÐo onomzoume 0, kai èna deÔtero shmeÐo de-xi tou 0, to opoÐo onomzoume 1. To shmeÐo 0 paÐzei to rìlo thc arq c thcmètrhshc apostsewn en¸ h apìstash tou shmeÐou 1 apì to shmeÐo 0 prosdio-rÐzei th monda mètrhshc apostsewn. Oi akèraioi arijmoÐ mporoÔn t¸ra natopojethjoÔn pnw sthn eujeÐa kat profan trìpo.

MporoÔme epÐshc na topojet soume sthn eujeÐa ìlouc touc rhtoÔc arijmoÔc.Ac jewr soume, qwrÐc periorismì thc genikìthtac, ènan jetikì rhtì arijmì q.Autìc grfetai sth morf q = m

n , ìpou m, n ∈ N. An topojet soume ton 1n

sthn eujeÐa tìte mporoÔme na knoume to Ðdio kai gia ton q. Autì gÐnetai wcex c: jewroÔme deÔterh eujeÐa pou pernei apì to 0 kai pnw thc paÐrnoume n Ðsadiadoqik eujÔgramma tm mata me kra 1′, . . . , n′, xekin¸ntac apì to 0. JewroÔmethn eujeÐa pou en¸nei to n′ me to 1 thc pr¸thc eujeÐoac kai fèrnoume parllhlhproc aut n apì to shmeÐo 1′. Aut tèmnei to eujÔgrammo tm ma 01 thc pr¸thceujeÐac sto shmeÐo 1

n (kanìnac twn analogi¸n gia ìmoia trÐgwna).EÐdame loipìn ìti kje rhtìc arijmìc antistoiqeÐ se kpoio shmeÐo thc eu-

jeÐac. To diatetagmèno s¸ma Q ja tan èna eparkèc sÔsthma arijm¸n an, antÐ-strofa, kje shmeÐo thc eujeÐac antistoiqoÔse se kpoion rhtì arijmì. Autììmwc den isqÔei. Apì to Pujagìreio Je¸rhma, h upoteÐnousa enìc orjogwnÐoutrig¸nou me kjetec pleurèc m kouc 1 èqei m koc x pou ikanopoieÐ thn

x2 = 12 + 12 = 2.

An kje m koc mporoÔse na metrhjeÐ me rhtì arijmì, tìte to m koc x ja èprepena antistoiqeÐ se kpoion rhtì q.

Je¸rhma 1.2.4. Den uprqei q ∈ Q ¸ste q2 = 2.

Apìdeixh. Upojètoume ìti uprqei q ∈ Q ¸ste q2 = 2. Antikajist¸ntac, anqreiasteÐ, ton q me ton −q, mporoÔme na upojèsoume ìti q > 0. Tìte, o qgrfetai sth morf q = m/n, ìpou m,n ∈ N kai o monadikìc fusikìc arijmìcpou eÐnai koinìc diairèthc twn m kai n eÐnai o 1. Apì thn q2 = 2 sumperaÐnoumeìti m2 = 2n2, ra o m eÐnai rtioc (to tetrgwno perittoÔ eÐnai perittìc). Autì

Page 11: σημειωσεις Π 1 τζανες-ηλιοπουλος

1.3 Pragmatikoi arijmoi · 9

shmaÐnei ìti m = 2k gia kpoion k ∈ N. Tìte n2 = 2k2, ra o n eÐnai ki autìcrtioc. Autì eÐnai topo: o 2 eÐnai koinìc diairèthc twn m kai n. 2

Uprqoun loipìn m kh pou den metrioÔntai me rhtoÔc arijmoÔc. An jèloumeèna sÔsthma arijm¸n to opoÐo na eparkeÐ gia th mètrhsh opoiasd pote apìstashcpnw sthn eujeÐa, tìte prèpei na epekteÐnoume to sÔnolo twn rht¸n arijm¸n.

1.3 PragmatikoÐ arijmoÐ

1.3aþ H arq thc plhrìthtac

Apì th stigm pou se èna diatetagmèno s¸ma Σ èqoume orismènh th ditaxh<, mporoÔme na milme gia uposÔnola tou Σ pou eÐnai nw ktw fragmèna.

Orismìc 1.3.1. 'Estw Σ èna diatetagmèno s¸ma. 'Ena mh kenì uposÔnolo Atou Σ lègetai

• nw fragmèno, an uprqei α ∈ Σ me thn idiìthta: x ≤ α gia kjex ∈ A.

• ktw fragmèno, an uprqei α ∈ Σ me thn idiìthta: x ≥ α gia kjex ∈ A.

• fragmèno, an eÐnai nw kai ktw fragmèno.

Kje α ∈ Σ pou ikanopoieÐ ton parapnw orismì lègetai nw frgma (antÐstoiqa,ktw frgma) tou A.

Parat rhsh 1.3.2. 'Estw ∅ 6= A ⊆ Σ kai èstw α èna nw frgma tou A,dhlad x ≤ α gia kje x ∈ A. Kje stoiqeÐo α1 tou Σ pou eÐnai megalÔtero Ðso tou α eÐnai epÐshc nw frgma tou A: an x ∈ A tìte x ≤ α ≤ α1. TeleÐwcanloga, an ∅ 6= A ⊆ Σ kai an α eÐnai èna ktw frgma tou A, tìte kje stoiqeÐoα1 tou Σ pou eÐnai mikrìtero Ðso tou α eÐnai epÐshc ktw frgma tou A.

Orismìc 1.3.3. (a) 'Estw A èna mh kenì nw fragmèno uposÔnolo tou dia-tetagmènou s¸matoc Σ. Lème ìti to α ∈ Σ eÐnai elqisto nw frgma touA an

• to α eÐnai nw frgma tou A kai

• an α1 eÐnai llo nw frgma tou A tìte α ≤ α1.

(b) 'Estw A èna mh kenì ktw fragmèno uposÔnolo tou diatetagmènou s¸matocΣ. Lème ìti to α ∈ Σ eÐnai mègisto ktw frgma tou A an

• to α eÐnai ktw frgma tou A kai

• an α1 eÐnai llo ktw frgma tou A tìte α ≥ α1.

Parat rhsh 1.3.4. To elqisto nw frgma tou A (an uprqei) eÐnai mona-dikì. Apì ton orismì eÐnai fanerì ìti an α, α1 eÐnai dÔo elqista nw frgmatatou A tìte α ≤ α1 kai α1 ≤ α, dhlad α = α1. OmoÐwc, to mègisto ktw frgmatou A (an uprqei) eÐnai monadikì.

Page 12: σημειωσεις Π 1 τζανες-ηλιοπουλος

10 · To sunolo twn pragmatikwn arijmwn

Sthn perÐptwsh pou uprqoun, ja sumbolÐzoume to elqisto nw frgma touA me supA (to supremum tou A) kai to mègisto ktw frgma tou A me inf A(to infimum tou A). Ta inf A, supA mporeÐ na an koun na mhn an koun stosÔnolo A.

Orismìc 1.3.5. Lème ìti èna diatetagmèno s¸ma Σ ikanopoieÐ thn arq thcplhrìthtac an

Kje mh kenì kai nw fragmèno uposÔnolo A tou Σ èqei elqistonw frgma α ∈ Σ.

'Ena diatetagmèno s¸ma Σ pou ikanopoieÐ thn arq thc plhrìthtac lègetai pl -rwc diatetagmèno s¸ma.

H epìmenh Prìtash deÐqnei ìti to (Q, +, ·, <), me tic sun jeic prxeic kai thsun jh ditaxh, den ikanopoieÐ thn arq thc plhrìthtac.

Prìtash 1.3.6. To Q den eÐnai pl rwc diatetagmèno s¸ma: uprqei mh kenìnw fragmèno uposÔnolo A tou Q to opoÐo den èqei elqisto nw frgma.

Apìdeixh. JewroÔme to sÔnolo

A = x ∈ Q : x > 0 kai x2 < 2.

ParathroÔme pr¸ta ìti to A eÐnai mh kenì: èqoume 1 ∈ A (diìti 1 > 0 kai12 = 1 < 2). Qrhsimopoi¸ntac to gegonìc ìti an x, y eÐnai jetikoÐ rhtoÐ tìtex < y an kai mìno an x2 < y2 èqoume thn ex c:

Parat rhsh: an gia kpoion jetikì rhtì y isqÔei y2 > 2 tìte o yeÐnai nw frgma tou A.

'Epetai ìti to A eÐnai nw fragmèno: gia pardeigma, o 2 eÐnai nw frgma tou AafoÔ 2 > 0 kai 22 = 4 > 2.

Upojètoume ìti to A èqei elqisto nw frgma, èstw a ∈ Q, kai ja katal -xoume se topo. AfoÔ den uprqei rhtìc pou to tetrgwno tou na isoÔtai me 2,anagkastik ja isqÔei mÐa apì tic a2 > 2 a2 < 2 :(i) Upojètoume ìti a2 > 2. Ja broÔme 0 < ε < a ¸ste (a − ε)2 > 2. Tìte jaèqoume a − ε < a kai apì thn Parat rhsh, o a − ε ja eÐnai nw frgma tou A,topo.Epilog tou ε: Zhtme 0 < ε < a kai

(a− ε)2 = a2 − 2aε + ε2 > 2.

AfoÔ ε2 > 0, arkeÐ na exasfalÐsoume thn a2 − 2aε > 2, h opoÐa eÐnai isodÔnamhme thn

ε <a2 − 2

2a.

Parathr ste ìti o a2−22a eÐnai jetikìc rhtìc arijmìc. An loipìn epilèxoume

ε =12

min

a,a2 − 2

2a

,

tìte èqoume breÐ rhtì ε pou ikanopoieÐ tic 0 < ε < a kai (a− ε)2 > 2.

Page 13: σημειωσεις Π 1 τζανες-ηλιοπουλος

1.3 Pragmatikoi arijmoi · 11

(ii) Upojètoume ìti a2 < 2. Ja broÔme rhtì ε > 0 ¸ste (a + ε)2 < 2. Tìte jaèqoume a + ε > a kai a ∈ A, topo afoÔ o a eÐnai nw frgma tou A.Epilog tou ε: Zhtme ε > 0 kai

(a + ε)2 = a2 + 2aε + ε2 < 2.

Ja epilèxoume ε ≤ 1 opìte ja isqÔei

a2 + 2aε + ε2 ≤ a2 + 2aε + ε = a2 + ε(2a + 1),

diìti ε2 ≤ ε. ArkeÐ loipìn na exasfalÐsoume thn a2 +ε(2a+1) < 2, h opoÐa eÐnaiisodÔnamh me thn

ε <2− a2

2a + 1.

Parathr ste ìti o 2−a2

2a+1 eÐnai jetikìc rhtìc arijmìc. An loipìn epilèxoume

ε =12

min

1,2− a2

2a + 1

,

tìte èqoume breÐ rhtì ε > 0 pou ikanopoieÐ thn (a + ε)2 < 2.

Upojètontac ìti to A èqei elqisto nw frgma ton a ∈ Q apokleÐsame tica2 < 2, a2 = 2 kai a2 > 2. 'Ara, to A den èqei elqisto nw frgma (sto Q). 2

Parathr ste ìti to elqisto nw frgma tou sunìlou A sthn apìdeixhthc Prìtashc 1.3.6 eÐnai akrib¸c to shmeÐo thc eujeÐac to opoÐo ja antistoiqoÔsesto m koc thc upoteÐnousac tou orjogwnÐou trig¸nou me kjetec pleurèc Ðsecme 1 (to opoÐo leÐpei apì to Q).

'Olh h doulei pou ja knoume se autì to mjhma basÐzetai sto ex c je-¸rhma epèktashc (gia perissìterec leptomèreiec deÐte to Parrthma autoÔ touKefalaÐou).

Je¸rhma 1.3.7. To diatetagmèno s¸ma (Q,+, ·, <) epekteÐnetai se èna pl rwcdiatetagmèno s¸ma (R, +, ·, <).

Deqìmaste dhlad ìti uprqei èna pl rwc diatetagmèno s¸ma (R,+, ·, <) toopoÐo perièqei touc rhtoÔc (touc akeraÐouc kai touc fusikoÔc). To R eÐnai tosÔnolo twn pragmatik¸n arijm¸n. Oi prxeic + kai · sto R epekteÐnoun ticantÐstoiqec prxeic sto Q, ikanopoioÔn ta axi¸mata thc prìsjeshc, ta axi¸matatou pollaplasiasmoÔ kai thn epimeristik idiìthta. H ditaxh < sto R epekteÐneithn ditaxh sto Q kai ikanopoieÐ ta axi¸mata thc ditaxhc. Epiplèon, sto RisqÔei h arq thc plhrìthtac.

Arq thc plhrìthtac gia touc pragmatikoÔc arijmoÔc. Kje mhkenì, nw fragmèno uposÔnolo A tou R èqei elqisto nw frgma α ∈ R.

MporeÐ kaneÐc na deÐxei ìti uprqei mìno èna pl rwc diatetagmèno s¸ma (hepèktash mporeÐ na gÐnei me ènan ousiastik trìpo). DÔo pl rwc diatetagmènas¸mata eÐnai isìmorfa (blèpe M. Spivak, Keflaio 29).

T¸ra mporoÔme na deÐxoume ìti h exÐswsh x2 = 2 èqei lÔsh sto sÔnolo twnpragmatik¸n arijm¸n.

Prìtash 1.3.8. Uprqei monadikìc jetikìc x ∈ R ¸ste x2 = 2.

Page 14: σημειωσεις Π 1 τζανες-ηλιοπουλος

12 · To sunolo twn pragmatikwn arijmwn

Apìdeixh. JewroÔme to sÔnolo

A = x ∈ R : x > 0 kai x2 < 2.ParathroÔme pr¸ta ìti to A eÐnai mh kenì: èqoume 1 ∈ A (diìti 1 > 0 kai12 = 1 < 2). Qrhsimopoi¸ntac to gegonìc ìti an x, y eÐnai jetikoÐ pragmatikoÐarijmoÐ tìte x < y an kai mìno an x2 < y2 èqoume thn ex c:

Parat rhsh: an gia kpoion jetikì pragmatikì y isqÔei y2 > 2 tìteo y eÐnai nw frgma tou A.

'Epetai ìti to A eÐnai nw fragmèno: gia pardeigma, o 2 eÐnai nw frgma tou AafoÔ 2 > 0 kai 22 = 4 > 2.

Apì thn arq thc plhrìthtac, to A èqei elqisto nw frgma, èstw a ∈ R.Profan¸c, a > 0. Ja deÐxoume ìti a2 = 2 apokleÐontac tic a2 > 2 kai a2 < 2 :(i) Upojètoume ìti a2 > 2. Me to epiqeÐrhma thc apìdeixhc thc Prìtashc 1.3.6brÐskoume 0 < ε < a sto R ¸ste (a − ε)2 > 2. Tìte, a − ε < a kai apì thnParat rhsh, o a− ε eÐnai nw frgma tou A, topo.(ii) Upojètoume ìti a2 < 2. Me to epiqeÐrhma thc apìdeixhc thc Prìtashc 1.3.6brÐskoume ε > 0 sto R ¸ste (a + ε)2 > 2. Tìte, a + ε > a kai a ∈ A, topoafoÔ o a eÐnai nw frgma tou A.Anagkastik, a2 = 2. H monadikìthta eÐnai apl : qrhsimopoi ste to gegonìcìti an x, y eÐnai jetikoÐ pragmatikoÐ arijmoÐ tìte x = y an kai mìno an x2 = y2.2

1.3bþ Qarakthrismìc tou supremum

H epìmenh Prìtash dÐnei ènan polÔ qr simo εqarakthrismì tou supremumenìc mh kenoÔ nw fragmènou uposunìlou tou R.

Prìtash 1.3.9. 'Estw A mh kenì nw fragmèno uposÔnolo tou R kai èstwα ∈ R. Tìte, α = sup A an kai mìno an isqÔoun ta ex c:

(a) To α eÐnai nw frgma tou A,(b) Gia kje ε > 0 uprqei x ∈ A ¸ste x > α− ε.

Apìdeixh. Upojètoume pr¸ta ìti α = sup A. Apì ton orismì tou supremum,ikanopoieÐtai to (a). Gia to (b), èstw ε > 0. An gia kje x ∈ A Ðsque h x ≤ α−ε,tìte to α − ε ja tan nw frgma tou A. Apì ton orismì tou supremum jaèprepe na èqoume

α ≤ α− ε, dhlad ε ≤ 0,

to opoÐo eÐnai topo. 'Ara, gia to tuqìn ε > 0 uprqei x ∈ A (to x exarttaibèbaia apì to ε) pou ikanopoieÐ thn x > α− ε.

AntÐstrofa, èstw α ∈ R pou ikanopoieÐ ta (a) kai (b). Eidikìtera, to A eÐnainw fragmèno. Ac upojèsoume ìti to α den eÐnai to supremum tou A. Tìte,uprqei β < α to opoÐo eÐnai nw frgma tou A. Jètoume ε = α− β > 0. Tìte,

x ≤ β = α− ε

gia kje x ∈ A. Autì èrqetai se antÐfash me to (b). 2

'Askhsh 1.3.10. DeÐxte ìti kje mh kenì ktw fragmèno uposÔnolo A touR èqei mègisto ktw frgma.

Page 15: σημειωσεις Π 1 τζανες-ηλιοπουλος

1.4 Sunepeiec tou axiwmatoc thc plhrothtac · 13

1.4 Sunèpeiec tou axi¸matoc thc plhrìthtac

Se aut thn pargrafo, qrhsimopoi¸ntac to axÐwma thc plhrìthtac, ja apodeÐ-xoume kpoiec basikèc idiìthtec tou sunìlou twn pragmatik¸n arijm¸n.

1.4aþ 'Uparxh nost c rÐzac

To diwnumikì anptugma. Gia kje n ∈ N orÐzoume n! = 1 · 2 · · ·n (toginìmeno ìlwn twn fusik¸n apì 1 wc n). SumfwnoÔme ìti 0! = 1. Parathr steìti n! = n(n− 1)! gia kje n ∈ N.

An 0 ≤ k ≤ n orÐzoume(

n

k

)=

n!k!(n− k)!

=n(n− 1) · · · (n− k + 1)

k!.

Parathr ste ìti (n

0

)=

(n

n

)= 1

gia kje n = 0, 1, 2, . . ..

L mma 1.4.1 (trÐgwno tou Pascal). An 1 ≤ k < n tìte(

n

k

)=

(n− 1

k

)+

(n− 1k − 1

).

Apìdeixh. Me bsh touc orismoÔc pou d¸same, mporoÔme na gryoume(

n− 1k

)+

(n− 1k − 1

)=

(n− 1)!k!(n− k − 1)!

+(n− 1)!

(k − 1)!(n− k)!

=(n− 1)!(n− k)

k!(n− k − 1)!(n− k)+

(n− 1)!k(k − 1)!k(n− k)!

=(n− 1)!(n− k)

k!(n− k)!+

(n− 1)!kk!(n− k)!

=(n− 1)![(n− k) + k]

k!(n− k)!=

(n− 1)!nk!(n− k)!

=(

n

k

),

dhlad to zhtoÔmeno. 2

Sumbolismìc. An a0, a1, . . . , an ∈ R orÐzoumen∑

k=0

ak = a0 + a1 + · · ·+ an.

Parathr ste ìti to jroisma a0 + a1 + · · ·+ an mporeÐ isodÔnama na grafteÐ wcex c:

n∑

k=0

ak =n∑

m=0

am =n+1∑s=1

as−1.

H pr¸th isìthta isqÔei giatÐ allxame (apl¸c) to ìnoma thc metablht c apìk se m. H deÔterh giatÐ kname (apl¸c) thn allag metablht c s = m + 1.

Page 16: σημειωσεις Π 1 τζανες-ηλιοπουλος

14 · To sunolo twn pragmatikwn arijmwn

Prìtash 1.4.2 (diwnumikì anptugma). Gia kje a, b ∈ R kai kjen ∈ N isqÔei

(a + b)n =n∑

k=0

(n

k

)an−kbk.

Apìdeixh. Me epagwg : gia n = 1 h zhtoÔmenh isìthta grfetai

a + b =(

10

)a1b0 +

(11

)a0b1,

h opoÐa isqÔei: parathr ste ìti(10

)=

(11

)= 1, a0 = b0 = 1, a1 = a kai b1 = b.

Upojètoume ìti

(a + b)n =n∑

k=0

(n

k

)an−kbk

kai deÐqnoume ìti

(a + b)n+1 =n+1∑

k=0

(n + 1

k

)an+1−kbk.

Prgmati,

(a + b)n+1 = (a + b)(a + b)n = (a + b)

[n∑

k=0

(n

k

)an−kbk

]

= a ·n∑

k=0

(n

k

)an−kbk + b ·

n∑

k=0

(n

k

)an−kbk

=n∑

k=0

(n

k

)an+1−kbk +

n∑m=0

(n

m

)an−mbm+1

= an+1 +n∑

k=1

(n

k

)an+1−kbk +

n−1∑m=0

(n

m

)an−mbm+1 + bn+1

= an+1 +n∑

k=1

(n

k

)an+1−kbk +

n∑

k=1

(n

k − 1

)an−(k−1)bk + bn+1

= an+1 +n∑

k=1

[(n

k

)+

(n

k − 1

)]an+1−kbk + bn+1.

Apì to L mma èqoume(n+1

k

)=

(nk

)+

(n

k−1

), ra

(a + b)n+1 = an+1 +n∑

k=1

(n + 1

k

)an+1−kbk + bn+1 =

n+1∑

k=0

(n + 1

k

)an+1−kbk.

Autì oloklhr¸nei to epagwgikì b ma kai thn apìdeixh. 2

Je¸rhma 1.4.3 (Ôparxh nost c rÐzac). 'Estw ρ ∈ R, ρ > 0 kai èstwn ∈ N. Uprqei monadikìc x > 0 sto R ¸ste xn = ρ.

Page 17: σημειωσεις Π 1 τζανες-ηλιοπουλος

1.4 Sunepeiec tou axiwmatoc thc plhrothtac · 15

[O x sumbolÐzetai me n√

ρ ρ1/n. Profan¸c mac endiafèrei mìno h perÐptwshn ≥ 2.]

Apìdeixh. Upojètoume pr¸ta ìti ρ > 1. JewroÔme to sÔnolo

A = y ∈ R : y > 0 kai yn < ρ.To A eÐnai mh kenì: èqoume 1 ∈ A. ParathroÔme ìti kje jetikìc pragmatikìcarijmìc α me thn idiìthta αn > ρ eÐnai nw frgma tou A: an y ∈ A tìteyn < ρ < αn kai, afoÔ y, α > 0, sumperaÐnoume ìti y < α. 'Ena tètoio nwfrgma tou A eÐnai o ρ: apì thn ρ > 1 èpetai ìti ρn > ρ.AfoÔ to A eÐnai mh kenì kai nw fragmèno, apì to axÐwma thc plhrìthtac, uprqeio x = sup A. Ja deÐxoume ìti xn = ρ.(a) 'Estw ìti xn < ρ. Ja broÔme ε > 0 ¸ste (x + ε)n < ρ, dhlad x + ε ∈ A(topo, giatÐ o x èqei upotejeÐ nw frgma tou A).

An upojèsoume apì thn arq ìti 0 < ε ≤ 1, èqoume

(x + ε)n = xn +n∑

k=1

(n

k

)xn−kεk = xn + ε

[n∑

k=1

(n

k

)xn−kεk−1

]

≤ xn + ε

[n∑

k=1

(n

k

)xn−k

].

Ja èqoume loipìn (x+ ε)n < ρ an epilèxoume 0 < ε < ρ−xn

∑nk=1 (n

k)xn−k. Epilègoume

ε =12

min

1,

ρ− xn

∑nk=1

(nk

)xn−k

.

O ε eÐnai jetikìc pragmatikìc arijmìc (diìti ρ− xn > 0 kai∑n

k=1

(nk

)xn−k > 0)

kai (x + ε)n < ρ.(b) 'Estw ìti xn > ρ. Ja broÔme 0 < ε < x ¸ste (x − ε)n > ρ (topo, giatÐtìte o x− ε ja tan nw frgma tou A mikrìtero apì to supA).

Gia kje 0 < ε < x èqoume

(x− ε)n = xn +n∑

k=1

(n

k

)xn−k(−1)kεk = xn − ε

[n∑

k=1

(n

k

)xn−k(−1)k−1εk−1

]

≥ xn − ε

[n∑

k=1

(n

k

)xn−k

].

Ja èqoume loipìn (x− ε)n > ρ an epilèxoume 0 < ε < xn−ρ∑nk=1 (n

k)xn−k. Epilègoume

ε =12

min

x,

xn − ρ∑nk=1

(nk

)xn−k

.

O ε eÐnai jetikìc pragmatikìc arijmìc (diìti xn − ρ > 0 kai∑n

k=1

(nk

)xn−k > 0)

kai gia ton jetikì pragmatikì arijmì x− ε isqÔei (x− ε)n > ρ.ApokleÐsame tic xn < ρ kai xn > ρ. Sunep¸c, xn = ρ. H monadikìthta eÐnaiapl : parathr ste ìti an 0 < x1 < x2 tìte xn

1 < xn2 gia kje n ∈ N.

Page 18: σημειωσεις Π 1 τζανες-ηλιοπουλος

16 · To sunolo twn pragmatikwn arijmwn

An 0 < ρ < 1 èqoume 1ρ > 1 kai, apì to prohgoÔmeno b ma, uprqei monadikìc

x > 0 ¸ste xn = 1ρ . JewroÔme ton 1

x . Tìte,

(1x

)n

=1xn

= ρ.

Tèloc, an ρ = 1 jewroÔme ton x = 1. 2

1.4bþ Arqim deia idiìthta

Pr¸to mac b ma eÐnai na deÐxoume ìti to N den eÐnai nw fragmèno uposÔnolotou R:

Je¸rhma 1.4.4. To sÔnolo N twn fusik¸n arijm¸n den eÐnai nw fragmènouposÔnolo tou R.

Apìdeixh. Me apagwg se topo. Upojètoume ìti to sÔnolo N eÐnai nw frag-mèno. Apì to axÐwma thc plhrìthtac to N èqei elqisto nw frgma: èstwβ = supN. Tìte β − 1 < β, ra o β − 1 den eÐnai nw frgma tou N. MporoÔmeloipìn na broÔme n ∈ N me n > β−1. 'Epetai ìti n+1 > β, topo afoÔ n+1 ∈ Nkai o β eÐnai nw frgma tou N. 2

IsodÔnamoi trìpoi diatÔpwshc thc Ðdiac arq c eÐnai oi ex c.

Je¸rhma 1.4.5 (Arqim deia idiìthta twn pragmatik¸n). 'Estw εkai a dÔo pragmatikoÐ arijmoÐ me ε > 0. Uprqei n ∈ N ¸ste nε > a.

Apìdeixh. Apì to Je¸rhma 1.4.4 o aε den eÐnai nw frgma tou N. Sunep¸c,

uprqei n ∈ N ¸ste n > aε . AfoÔ ε > 0, èpetai ìti nε > a. 2

Je¸rhma 1.4.6. 'Estw ε > 0. Uprqei n ∈ N ¸ste 0 < 1n < ε.

Apìdeixh. Apì to Je¸rhma 1.4.4 o 1ε den eÐnai nw frgma tou N. Sunep¸c,

uprqei n ∈ N ¸ste n > 1ε . AfoÔ ε > 0, èpetai ìti 1

n < ε. 2

1.4gþ 'Uparxh akeraÐou mèrouc

DeÐqnoume pr¸ta thn ex c epèktash thc arq c tou elaqÐstou (parathr ste ìtiqrhsimopoioÔme thn Arqim deia idiìthta twn pragmatik¸n arijm¸n).

Prìtash 1.4.7. Kje mh kenì uposÔnolo tou Z pou eÐnai ktw fragmèno èqeielqisto stoiqeÐo.

Apìdeixh. 'Estw A 6= ∅ ktw fragmèno uposÔnolo tou Z. Uprqei x ∈ R ¸stex ≤ a gia kje a ∈ A. Apì thn Arqim deia idiìthta twn pragmatik¸n arium¸n,uprqei n ∈ N me n > −x, dhlad −n < x ≤ a gia kje a ∈ A. Uprqei dhlad m ∈ Z pou eÐnai ktw frgma tou A (prte m = −n), kai mlista gn sio methn ènnoia ìti

m ∈ Z kai m < a gia kje a ∈ A.

JewroÔme to sÔnolo B = a −m : a ∈ A ⊆ N. To B èqei elqisto stoiqeÐo,to opoÐo onomzoume β. Dhlad ,

β = a0 −m gia kpoio a0 ∈ A kai β ≤ a−m gia kje a ∈ A.

Page 19: σημειωσεις Π 1 τζανες-ηλιοπουλος

1.4 Sunepeiec tou axiwmatoc thc plhrothtac · 17

Tìte, o a0 eÐnai to elqisto stoiqeÐo tou A: profan¸c a0 ∈ A, kai gia kjea ∈ A èqoume a0 −m ≤ a−m =⇒ a0 ≤ a. 2

Me anlogo trìpo mporeÐte na deÐxete ìti kje mh kenì kai nw fragmènosÔnolo akeraÐwn arijm¸n èqei mègisto stoiqeÐo. DÐnoume mia deÔterh apìdeixhautoÔ tou duðkoÔ isqurismoÔ, qrhsimopoi¸ntac apeujeÐac aut to for to axÐwmathc plhrìthtac.

DeÔterh apìdeixh. 'Estw A èna mh kenì kai nw fragmèno uposÔnolo tou Z.Apì to axÐwma thc plhrìthtac, uprqei to a = supA ∈ R. Ja deÐxoume ìtia ∈ A: apì ton qarakthrismì tou supremum, uprqei x ∈ A ¸ste a−1 < x ≤ a.An a /∈ A, tìte x < a. Autì shmaÐnei ìti o x den eÐnai nw frgma tou A,opìte, efarmìzontac pli ton qarakthrismì tou supremum, brÐskoume y ∈ A¸ste a− 1 < x < y < a. 'Epetai ìti 0 < y − x < 1. Autì eÐnai topo diìti oi xkai y eÐnai akèraioi. 2

Je¸rhma 1.4.8 (Ôparxh akeraÐou mèrouc). Gia kje x ∈ R uprqeimonadikìc akèraioc m ∈ Z me thn idiìthta

m ≤ x < m + 1.

Apìdeixh. To sÔnolo A = n ∈ Z : n > x eÐnai mh kenì (apì thn Arqim deiaidiìthta) kai ktw fragmèno apì to x. Apì thn Prìtash 1.4.7, to A èqei elqistostoiqeÐo : ac to poÔme n0. AfoÔ n0 − 1 /∈ A, èqoume n0 − 1 ≤ x. Jètoumem = n0 − 1. EÐdame ìti m ≤ x. EpÐshc n0 ∈ A, dhlad m + 1 > x. 'Ara,

m ≤ x < m + 1.

Gia th monadikìthta ac upojèsoume ìti

m ≤ x < m + 1 kai m1 ≤ x < m1 + 1

ìpou m, m1 ∈ Z. 'Eqoume m < m1 + 1 ra m ≤ m1, kai m1 < m + 1 ram1 ≤ m. Sunep¸c, m = m1. 2

Orismìc 1.4.9. O akèraioc m pou mac dÐnei to prohgoÔmeno je¸rhma (kaio opoÐoc exarttai kje for apì ton x) lègetai akèraio mèroc tou x, kaisumbolÐzetai me [x]. Dhlad , o [x] prosdiorÐzetai apì tic

[x] ∈ Z kai [x] ≤ x < [x] + 1.

Gia pardeigma, [2.7] = 2, [−2.7] = −3.

1.4dþ Puknìthta twn rht¸n kai twn arr twn stouc pragmati-koÔc arijmoÔc

H Ôparxh tou akeraÐou mèrouc kai h Arqim deia idiìthta twn pragmatik¸n arijm¸nmac exasfalÐzoun thn puknìthta tou Q sto R: anmesa se opoiousd pote dÔopragmatikoÔc arijmoÔc mporoÔme na broÔme ènan rhtì.

Je¸rhma 1.4.10. An x, y ∈ R kai x < y, tìte uprqei rhtìc q me thn idiìthta

x < q < y.

Page 20: σημειωσεις Π 1 τζανες-ηλιοπουλος

18 · To sunolo twn pragmatikwn arijmwn

Apìdeixh. 'Eqoume y − x > 0 kai apì thn Arqim deia idiìthta uprqei fusikìcn ∈ N ¸ste n(y − x) > 1, dhlad

nx + 1 < ny.

Tìte,nx < [nx] + 1 ≤ nx + 1 < ny,

dhlad

x <[nx] + 1

n< y.

AfoÔ o q = [nx]+1n eÐnai rhtìc, èqoume to zhtoÔmeno. 2

Orismìc 1.4.11. Sthn §1.3 eÐdame ìti to Q eÐnai gn sio uposÔnolo tou R:uprqei pragmatikìc arijmìc x > 0 me x2 = 2, kai o x den eÐnai rhtìc. Kjepragmatikìc arijmìc pou den eÐnai rhtìc lègetai rrhtoc.

Je¸rhma 1.4.12. Oi rrhtoi eÐnai puknoÐ sto R: an x, y ∈ R kai x < y, tìteuprqei α rrhtoc me x < α < y.

Apìdeixh. 'Eqoume x < y kai√

2 > 0, ra x/√

2 < y/√

2. Apì to Je¸rhma1.4.10, uprqei rhtìc q me

x√2

< q <y√2.

MporoÔme na upojèsoume ìti q 6= 0 (alli¸c ja paÐrname llon rhtì q′ anmesaston x/

√2 kai ston q = 0). 'Epetai ìti o α := q

√2 eÐnai rrhtoc (exhg ste

giatÐ) kaix < α = q

√2 < y.

1.5 OrismoÐ kai sumbolismìc

1.5aþ Apìluth tim

Orismìc 1.5.1 (apìluth tim ). Gia kje a ∈ R jètoume

|a| =

a an a ≥ 0,

−a an a < 0.

O |a| lègetai apìluth tim tou a. Jewr¸ntac ton a san shmeÐo thc eujeÐ-ac, skeftìmaste thn apìluth tim tou san thn apìstash tou a apì to 0.Parathr ste ìti | − a| = |a| kai |a| ≥ 0 gia kje a ∈ R.Prìtash 1.5.2. Gia kje a ∈ R kai ρ ≥ 0 isqÔei

|a| ≤ ρ an kai mìno an − ρ ≤ a ≤ ρ.

Apìdeixh. DiakrÐnete peript¸seic: a ≥ 0 kai a < 0. 2

Prìtash 1.5.3 (trigwnik anisìthta). Gia kje a, b ∈ R,|a + b| ≤ |a|+ |b|.

EpÐshc,| |a| − |b| | ≤ |a− b| kai | |a| − |b| | ≤ |a + b| .

Page 21: σημειωσεις Π 1 τζανες-ηλιοπουλος

1.5 Orismoi kai sumbolismoc · 19

Apìdeixh. Apì thn Prìtash 1.5.2 èqoume −|a| ≤ a ≤ |a| kai −|b| ≤ b ≤ |b|.Sunep¸c,

−(|a|+ |b|) ≤ a + b ≤ |a|+ |b|.Qrhsimopoi¸ntac pli thn Prìtash 1.5.2 sumperaÐnoume ìti |a + b| ≤ |a|+ |b|.

Gia th deÔterh anisìthta grfoume

|a| = |(a− b) + b| ≤ |a− b|+ |b|,

opìte |a| − |b| ≤ |a− b|. Me ton Ðdio trìpo blèpoume ìti

|b| = |(b− a) + a| ≤ |b− a|+ |a| = |a− b|+ |a|,

ra |b| − |a| ≤ |a− b|. AfoÔ

−|a− b| ≤ |a| − |b| ≤ |a− b|,

h Prìtash 1.5.2 deÐqnei ìti | |a| − |b| | ≤ |a− b|.An sthn teleutaÐa anisìthta antikatast soume ton b me ton −b, blèpoume

ìti | |a| − |b| | ≤ |a + b|. 2

1.5bþ To sÔnolo twn epektetamènwn pragmatik¸n arijm¸n

EpekteÐnoume to sÔnolo R twn pragmatik¸n arijm¸n me duo akìma stoiqeÐa,to +∞ kai to −∞. To sÔnolo R = R ∪ +∞,−∞ eÐnai to sÔnolo twn epe-ktetamènwn pragmatik¸n arijm¸n. EpekteÐnoume th ditaxh kai tic prxeic stoR wc ex c:(a) OrÐzoume −∞ < a kai a < +∞ gia kje a ∈ R.(b) Gia kje a ∈ R orÐzoume

a + (+∞) = (+∞) + a = a− (−∞) = +∞a + (−∞) = (−∞) + a = a− (+∞) = −∞.

(g) An a > 0 orÐzoume

a · (+∞) = (+∞) · a = +∞a · (−∞) = (−∞) · a = −∞.

(d) An a < 0 orÐzoume

a · (+∞) = (+∞) · a = −∞a · (−∞) = (−∞) · a = +∞.

(e) EpÐshc, orÐzoume

(+∞) + (+∞) = +∞ (−∞) + (−∞) = −∞(+∞) · (+∞) = +∞ (−∞) · (−∞) = +∞

kai(+∞) · (−∞) = (−∞) · (+∞) = −∞.

Page 22: σημειωσεις Π 1 τζανες-ηλιοπουλος

20 · To sunolo twn pragmatikwn arijmwn

(st) Den orÐzontai oi parastseic

(+∞) + (−∞), (−∞) + (+∞), 0 · (+∞), (+∞) · 0, 0 · (−∞), (−∞) · 0kai

+∞+∞ ,

+∞−∞ ,

−∞+∞ ,

−∞−∞ .

Tèloc, an èna mh kenì sÔnolo A ⊆ R den eÐnai nw fragmèno orÐzoume sup A =+∞, en¸ an den eÐnai ktw fragmèno orÐzoume inf A = −∞.

1.5gþ Diast mata

Orismìc 1.5.4. 'Estw a, b ∈ R me a < b. OrÐzoume

[a, b] = x ∈ R : a ≤ x ≤ b(a, b) = x ∈ R : a < x < b[a, b) = x ∈ R : a ≤ x < b(a, b] = x ∈ R : a < x ≤ b

[a, +∞) = x ∈ R : x ≥ a(a, +∞) = x ∈ R : x > a(−∞, b] = x ∈ R : x ≤ b(−∞, b) = x ∈ R : x < b.

Ta uposÔnola aut tou sunìlou twn pragmatik¸n arijm¸n lègontai diast -mata.

Sto epìmeno L mma perigrfoume ta shmeÐa tou kleistoÔ diast matoc [a, b].

L mma 1.5.5. An a < b sto R tìte

[a, b] = (1− t)a + tb : 0 ≤ t ≤ 1.Eidikìtera, gia kje x ∈ [a, b] èqoume

x =b− x

b− aa +

x− a

b− ab.

Apìdeixh. EÔkola elègqoume ìti, gia kje t ∈ [0, 1] isqÔei

a ≤ (1− t)a + tb = a + t(b− a) ≤ b,

dhlad (1− t)a + tb : 0 ≤ t ≤ 1 ⊆ [a, b].AntÐstrofa, kje x ∈ [a, b] grfetai sth morf

x =b− x

b− aa +

x− a

b− ab.

Parathr¸ntac ìti t := (x−a)/(b−a) ∈ [0, 1] kai 1−t = (b−x)/(b−a), blèpoumeìti [a, b] ⊆ (1− t)a + tb : 0 ≤ t ≤ 1. 2

Ta shmeÐa (1− t)a + tb tou [a, b] lègontai kurtoÐ sunduasmoÐ twn a kaib. To mèso tou [a, b] eÐnai to

m = (1− 12 )a + 1

2b =a + b

2.

Page 23: σημειωσεις Π 1 τζανες-ηλιοπουλος

1.6 Anisothtec · 21

1.6 Anisìthtec

Se aut thn pargrafo deÐqnoume me epagwg dÔo basikèc anisìthtec: thn ani-sìthta tou Bernoulli kai thn anisìthta arijmhtikoÔgewmetrikoÔ mèsou. 'Allecbasikèc anisìthtec emfanÐzontai stic Ask seic.

Prìtash 1.6.1 (anisìthta tou Bernoulli). An x > −1 tìte

(1 + x)n ≥ 1 + nx gia kje n ∈ N.

Apìdeixh. Gia n = 1 h anisìthta isqÔei wc isìthta: 1 + x = 1 + x. DeÐqnoumeto epagwgikì b ma:

Upojètoume ìti (1+x)n ≥ 1+nx. AfoÔ 1+x > 0, èqoume (1+x)(1+x)n ≥(1 + x)(1 + nx). 'Ara,

(1 + x)n+1 ≥ (1 + x)(1 + nx) = 1 + (n + 1)x + nx2 ≥ 1 + (n + 1)x. 2

Parat rhsh. An x > 0, mporoÔme na deÐxoume thn anisìthta tou Bernoulliqrhsimopoi¸ntac to diwnumikì anptugma: gia kje n ≥ 2 èqoume

(1 + x)n =n∑

k=0

(n

k

)1n−kxk = 1 + nx +

n∑

k=2

(n

k

)xn−k > 1 + nx,

afoÔ ìloi oi prosjetèoi sto∑n

k=2

(nk

)xn−k eÐnai jetikoÐ. OmoÐwc, an n ≥ 3

paÐrnoume thn isqurìterh anisìthta

(1 + x)n > 1 + nx +(

n

2

)x2 = 1 + nx +

n(n− 1)2

x2.

Prìtash 1.6.2 (anisìthta arijmhtikoÔgewmetrikoÔ mèsou). 'E-stw n ∈ N. An a1, . . . , an eÐnai jetikoÐ pragmatikoÐ arijmoÐ, tìte

a1 + a2 + · · ·+ an

n≥ n√

a1a2 · · · an.

Apìdeixh. Jètoume m = n√

a1a2 · · · an kai orÐzoume bk = ak

m , k = 1, . . . , n.ParathroÔme ìti oi bk eÐnai jetikoÐ pragmatikoÐ arijmoÐ me ginìmeno

b1 · · · bn =a1

m· · · an

m=

a1 · · · an

mn= 1.

EpÐshc, h zhtoÔmenh anisìthta paÐrnei th morf

b1 + · · ·+ bn ≥ n.

ArkeÐ loipìn na deÐxoume thn akìloujh Prìtash.

Prìtash 1.6.3. 'Estw n ∈ N. An b1, . . . , bn eÐnai jetikoÐ pragmatikoÐ arijmoÐme ginìmeno b1 · · · bn = 1, tìte b1 + · · ·+ bn ≥ n.

Apìdeixh. Me epagwg wc proc to pl joc twn bk: an n = 1 tìte èqoume ènanmìno arijmì, ton b1 = 1. Sunep¸c, h anisìthta eÐnai tetrimmènh: 1 ≥ 1.

Upojètoume ìti gia kje m-da jetik¸n arijm¸n x1, . . . , xm me ginìmenox1 · · ·xm = 1 isqÔei h anisìthta

x1 + · · ·+ xm ≥ m,

Page 24: σημειωσεις Π 1 τζανες-ηλιοπουλος

22 · To sunolo twn pragmatikwn arijmwn

kai deÐqnoume ìti an b1, · · · , bm+1 eÐnai (m + 1) jetikoÐ pragmatikoÐ arijmoÐ meginìmeno b1 · · · bm+1 = 1 tìte

b1 + · · ·+ bm+1 ≥ m + 1.

MporoÔme na upojèsoume ìti b1 ≤ b2 ≤ · · · ≤ bm+1. ParathroÔme ìti, an b1 =b2 = · · · = bm+1 = 1 tìte h anisìthta isqÔei san isìthta. An ìqi, anagkastikèqoume b1 < 1 < bm+1 (exhg ste giatÐ).

JewroÔme thn m-da jetik¸n arijm¸n

x1 = b1bm+1 , x2 = b2, . . . , xm = bm.

AfoÔ x1 · · ·xm = b1 · · · bm+1 = 1, apì thn epagwgik upìjesh paÐrnoume

(b1bm+1) + b2 + · · ·+ bm = x1 + · · ·+ xm ≥ m.

'Omwc, apì thn b1 < 1 < bm+1 èpetai ìti (bm+1−1)(1−b1) > 0 dhlad b1+bm+1 >1 + bm+1b1. 'Ara,

b1 + bm+1 + b2 + · · ·+ bm > 1 + b1bm+1 + b2 + · · ·+ bm ≥ 1 + m.

'Eqoume loipìn deÐxei to epagwgikì b ma. 2

Parat rhsh. An oi arijmoÐ a1, · · · , an eÐnai ìloi Ðsoi tìte h anisìthta arijmhtikoÔgewmetrikoÔ mèsou isqÔei wc isìthta. An oi arijmoÐ a1, · · · , an den eÐnai ìloi Ðsoi,tìte h apìdeixh pou prohg jhke deÐqnei ìti h anisìthta eÐnai gn sia (exhg stegiatÐ). Dhlad : sthn anisìthta arijmhtikoÔgewmetrikoÔ mèsou isqÔei isìthtaan kai mìnon an a1 = · · · = an.

1.7 *Parrthma: Tomèc Dedekind

Upojètoume ed¸ ìti to sÔnolo Q twn rht¸n arijm¸n èqei oristeÐ, kai jew-roÔme ìlec tic idiìthtec tou gnwstèc. Ja perigryoume thn kataskeu tou Rmèsw twn tom¸n Dedekind. Ta stoiqeÐa tou R ja eÐnai kpoia uposÔnola touQ, oi legìmenec tomèc. H idèa pÐsw apì ton orismì touc eÐnai ìti kje pragma-tikìc arijmìc prosdiorÐzetai apì to sÔnolo twn rht¸n pou eÐnai mikrìteroÐ tou:an x ∈ R kai an orÐsoume Ax = q ∈ Q : q < x, tìte x = sup Ax.

Orismìc 1.7.1. 'Ena uposÔnolo α tou Q lègetai tom an ikanopoieÐ ta ex c:

• α 6= ∅, α 6= Q.

• an p ∈ α, q ∈ Q kai q < p, tìte q ∈ α.

• an p ∈ α, uprqei q ∈ α ¸ste p < q.

H trÐth idiìthta mac lèei ìti mia tom α den èqei mègisto stoiqeÐo. H deÔterhèqei tic ex c mesec sunèpeiec pou ja fanoÔn qr simec:

• an p ∈ α kai q /∈ α, tìte p < q.

• an r /∈ α kai r < s, tìte s /∈ α.

Page 25: σημειωσεις Π 1 τζανες-ηλιοπουλος

1.7 *Pararthma: Tomec Dedekind · 23

ShmeÐwsh. Se ìlh aut thn pargrafo qrhsimopoioÔme ta ellhnik grmmataα, β, γ gia tomèc (=mellontikoÔc pragmatikoÔc arijmoÔc) kai ta latinik p, q, r, sgia rhtoÔc arijmoÔc.

B ma 1: OrÐzoume R = α ⊆ Q : to α eÐnai tom . Autì ja eÐnai telik tosÔnolo twn pragmatik¸n arijm¸n.

B ma 2: Pr¸ta orÐzoume th ditaxh sto R. An α, β eÐnai dÔo tomèc, tìte

α < β ⇐⇒ to α eÐnai gn sio uposÔnolo tou β.

'Askhsh. DeÐxte ìti an α, β eÐnai tomèc, tìte isqÔei akrib¸c mÐa apì tic α < β,α = β, β < α.

B ma 3: To (R, <) ikanopoieÐ to axÐwma thc plhrìthtac. Dhlad , an A eÐnaimh kenì uposÔnolo tou R kai uprqei tom β ∈ R ¸ste α ≤ β gia kje α ∈ A,tìte to A èqei elqisto nw frgma.

Apìdeixh. OrÐzoume γ thn ènwsh ìlwn twn stoiqeÐwn tou A. Dhlad ,

γ = q ∈ Q : ∃α ∈ A me q ∈ α.

Ja deÐxoume ìti γ = sup A.(a) To γ eÐnai tom : Pr¸ton, γ 6= ∅: afoÔ A 6= ∅, uprqei α0 ∈ A. AfoÔ α0 6= ∅,uprqei q ∈ α0. Tìte, q ∈ γ. Prèpei epÐshc na deÐxoume ìti γ 6= Q: Uprqeiq ∈ Q me q /∈ β. An α ∈ A, tìte α ≤ β, ra q /∈ α. Epomènwc, q /∈ ∪α : α ∈ Adhlad q /∈ γ. 'Ara, to γ ikanopoieÐ thn pr¸th sunj kh tou orismoÔ thc tom c.

Gia th deÔterh, èstw p ∈ γ kai q ∈ Q me q < p. Uprqei α ∈ A me p ∈ α kaiq < p, ra q ∈ α. AfoÔ α ⊆ γ, èpetai ìti q ∈ γ.

Gia thn trÐth, èstw p ∈ γ. Uprqei α ∈ A me p ∈ α. AfoÔ to α eÐnai tom ,uprqei q ∈ α me p < q. Tìte, q ∈ γ kai p < q.(b) To γ eÐnai nw frgma tou A: An α ∈ A, tìte α ⊆ γ dhlad α ≤ γ.(g) To γ eÐnai to elqisto nw frgma tou A: 'Estw β1 ∈ R nw frgma tou A.Tìte β1 ≥ α gia kje α ∈ A, dhlad β1 ⊇ α gia kje α ∈ A, dhlad

β1 ⊇⋃α : α ∈ A = γ,

dhlad β1 ≥ γ. 2

B ma 4: OrÐzoume mia prxh + (prìsjesh) sto R wc ex c: an α, β ∈ R, tìte

α + β = p + q : p ∈ α, q ∈ β.

(a) DeÐqnoume ìti to α+β eÐnai tom , kai eÔkola epalhjeÔoume ìti α+β = β+αkai α + (β + γ) = (α + β) + γ gia kje α, β, γ ∈ R.(b) OrÐzoume 0∗ = q ∈ Q : q < 0 kai deÐqnoume ìti to 0∗ ∈ R kai eÐnai tooudètero stoiqeÐo thc prìsjeshc: α + 0∗ = 0∗ + α = α gia kje α ∈ R.(g) An α ∈ R, to −α orÐzetai wc ex c:

−α = q ∈ Q : uprqei r ∈ Q, r > 0 me − q − r /∈ α.

DeÐxte ìti −α ∈ R kai α + (−α) = (−α) + α = 0∗.

Page 26: σημειωσεις Π 1 τζανες-ηλιοπουλος

24 · To sunolo twn pragmatikwn arijmwn

'Epetai ìti h prxh + sto R ikanopoieÐ ta axi¸mata thc prìsjeshc. 2

B ma 5: To sÔnolo Θ twn jetik¸n stoiqeÐwn tou R orÐzetai t¸ra me fusiolo-gikì trìpo:

α ∈ Θ ⇐⇒ 0∗ < α.

DeÐxte ìti an α ∈ R, tìte isqÔei akrib¸c mÐa apì tic α ∈ Θ, α = 0∗, −α ∈ Θ.

B ma 6: OrÐzoume mia prxh pollaplasiasmoÔ, pr¸ta gia α, β ∈ Θ: An α > 0∗

kai β > 0∗, jètoume

αβ = q ∈ Q : uprqoun r ∈ α, s ∈ β, r > 0, s > 0 me q ≤ rs.

(a) DeÐqnoume ìti to αβ eÐnai tom kai αβ = βα, α(βγ) = (αβ)γ an α, β, γ ∈ Θ.(b) OrÐzoume 1∗ = q ∈ Q : q < 1. Tìte, α1∗ = 1∗α = α gia kje α ∈ Θ.(g) An α ∈ Θ, o antÐstrofoc α−1 tou α orÐzetai apì thn:

α−1 = q ∈ Q : q ≤ 0 q > 0 kai uprqei r ∈ Q, r > 1 me (qr)−1 /∈ α.

DeÐxte ìti α−1 ∈ Θ kai αα−1 = α−1α = 1∗.Oloklhr¸noume ton orismì tou pollaplasiasmoÔ jètontac

αβ = (−α)(−β), an α, β < 0∗

αβ = −[(−α)β], an α < 0∗, β > 0∗

αβ = −[α(−β)], an α > 0∗, β < 0∗,

kaiα0∗ = 0∗α = 0∗.

MporoÔme t¸ra na doÔme ìti ikanopoioÔntai ìla ta axi¸mata tou pollaplasia-smoÔ, kaj¸c kai h epimeristik idiìthta tou pollaplasiasmoÔ wc proc thn prì-sjesh. Den ja mpoÔme se perissìterec leptomèreiec (an jèlete sumbouleuteÐteton M. Spivak, Keflaio 28).

To R me bsh thn parapnw kataskeu eÐnai èna pl rwc diatetag-mèno s¸ma.

B ma 7: An q ∈ Q orÐzoume q∗ = r ∈ Q : r < q. Kje q∗ eÐnai tom , dhlad q∗ ∈ R. EÔkola deÐqnoume ìti:(a) an p, q ∈ Q, tìte p∗ + q∗ = (p + q)∗.(b) an p, q ∈ Q, tìte p∗q∗ = (pq)∗.(g) an p, q ∈ Q, tìte p∗ < q∗ an kai mìno an p < q.

Epomènwc, h apeikìnish I : Q → R me I(q) = q∗ diathreÐ tic prxeic thcprìsjeshc kai tou pollaplasiasmoÔ, kaj¸c kai th ditaxh. MporoÔme loipìn nablèpoume toQ san èna diatetagmèno upos¸ma tou R mèsw thc taÔtishcQ←→ Q∗(ìpou Q∗ = q∗ : q ∈ Q ⊂ R).

Page 27: σημειωσεις Π 1 τζανες-ηλιοπουλος

Keflaio 2

AkoloujÐec pragmatik¸narijm¸n

2.1 AkoloujÐec pragmatik¸n arijm¸n

Orismìc 2.1.1. AkoloujÐa lègetai kje sunrthsh a : N → R (me pedÐoorismoÔ to sÔnolo twn fusik¸n arijm¸n kai timèc stouc pragmatikoÔc arijmoÔc).AntÐ na sumbolÐzoume tic timèc thc akoloujÐac a me a(1), a(2), . . ., grfoume

a1, a2, a3, . . .

kai lème ìti o arijmìc an eÐnai o n-ostìc ìroc thc akoloujÐac. H Ðdia h akolou-jÐa sumbolÐzetai me an∞n=1, an, (an), (a1, a2, a3, . . .) qwrÐc autì na prokaleÐsÔgqush.

ParadeÐgmata 2.1.2. (a) 'Estw c ∈ R. H akoloujÐa an = c, n = 1, 2, . . .lègetai stajer akoloujÐa me tim c.(b) an = n. Oi pr¸toi ìroi thc (an) eÐnai: a1 = 1, a2 = 2, a3 = 3.(g) an = 1

n . Oi pr¸toi ìroi thc (an) eÐnai: a1 = 1, a2 = 12 , a3 = 1

3 .(d) an = an, ìpou a ∈ R. Oi pr¸toi ìroi thc (an) eÐnai: a1 = a, a2 = a2,a3 = a3.(e) a1 = 1 kai an+1 =

√1 + an, n = 1, 2, . . .. Aut h akoloujÐa orÐzetai ana-

dromik: an gnwrÐzoume ton an tìte mporoÔme na upologÐsoume ton an+1 qrh-simopoi¸ntac thn an+1 =

√1 + an. Dedomènou ìti èqei dojeÐ o pr¸toc thc

ìroc, h (an) eÐnai kal orismènh (knontac n − 1 b mata mporoÔme na broÔmeton an). Oi pr¸toi ìroi thc (an) eÐnai: a1 = 1, a2 =

√2, a3 =

√1 +

√2,

a4 =√

1 +√

1 +√

2.(st) a1 = 1, a2 = 1 kai an+2 = an + an+1, n = 1, 2, . . .. An gnwrÐzoumetouc an kai an+1 tìte mporoÔme na upologÐsoume ton an+2 qrhsimopoi¸ntac thnanadromik sqèsh an+2 = an + an+1. Dedomènou ìti èqoun dojeÐ oi pr¸toi dÔoìroi, h (an) eÐnai kal orismènh (knontac n− 2 b mata mporoÔme na broÔme tonan). Oi pr¸toi ìroi thc (an) eÐnai: a1 = 1, a2 = 1, a3 = 2, a4 = 3, a5 = 5,a6 = 8.

Page 28: σημειωσεις Π 1 τζανες-ηλιοπουλος

26 · Akoloujiec pragmatikwn arijmwn

(z) an = 1n an n = 2k kai an = 1

2 an n = 2k − 1. Gia ton upologismì tou nostoÔ ìrou an arkeÐ na gnwrÐzoume an o n eÐnai rtioc perittìc: gia pardeigma,a6 = 1

6 kai a7 = 12 .

Orismìc 2.1.3. 'Estw (an) kai (bn) dÔo akoloujÐec pragmatik¸n arijm¸n.(a) Lème ìti (an) = (bn) (oi akoloujÐec eÐnai Ðsec) an an = bn gia kje n ∈ N.Dhlad ,

a1 = b1, a2 = b2, a3 = b3, . . . .

(b) To jroisma, h diafor, to ginìmeno kai to phlÐko twn akolouji¸n (an), (bn)eÐnai oi akoloujÐec (an + bn), (an − bn), (anbn) kai (an/bn) antÐstoiqa (gia thnteleutaÐa prèpei na knoume thn epiplèon upìjesh ìti bn 6= 0 gia kje n ∈ N).Orismìc 2.1.4 (sÔnolo twn ìrwn). To sÔnolo twn ìrwn thc akoloujÐac(an) eÐnai to

A = an : n ∈ N.Den ja prèpei na sugqèei kaneÐc thn akoloujÐa (an) = (a1, a2, . . .) me to sÔno-lo twn tim¸n thc. Gia pardeigma, to sÔnolo tim¸n thc akoloujÐac (−1)n =(1,−1, 1,−1, . . .) eÐnai to disÔnolo −1, 1. Parathr ste epÐshc ìti dÔo diafo-retikèc akoloujÐec mporeÐ na èqoun to Ðdio sÔnolo tim¸n (d¸ste paradeÐgmata).

Orismìc 2.1.5 (telikì tm ma). 'Estw (an) mia akoloujÐa pragmatik¸narijm¸n. Kje akoloujÐa thc morf c (am+n−1)∞n=1 = (am, am+1, am+2, . . .)ìpou m ∈ N lègetai telikì tm ma thc (an). Gia pardeigma, oi akoloujÐec(5, 6, 7, . . .) kai (30, 31, 32, . . .) eÐnai telik tm mata thc an = n.

'Askhsh 2.1.6. 'Estw (an) mia akoloujÐa pragmatik¸n arijm¸n kai èstw(am+n−1)∞n=1 èna telikì tm ma thc. DeÐxte ìti:

(a) kje telikì tm ma thc (am+n−1) eÐnai telikì tm ma thc (an).(b) kje telikì tm ma thc (an) perièqei kpoio telikì tm ma thc (am+n−1).

2.2 SÔgklish akolouji¸n

2.2aþ Orismìc tou orÐou

JewroÔme tic akoloujÐec (an) kai (bn) me nostoÔc ìrouc touc

an =1n

kai bn = (−1)n.

Gia meglec timèc tou n oi ìroi 1/n thc (an) brÐskontai (ìlo kai pio) kontsto 0. Apì thn llh pleur, oi ìroi (−1)n thc (bn) den plhsizoun se kpoionpragmatikì arijmì. Ja lègame ìti h akoloujÐa (an) sugklÐnei (èqei ìrio to 0kaj¸c to n teÐnei sto peiro) en¸ h (bn) den sugklÐnei. Me lla lìgia, jèloumena ekfrsoume austhr thn prìtash:

h (an) sugklÐnei ston a an gia meglec timèc tou n o an eÐnai kontston a.

Autì pou prèpei na knoume safèc eÐnai to nìhma twn frsewn kont kaimeglec timèc. Gia pardeigma, an kpoioc jewreÐ ìti h apìstash 1 eÐnai ika-nopoihtik mikr , tìte h (an) èqei ìlouc touc ìrouc thc kont ston 1/2. EpÐshc,an kpoioc jewreÐ ìti h frsh meglec timèc shmaÐnei arketèc meglec timèc,tìte h (bn) èqei arketoÔc ìrouc kont ston 1 all kai arketoÔc ìrouc kontston −1. SumfwnoÔme na lème ìti:

Page 29: σημειωσεις Π 1 τζανες-ηλιοπουλος

2.2 Sugklish akoloujiwn · 27

h (an) sugklÐnei ston a an se osod pote mikr perioq tou a brÐ-skontai telik ìloi oi ìroi thc (an).

H ènnoia thc perioq c enìc pragmatikoÔ arijmoÔ a orÐzetai austhr wc ex c: giakje ε > 0 to anoiktì disthma (a−ε, a+ε) me kèntro ton a kai aktÐna ε eÐnai miaperioq tou a (h εperioq tou a). Qrhsimopoi¸ntac thn ènnoia thc εperioq ckai thn ènnoia tou telikoÔ tm matoc miac akoloujÐac, katal goume sto ex c:

h (an) sugklÐnei ston a an kje εperioq tou a perièqei kpoiotelikì tm ma thc (an).

Parathr¸ntac ìti x ∈ (a − ε, a + ε) an kai mìno an |x − a| < ε, mporoÔme nad¸soume ton ex c austhrì orismì.

Orismìc 2.2.1 (ìrio akoloujÐac). 'Estw (an) mia akoloujÐa pragmati-k¸n arijm¸n. Lème ìti h (an) sugklÐnei ston pragmatikì arijmì a an isqÔeito ex c:

Gia kje ε > 0 uprqei fusikìc n0 = n0(ε) me thn idiìthta: an n ∈ Nkai n ≥ n0(ε), tìte |an − a| < ε.

An h (an) sugklÐnei ston a, grfoume lim an = a limn→∞

an = a , pio apl,an → a.

Parat rhsh 2.2.2. Ston parapnw orismì, o deÐkthc n0 exarttai kje forapì to ε. 'Oso ìmwc mikrì ki an eÐnai to ε, mporoÔme na broÔme n0(ε) ¸ste ìloioi ìroi an pou èpontai tou an0 na brÐskontaiε-kont ston a. SkefteÐte thnprospjeia epilog c tou n0(ε) san èna ep peiron paiqnÐdi me ènan antÐpalo oopoÐoc epilègei oloèna kai mikrìtero ε > 0.

Gia na exoikeiwjoÔme me ton orismì ja apodeÐxoume ìti h an = 1n → 0 en¸ h

bn = (−1)n den sugklÐnei (se kanènan pragmatikì arijmì).

(a) H an = 1n sugklÐnei sto 0: JewroÔme tuqoÔsa εperioq (−ε, ε) tou 0. Apì

thn Arqim deia idiìthta uprqei n0(ε) ∈ N ¸ste 1n0

< ε. O mikrìteroc tètoiocfusikìc arijmìc eÐnai o

[1ε

]+ 1 (exhg ste giatÐ), ìmwc autì den èqei idiaÐterh

shmasÐa. Tìte, gia kje n ≥ n0 isqÔei

−ε < 0 <1n≤ 1

n0< ε.

Dhlad , to telikì tm ma(

1n0

, 1n0+1 , 1

n0+2 , . . .)

thc (an) perièqetai sto (−ε, ε).Sumfwna me ton orismì, èqoume an → 0.

(b) H bn = (−1)n den sugklÐnei: Ac upojèsoume ìti uprqei a ∈ R ¸ste (−1)n →a. DiakrÐnoume dÔo peript¸seic:

(b1) An a 6= 1 uprqei εperioq tou a ¸ste 1 /∈ (a − ε, a + ε). Gia par-deigma, mporoÔme na epilèxoume ε = |1−a|

2 . AfoÔ bn → a, uprqei telikì tm ma(bm, bm+1, . . .) pou perièqetai sto (a − ε, a + ε). Eidikìtera, bn 6= 1 gia kjen ≥ m. Autì eÐnai topo: an jewr soume rtio n ≥ m tìte bn = (−1)n = 1.

(b2) An a 6= −1 uprqei εperioq tou a ¸ste −1 /∈ (a − ε, a + ε). Giapardeigma, mporoÔme na epilèxoume ε = |1+a|

2 . AfoÔ bn → a, uprqei telikìtm ma (bm, bm+1, . . .) pou perièqetai sto (a − ε, a + ε). Eidikìtera, bn 6= −1gia kje n ≥ m. Autì eÐnai topo: an jewr soume perittì n ≥ m tìte bn =(−1)n = −1.

Page 30: σημειωσεις Π 1 τζανες-ηλιοπουλος

28 · Akoloujiec pragmatikwn arijmwn

Je¸rhma 2.2.3 (monadikìthta tou orÐou). An an → a kai an → b,tìte a = b.

Apìdeixh. Upojètoume ìti a 6= b. QwrÐc periorismì thc genikìthtac, mporoÔmena upojèsoume ìti a < b. An proume ε = (b−a)/4, tìte a+ ε < b− ε. Dhlad ,

(a− ε, a + ε) ∩ (b− ε, b + ε) = ∅.AfoÔ an → a, mporoÔme na broÔme n1 ∈ N ¸ste gia kje n ≥ n1 na isqÔei|an − a| < ε. OmoÐwc, afoÔ an → b, mporoÔme na broÔme n2 ∈ N ¸ste gia kjen ≥ n2 na isqÔei |an − b| < ε.

Jètoume n0 = maxn1, n2. Tìte, gia kje n ≥ n0 isqÔoun tautìqrona oi

|an − a| < ε kai |an − b| < ε.

'Omwc tìte, gia kje n ≥ n0 èqoume

an ∈ (a− ε, a + ε) ∩ (b− ε, b + ε),

to opoÐo eÐnai topo. 2

Je¸rhma 2.2.4 (krit rio parembol c krit rio isosugklinou-s¸n akolouji¸n). JewroÔme treÐc akoloujÐec an, bn, γn pou ikanopoioÔn taex c:

(a) an ≤ bn ≤ γn gia kje n ∈ N.(b) lim an = lim γn = `.

Tìte, h (bn) sugklÐnei kai lim bn = `.

Apìdeixh. 'Estw ε > 0. AfoÔ an → ` kai γn → `, uprqoun fusikoÐ arijmoÐn1, n2 ¸ste

|an − `| < ε an n ≥ n1 kai |γn − `| < ε an n ≥ n2.

IsodÔnama,

`− ε < an < ` + ε an n ≥ n1 kai `− ε < γn < ` + ε an n ≥ n2.

Epilègoume n0 = maxn1, n2. An n ≥ n0, tìte

`− ε < an ≤ bn ≤ γn < ` + ε

dhlad , an n ≥ n0 èqoume |bn − `| < ε. Me bsh ton orismì, bn → `. 2

Parathr seic 2.2.5. (a) BebaiwjeÐte ìti èqete katalbei th diadikasÐa a-pìdeixhc: an jèloume na deÐxoume ìti tn → t, prèpei gia aujaÐreto (mikrì) ε > 0 h apìdeixh xekinei me thn frsh èstw ε > 0 na broÔme fusikì n0 (pouexarttai apì to ε) me thn idiìthta: n ≥ n0(ε) =⇒ |tn − t| < ε.(b) 'Iswc èqete dh parathr sei ìti oi pr¸toi m ìroi (m = 2, 10 kai 1010) denephrezoun th sÔgklish mh miac akoloujÐac. Qrhsimopoi¸ntac thn 'Askhsh2.1.6 deÐxte ta ex c:1. 'Estw m ∈ N. H akoloujÐa (an) sugklÐnei an kai mìno an h akoloujÐa(bn) = (am+n−1) sugklÐnei, kai mlista limn an = limn am+n−1.2. 'Estw (an) kai (bn) dÔo akoloujÐec pou diafèroun se peperasmènouc to pl jocìrouc: uprqei m ∈ N ¸ste an = bn gia kje n ≥ m. An h (an) sugklÐnei stona tìte h (bn) sugklÐnei ki aut ston a.

Page 31: σημειωσεις Π 1 τζανες-ηλιοπουλος

2.2 Sugklish akoloujiwn · 29

Orismìc 2.2.6. H akoloujÐa (an) lègetai fragmènh an mporoÔme na broÔmekpoion M > 0 me thn idiìthta

|an| ≤ M gia kje n ∈ N.

Je¸rhma 2.2.7. Kje sugklÐnousa akoloujÐa eÐnai fragmènh.

Apìdeixh. 'Estw ìti an → a ∈ R. PaÐrnoume ε = 1 > 0. MporoÔme na broÔmen0 ∈ N ¸ste |an − a| < 1 gia kje n ≥ n0. Dhlad ,

an n ≥ n0, tìte |an| ≤ |an − a|+ |a| < 1 + |a|.Jètoume

M = max|a1|, . . . , |an0 |, 1 + |a|kai eÔkola elègqoume ìti |an| ≤ M gia kje n ∈ N (diakrÐnete peript¸seic:n ≤ n0 kai n > n0). 'Ara, h (an) eÐnai fragmènh. 2

2.2bþ AkoloujÐec pou teÐnoun sto peiro

Orismìc 2.2.8. 'Estw (an) mia akoloujÐa pragmatik¸n arijm¸n.(a) Lème ìti an → +∞ (h akoloujÐa teÐnei sto +∞) an gia kje M > 0(osod pote meglo) uprqei fusikìc n0 = n0(M) ¸ste

an n ≥ n0, tìte an > M.

(b) Lème ìti an → −∞ (h akoloujÐa teÐnei sto −∞) an gia kje M > 0(osod pote meglo) uprqei fusikìc n0 = n0(M) ¸ste

an n ≥ n0, tìte an < −M.

Parat rhsh 2.2.9. Qrhsimopoi same th lèxh teÐnei sto ±∞: sumfwnoÔmepwc mia akoloujÐa (an) sugklÐnei mìno an sugklÐnei se kpoion pragmatikìarijmì a (o opoÐoc lègetai kai ìrio thc (an)). Se ìlec tic llec peript¸seic jalème ìti h akoloujÐa apoklÐnei.

2.2gþ H rnhsh tou orismoÔ

KleÐnoume aut n thn Pargrafo me thn akrib diatÔpwsh thc rnhshc tou ori-smoÔ tou orÐou. JumhjeÐte ìti:

h (an) sugklÐnei ston a an kje εperioq tou a perièqei kpoiotelikì tm ma thc (an).

Epomènwc, h (an) den sugklÐnei ston a an uprqei perioq (a − ε, a + ε)tou a h opoÐa den perièqei kanèna telikì tm ma thc (an). IsodÔnama,

h (an) den sugklÐnei ston a an uprqei ε > 0 ¸ste: kje telikìtm ma (am, am+1, . . .) thc (an) èqei toulqiston ènan ìro pou denan kei sto (a− ε, a + ε).

Parathr ste ìti an (am, am+1, . . .) eÐnai èna telikì tm ma thc (an) tìte: to(am, am+1, . . .) den perièqetai sto (a − ε, a + ε) an kai mìno an uprqei n ≥ m¸ste an /∈ (a − ε, a + ε), dhlad |an − a| ≥ ε. Katal goume loipìn sthn ex cprìtash:

Page 32: σημειωσεις Π 1 τζανες-ηλιοπουλος

30 · Akoloujiec pragmatikwn arijmwn

h (an) den sugklÐnei ston a an uprqei ε > 0 ¸ste: gia kje m ∈ Nuprqei n ≥ m ¸ste |an − a| ≥ ε.

'Askhsh 2.2.10. DeÐxte ìti h akoloujÐa (an) den sugklÐnei ston a an kaimìno an uprqei ε > 0 ¸ste peiroi to pl joc ìroi thc (an) ikanopoioÔn thn|an − a| ≥ ε.

2.3 'Algebra twn orÐwn

'Olec oi basikèc idiìthtec twn orÐwn akolouji¸n apodeiknÔontai eÔkola me bshton orismì.

Prìtash 2.3.1. an → a an kai mìno an an−a → 0 an kai mìno an |an−a| → 0.

Apìdeixh. ArkeÐ na gryoume touc treÐc orismoÔc:

(i) 'Eqoume an → a an gia kje ε > 0 uprqei n0 ∈ N ¸ste gia kje n ≥ n0

na isqÔei |an − a| < ε.

(ii) 'Eqoume an − a → 0 an gia kje ε > 0 uprqei n0 ∈ N ¸ste gia kjen ≥ n0 na isqÔei |(an − a)− 0| < ε.

(iii) 'Eqoume |an − a| → 0 an gia kje ε > 0 uprqei n0 ∈ N ¸ste gia kjen ≥ n0 na isqÔei

∣∣ |an − a| − 0∣∣ < ε.

Parathr¸ntac ìti |an − a| = |(an − a) − 0| =∣∣ |an − a| − 0

∣∣ gia kje n ∈ Nblèpoume ìti oi treic protseic lène akrib¸c to Ðdio prgma. 2

Prìtash 2.3.2. an → 0 an kai mìno an |an| → 0.

Apìdeixh. Eidik perÐptwsh thc Prìtashc 2.3.1 (a = 0). 2

Prìtash 2.3.3. An an → a tìte |an| → |a|.Apìdeixh. 'Estw ε > 0. AfoÔ an → a, uprqei n0 ∈ N ¸ste gia kje n ≥ n0 naisqÔei |an − a| < ε. Tìte, gia kje n ≥ n0 èqoume

∣∣ |an| − |a|∣∣ ≤ |an − a| < ε,

apì thn trigwnik anisìthta gia thn apìluth tim . 2

Prìtash 2.3.4. An an → a kai bn → b tìte an + bn → a + b.

Apìdeixh. 'Estw ε > 0. AfoÔ an → a, uprqei n1 ∈ N ¸ste gia kje n ≥ n1 naisqÔei

|an − a| < ε

2.

OmoÐwc, afoÔ bn → b, uprqei n2 ∈ N ¸ste gia kje n ≥ n2 na isqÔei

|bn − b| < ε

2.

Jètoume n0 = maxn1, n2. Tìte, gia kje n ≥ n0 èqoume tautìqrona |an−a| <ε/2 kai |bn − b| < ε/2. 'Ara, gia kje n ≥ n0 èqoume

|(an + bn)− (a + b)| = |(an − a) + (bn − b)| ≤ |an − a|+ |bn − b| < ε

2+

ε

2= ε.

AfoÔ to ε > 0 tan tuqìn, autì deÐqnei ìti an + bn → a + b. 2

Page 33: σημειωσεις Π 1 τζανες-ηλιοπουλος

2.3 Algebra twn oriwn · 31

Prìtash 2.3.5. 'Estw (an) kai (bn) dÔo akoloujÐec. Upojètoume ìti h (bn)eÐnai fragmènh kai ìti an → 0. Tìte, anbn → 0.

Apìdeixh. H (bn) eÐnai fragmènh, ra uprqei M > 0 ¸ste |bn| ≤ M gia kjen ∈ N. 'Estw ε > 0. AfoÔ an → 0, uprqei n0 ∈ N ¸ste

|an| = |an − 0| < ε

M

gia kje n ≥ n0. 'Epetai ìti, an n ≥ n0 tìte

|anbn| = |an||bn| < ε

M·M = ε.

AfoÔ to ε > 0 tan tuqìn, autì deÐqnei ìti anbn → 0. 2

Prìtash 2.3.6. An an → a kai t ∈ R tìte tan → ta.

Apìdeixh. Apì thn an → a èpetai ìti an − a → 0. JewroÔme thn stajer akoloujÐa bn = t. Apì thn prohgoÔmenh Prìtash èqoume

tan − ta = t(an − a) = bn(an − a) → 0.

Sunep¸c, tan → ta. 2

Prìtash 2.3.7. An an → a kai bn → b, tìte anbn → ab.

Apìdeixh. Grfoume

anbn − ab = an(bn − b) + b(an − a).

ParathroÔme ta ex c:

(i) H (an) sugklÐnei, ra eÐnai fragmènh. AfoÔ bn − b → 0, h Prìtash 2.3.5deÐqnei ìti an(bn − b) → 0.

(ii) AfoÔ an − a → 0, h Prìtash 2.3.6 deÐqnei ìti b(an − a) → 0.

T¸ra, h Prìtash 2.3.4 deÐqnei ìti

an(bn − b) + b(an − a) → 0 + 0 = 0.

Dhlad , anbn − ab → 0. 2

Prìtash 2.3.8. 'Estw k ∈ N, k ≥ 2. An an → a tìte akn → ak.

Apìdeixh. Me epagwg wc proc k. An an → a kai an gnwrÐzoume ìti amn → am,

tìteam+1

n = an · amn → a · am = am+1

apì thn Prìtash 2.3.7. 2

Prìtash 2.3.9. 'Estw (an) kai (bn) akoloujÐec me bn 6= 0 gia kje n ∈ N.An an → a kai bn → b 6= 0, tìte an

bn→ a

b .

Page 34: σημειωσεις Π 1 τζανες-ηλιοπουλος

32 · Akoloujiec pragmatikwn arijmwn

Apìdeixh. ArkeÐ na deÐxoume ìti 1bn→ 1

b . Katìpin, efarmìzoume thn Prìtash

2.3.7 gia tic (an) kai(

1bn

).

Autì pou jèloume na gÐnei mikrì gia meglec timèc tou n eÐnai h posìthta∣∣∣∣

1bn− 1

b

∣∣∣∣ =|b− bn||bn||b| .

Isqurismìc. Uprqei n1 ∈ N ¸ste: gia kje n ≥ n1,

|bn| > |b|2

.

Gia thn apìdeixh autoÔ tou isqurismoÔ epilègoume ε = |b|2 > 0 kai, lìgw thc

bn → b, brÐskoume n1 ∈ N ¸ste: an n ≥ n1 tìte |bn − b| < |b|2 . Tìte, gia kje

n ≥ n1 isqÔei∣∣ |bn| − |b|

∣∣ ≤ |bn − b| < |b|2

.

Apì thn teleutaÐa anisìthta èpetai ìti |bn| > |b|2 gia kje n ≥ n1.

O isqurismìc èqei thn ex c sunèpeia: an n ≥ n1 tìte∣∣∣∣

1bn− 1

b

∣∣∣∣ ≤2|b− bn||b|2 .

T¸ra mporoÔme na deÐxoume ìti 1bn→ 1

b . 'Estw ε > 0. AfoÔ bn → b, uprqei

n2 ∈ N ¸ste |b − bn| < ε|b|22 gia kje n ≥ n2. Epilègoume n0 = maxn1, n2.

An n ≥ n0, tìte ∣∣∣∣1bn− 1

b

∣∣∣∣ ≤2|b− bn||b|2 < ε.

Me bsh ton orismì, 1bn→ 1

b . 2

Prìtash 2.3.10. 'Estw k ∈ N, k ≥ 2. An an ≥ 0 gia kje n ∈ N kai anan → a, tìte k

√an → k

√a.

Apìdeixh. DiakrÐnoume dÔo peript¸seic:(a) an → 0: 'Estw ε > 0. AfoÔ an → 0, efarmìzontac ton orismì gia ton jetikìarijmì ε1 = εk brÐskoume n0 ∈ N ¸ste: gia kje n ≥ n0 isqÔei

0 ≤ an < εk.

Tìte, gia kje n ≥ n0 isqÔei

0 ≤ k√

an <k√

εk = ε.

'Ara, k√

an → 0.(b) an → a > 0: JumhjeÐte ìti an x, y ≥ 0 tìte

|xk − yk| = |x− y|(xk−1 + xk−2y + · · ·+ xyk−2 + yk−1) ≥ |x− y|yk−1.

Qrhsimopoi¸ntac aut n thn anisìthta me x = k√

an kai y = k√

a blèpoume ìti

∣∣ k√

an − k√

a∣∣ ≤ |an − a|

k√

ak−1.

Page 35: σημειωσεις Π 1 τζανες-ηλιοπουλος

2.4 Basika oria kai basika krithria sugklishc · 33

'Estw ε > 0. AfoÔ an → 0, efarmìzontac ton orismì gia ton jetikì arijmìε1 = k

√ak−1 · ε, brÐskoume n0 ∈ N ¸ste: gia kje n ≥ n0 isqÔei

|an − a| < k√

ak−1 · ε.

Tìte, gia kje n ≥ n0 isqÔei

∣∣ k√

an − k√

a∣∣ ≤ |an − a|

k√

ak−1< ε.

Sunep¸c, k√

an → k√

a. 2

Prìtash 2.3.11. An an ≤ bn gia kje n ∈ N kai an an → a, bn → b, tìtea ≤ b.

Apìdeixh. Upojètoume ìti a > b. An jèsoume ε = a−b2 tìte uprqoun n1, n2 ∈ N

¸ste: gia kje n ≥ n1 isqÔei

|an − a| < a− b

2=⇒ an > a− a− b

2=

a + b

2,

kai gia kje n ≥ n2 isqÔei

|bn − b| < a− b

2=⇒ bn < b +

a− b

2=

a + b

2.

Jètoume n0 = maxn1, n2. Tìte, gia kje n ≥ n0 èqoume

bn <a + b

2< an,

to opoÐo eÐnai topo. 2

Prìtash 2.3.12. An m ≤ an ≤ M gia kje n ∈ N kai an an → a, tìtem ≤ a ≤ M .

Apìdeixh. JewroÔme tic stajerèc akoloujÐec bn = m, γn = M kai efarmìzoumethn prohgoÔmenh Prìtash. 2

2.4 Basik ìria kai basik krit ria sÔgklishc

Se aut thn Pargrafo brÐskoume ta ìria kpoiwn sugkekrimènwn akolouji¸noi opoÐec emfanÐzontai polÔ suqn sth sunèqeia. Me th bo jeia aut¸n twn ba-sik¸n orÐwn apodeiknÔoume dÔo polÔ qr sima krit ria sÔgklishc akolouji¸nsto 0 sto +∞.

2.4aþ Basik ìria

Prìtash 2.4.1. An a > 1, tìte h akoloujÐa xn = an teÐnei sto +∞.

Apìdeixh. AfoÔ a > 1, uprqei θ > 0 ¸ste a = 1 + θ. Apì thn anisìthtaBernoulli paÐrnoume

xn = (1 + θ)n ≥ 1 + nθ > nθ

gia kje n ∈ N.

Page 36: σημειωσεις Π 1 τζανες-ηλιοπουλος

34 · Akoloujiec pragmatikwn arijmwn

'Estw t¸ra M > 0. Apì thn Arqim deia idiìthta, uprqei n0 ∈ N ¸sten0 > M/θ. Tìte, gia kje n ≥ n0 èqoume

xn > nθ ≥ n0θ > m.

'Epetai ìti xn → +∞. 2

Prìtash 2.4.2. An 0 < a < 1, tìte h akoloujÐa xn = an sugklÐnei sto 0.

Apìdeixh. 'Eqoume 1a > 1, ra uprqei θ > 0 ¸ste 1

a = 1+ θ. Apì thn anisìthtaBernoulli paÐrnoume

1xn

= (1 + θ)n ≥ 1 + nθ > nθ

dhlad

0 < xn <1nθ

gia kje n ∈ N. Apì thn 1nθ → 0 kai apì to krit rio twn isosugklinous¸n

akolouji¸n èpetai ìti xn → 0. 2

Prìtash 2.4.3. An a > 0, tìte h akoloujÐa xn = n√

a → 1.

Apìdeixh. (a) Exetzoume pr¸ta thn perÐptwsh a > 1. Tìte, n√

a > 1 gia kjen ∈ N. OrÐzoume

θn = n√

a− 1 = xn − 1.

Parathr ste ìti θn > 0 gia kje n ∈ N. An deÐxoume ìti θn → 0, tìte èqoumeto zhtoÔmeno: xn = 1 + θn → 1.

AfoÔ n√

a = 1 + θn, mporoÔme na gryoume

a = (1 + θn)n ≥ 1 + nθn > nθn.

'Epetai ìti0 < θn <

a

n,

kai apì to krit rio twn isosugklinous¸n akolouji¸n sumperaÐnoume ìti θn → 0.Sunep¸c, xn = 1 + θn → 1.(b) An 0 < a < 1 tìte 1

a > 1. Apì to (a) èqoume

1xn

=1

n√

a= n

√1a→ 1 6= 0.

Sunep¸c, xn → 1.(g) Tèloc, an a = 1 tìte xn = n

√1 = 1 gia kje n ∈ N. EÐnai t¸ra fanerì ìti

xn → 1. 2

Prìtash 2.4.4. H akoloujÐa xn = n√

n → 1.

Apìdeixh. MimoÔmaste thn apìdeixh thc prohgoÔmenhc Prìtashc. OrÐzoume

θn = n√

n− 1 = xn − 1.

Parathr ste ìti θn > 0 gia kje n ∈ N. An deÐxoume ìti θn → 0, tìte èqoumeto zhtoÔmeno: xn = 1 + θn → 1.

Page 37: σημειωσεις Π 1 τζανες-ηλιοπουλος

2.4 Basika oria kai basika krithria sugklishc · 35

AfoÔ n√

n = 1 + θn, qrhsimopoi¸ntac to diwnumikì anptugma, mporoÔme nagryoume

n = (1 + θn)n ≥ 1 + nθn +(

n

2

)θ2

n >n(n− 1)

2θ2

n.

'Epetai ìti, gia n ≥ 2,

0 < θn <

√2

n− 1,

kai apì to krit rio twn isosugklinous¸n akolouji¸n sumperaÐnoume ìti θn → 0.Sunep¸c, xn = 1 + θn → 1. 2

2.4bþ Krit rio thc rÐzac kai krit rio tou lìgou

Prìtash 2.4.5 (krit rio tou lìgou). 'Estw (an) akoloujÐa mh mhdeni-k¸n ìrwn (an 6= 0).(a) An an > 0 gia kje n ∈ N kai an+1

an→ ` > 1, tìte an → +∞.

(b) An∣∣∣∣an+1

an

∣∣∣∣ → ` < 1, tìte an → 0.

Apìdeixh. (a) Jètoume ε = `−12 > 0. AfoÔ an+1

an→ `, uprqei n0 ∈ N ¸ste: gia

kje n ≥ n0,an+1

an> `− ε =

` + 12

.

Parathr ste ìti θ := `+12 > 1. Tìte, an0+1 > θan0 , an0+2 > θ2an0 , an0+3 >

θ3an0 , kai genik, an n > n0 isqÔei (exhg ste giatÐ)

an > θn−n0an0 =an0

θn0· θn.

AfoÔ limn→∞

θn = +∞, èpetai ìti an → +∞.

(b) Jètoume ε = 1−`2 > 0. AfoÔ

∣∣∣an+1an

∣∣∣ → `, uprqei n0 ∈ N ¸ste: gia kjen ≥ n0, ∣∣∣∣

an+1

an

∣∣∣∣ < ` + ε =` + 1

2.

Parathr ste ìti ρ := `+12 < 1. Tìte, |an0+1| < ρ|an0 |, |an0+2| < ρ2|an0 |,

|an0+3| < ρ3|an0 |, kai genik, an n > n0 isqÔei (exhg ste giatÐ)

|an| < ρn−n0 |an0 | =|an0 |ρn0

· ρn.

AfoÔ limn→∞

ρn = 0, èpetai ìti an → 0. 2

Parat rhsh 2.4.6. An an+1an

→ 1 tìte to krit rio den dÐnei sumpèrasma. Giapardeigma, n+1

n → 1 kai n →∞, ìmwc 1/(n+1)1/n → 1 kai 1/n → 0.

Entel¸c anloga apodeiknÔetai h akìloujh Prìtash.

Prìtash 2.4.7. (a) 'Estw µ > 1 kai (an) akoloujÐa jetik¸n ìrwn. An an+1 ≥µan gia kje n, tìte an → +∞.(b) 'Estw 0 < µ < 1 kai (an) akoloujÐa me thn idiìthta |an+1| ≤ µ|an| gia kjen. Tìte, an → 0. 2

Page 38: σημειωσεις Π 1 τζανες-ηλιοπουλος

36 · Akoloujiec pragmatikwn arijmwn

Prìtash 2.4.8 (krit rio thc rÐzac). 'Estw (an) akoloujÐa me mh arnh-tikoÔc ìrouc.(a) An n

√an → ρ < 1 tìte an → 0.

(b) An n√

an → ρ > 1 tìte an → +∞.

Apìdeixh. (a) Jètoume ε = 1−ρ2 > 0. AfoÔ n

√an → ρ, uprqei n0 ∈ N ¸ste: gia

kje n ≥ n0,n√

an < ρ + ε =ρ + 1

2.

Parathr ste ìti θ := ρ+12 < 1 kai

0 ≤ an ≤ θn gia kje n ≥ n0.

AfoÔ 0 < θ < 1, èqoume limn→∞

θn = 0. Apì to krit rio twn isosugklinous¸nakolouji¸n èpetai ìti an → 0.(b) Jètoume ε = ρ−1

2 > 0. AfoÔ n√

an → ρ, uprqei n0 ∈ N ¸ste: gia kjen ≥ n0,

n√

an > ρ− ε =ρ + 1

2.

Parathr ste ìti θ := ρ+12 > 1 kai

an ≥ θn gia kje n ≥ n0.

AfoÔ θ > 1, èqoume limn→∞

θn = +∞. 'Epetai ìti an → +∞. 2

Parat rhsh 2.4.9. An n√

an → 1 tìte to krit rio den dÐnei sumpèrasma. Giapardeigma, n

√n → 1 kai n →∞, ìmwc n

√1/n → 1 kai 1/n → 0.

Entel¸c anloga apodeiknÔetai h ex c Prìtash.

Prìtash 2.4.10. 'Estw (an) akoloujÐa me mh arnhtikoÔc ìrouc.(a) An uprqei 0 < ρ < 1 ¸ste n

√an ≤ ρ gia kje n ∈ N tìte an → 0.

(b) An uprqei ρ > 1 ¸ste n√

an ≥ ρ gia kje n ∈ N tìte an → +∞. 2

2.5 SÔgklish monìtonwn akolouji¸n

2.5aþ SÔgklish monìtonwn akolouji¸n

Orismìc 2.5.1. 'Estw (an) mia akoloujÐa pragmatik¸n arijm¸n. Lème ìti h(an) eÐnai

(i) aÔxousa, an an+1 ≥ an gia kje n ∈ N.(ii) fjÐnousa, an an+1 ≤ an gia kje n ∈ N.(iii) gnhsÐwc aÔxousa, an an+1 > an gia kje n ∈ N.(iv) gnhsÐwc fjÐnousa, an an+1 < an gia kje n ∈ N.Se kajemÐa apì tic parapnw peript¸seic lème ìti h (an) eÐnai monìtonh.

Page 39: σημειωσεις Π 1 τζανες-ηλιοπουλος

2.5 Sugklish monotonwn akoloujiwn · 37

Parathr seic 2.5.2. (a) EÔkola elègqoume ìti an h (an) eÐnai aÔxousa tìte

n ≤ m =⇒ an ≤ am.

DeÐxte to me epagwg : stajeropoi ste to n kai deÐxte ìti an an ≤ am tìte an ≤am+1. AntÐstoiqo sumpèrasma isqÔei gia ìlouc touc llouc tÔpouc monotonÐac.(b) Kje gnhsÐwc aÔxousa akoloujÐa eÐnai aÔxousa kai kje gnhsÐwc fjÐnousaakoloujÐa eÐnai fjÐnousa.(g) Kje aÔxousa akoloujÐa eÐnai ktw fragmènh, gia pardeigma apì ton pr¸tothc ìro a1. Sunep¸c, mia aÔxousa akoloujÐa eÐnai fragmènh an kai mìno an eÐnainw fragmènh.

Entel¸c anloga, kje fjÐnousa akoloujÐa eÐnai nw fragmènh, gia pardeig-ma apì ton pr¸to thc ìro a1. Sunep¸c, mia fjÐnousa akoloujÐa eÐnai fragmènhan kai mìno an eÐnai ktw fragmènh.

H diaÐsjhsh upodeiknÔei ìti an mia akoloujÐa eÐnai monìtonh kai fragmènh,tìte prèpei na sugklÐnei. Gia pardeigma, an h (an) eÐnai aÔxousa kai nw frag-mènh, tìte oi ìroi thc susswreÔontai sto elqisto nw frgma tou sunìlouA = an : n ∈ N. Ja d¸soume austhr apìdeixh gi autì:

Je¸rhma 2.5.3 (sÔgklish monìtonwn akolouji¸n). Kje monìtonhkai fragmènh akoloujÐa sugklÐnei.

Apìdeixh. QwrÐc periorismì thc genikìthtac upojètoume ìti h (an) eÐnai aÔxousa.To sÔnolo A = an : n ∈ N eÐnai mh kenì (gia pardeigma, a1 ∈ A) kai nwfragmèno diìti h (an) eÐnai (nw) fragmènh. Apì to axÐwma thc plhrìthtac,uprqei to elqisto nw frgma tou. 'Estw a = sup A. Ja deÐxoume ìti an → a.

'Estw ε > 0. AfoÔ a− ε < a, o a− ε den eÐnai nw frgma tou A. Dhlad ,uprqei stoiqeÐo tou A pou eÐnai megalÔtero apì ton a − ε. Me lla lìgia,uprqei n0 ∈ N ¸ste

a− ε < an0 .

AfoÔ h an eÐnai aÔxousa, gia kje n ≥ n0 èqoume an0 ≤ an kai epeid o a eÐnainw frgma tou A, an ≤ a. Dhlad , an n ≥ n0 tìte

a− ε < an0 ≤ an ≤ a < a + ε

'Epetai ìti |an − a| < ε gia kje n ≥ n0. AfoÔ to ε > 0 tan tuqìn, sumperaÐ-noume ìti an → a. 2

Me parìmoio trìpo apodeiknÔontai ta ex c:

(i) An h (an) eÐnai fjÐnousa kai ktw fragmènh, tìte an → infan : n ∈ N.(ii) An h (an) eÐnai aÔxousa kai den eÐnai nw fragmènh, tìte teÐnei sto +∞.

(iii) An h (an) eÐnai fjÐnousa kai den eÐnai ktw fragmènh, tìte teÐnei sto −∞.

Ac doÔme gia pardeigma thn apìdeixh tou deÔterou isqurismoÔ: 'Estw M > 0.AfoÔ h (an) den eÐnai nw fragmènh, o M den eÐnai nw frgma tou sunìlouA = an : n ∈ N. Sunep¸c, uprqei n0 ∈ N ¸ste an0 > M . AfoÔ h (an) eÐnaiaÔxousa, gia kje n ≥ n0 èqoume

an ≥ an0 > M.

AfoÔ o M > 0 tan tuq¸n, an → +∞. 2

Page 40: σημειωσεις Π 1 τζανες-ηλιοπουλος

38 · Akoloujiec pragmatikwn arijmwn

2.5bþ O arijmìc e

Qrhsimopoi¸ntac to je¸rhma sÔgklishc monìtonwn akolouji¸n ja orÐsoume tonarijmì e kai ja doÔme p¸c mporeÐ kaneÐc sqetik eÔkola na epitÔqei kalèc pro-seggÐseic tou.

Prìtash 2.5.4. H akoloujÐa an =(1 + 1

n

)n sugklÐnei se kpoion pragmatikìarijmì pou an kei sto (2, 3). OrÐzoume e := lim

n→∞(1 + 1

n

)n.

Apìdeixh. Ja deÐxoume ìti h (an) eÐnai gnhsÐwc aÔxousa kai nw fragmènh.(a) Jèloume na elègxoume ìti an < an+1 gia kje n ∈ N. ParathroÔme ìti

(1 +

1n

)n

<

(1 +

1n + 1

)n+1

⇐⇒(

n + 1n

)n

<

(n + 2n + 1

)nn + 2n + 1

⇐⇒ n + 1n + 2

<

(n(n + 2)(n + 1)2

)n

⇐⇒ 1− 1n + 2

<

(1− 1

(n + 1)2

)n

.

Apì thn anisìthta Bernoulli èqoume(

1− 1(n + 1)2

)n

> 1− n

(n + 1)2.

ArkeÐ loipìn na elègxoume ìti

n

(n + 1)2<

1n + 2

,

to opoÐo isqÔei gia kje n ∈ N.(b) Gia na deÐxoume ìti h (an) eÐnai nw fragmènh, jewroÔme thn akoloujÐabn =

(1 + 1

n

)n+1. Parathr ste ìti an < bn gia kje n ∈ N.H (bn) eÐnai gnhsÐwc fjÐnousa: gia na deÐxoume ìti bn > bn+1 gia kje n ∈ N

parathroÔme ìti(

1 +1n

)n+1

>

(1 +

1n + 1

)n+2

⇐⇒(

n + 1n

)n+1

>

(n + 2n + 1

)n+1n + 2n + 1

⇐⇒ n + 2n + 1

<

((n + 1)2

n(n + 2)

)n+1

⇐⇒ 1 +1

n + 1<

(1 +

1n(n + 2)

)n+1

.

Apì thn anisìthta Bernoulli èqoume(

1 +1

n(n + 2)

)n+1

> 1 +n + 1

n(n + 2).

ArkeÐ loipìn na elègxoume ìti

n + 1n(n + 2)

>1

n + 1,

Page 41: σημειωσεις Π 1 τζανες-ηλιοπουλος

2.5 Sugklish monotonwn akoloujiwn · 39

to opoÐo isqÔei gia kje n ∈ N.'Epetai ìti an < bn < b1 gia kje n ∈ N. Dhlad , an < (1 + 1)2 = 4 gia

kje n ∈ N. EpÐshc, h fjÐnousa akoloujÐa (bn) eÐnai ktw fragmènh: bn > an >a1 = 2 gia kje n ∈ N.Apì to je¸rhma sÔgklishc monìtonwn akolouji¸n, oi (an) kai (bn) sugklinoun.'Eqoun mlista to Ðdio ìrio: afoÔ bn = an ·

(1 + 1

n

), sumperaÐnoume ìti

limn→∞

bn = limn→∞

an · limn→∞

(1 +

1n

)= lim

n→∞an.

Onomzoume e to koinì ìrio twn (an) kai (bn). 'Eqoume dh deÐ ìti 2 < e < 4. Giana proseggÐsoume thn tim tou orÐou kalÔtera, parathroÔme ìti, gia pardeigma,an n ≥ 5 tìte a5 < an < e < bn < b5, kai sunep¸c,

2.48832 =(

65

)5

< e <

(65

)6

= 2.985984.

Dhlad , 2 < e < 3. 2

2.5gþ Arq twn kibwtismènwn diasthmtwn

Mia shmantik efarmog tou Jewr matoc 2.5.3 eÐnai h arq twn kibwtismènwndiasthmtwn:

Je¸rhma 2.5.5. 'Estw [a1, b1] ⊇ · · · ⊇ [an, bn] ⊇ [an+1, bn+1] ⊇ · · · miafjÐnousa akoloujÐa kleist¸n diasthmtwn. Tìte,

∞⋂n=1

[an, bn] 6= ∅.

An epiplèon bn − an → 0, tìte to sÔnolo⋂∞

n=1[an, bn] perièqei akrib¸c ènanpragmatikì arijmì (eÐnai monosÔnolo).

Apìdeixh. Apì thn [an, bn] ⊇ [an+1, bn+1] èpetai ìti

an ≤ an+1 ≤ bn+1 ≤ bn

gia kje n ∈ N. Sunep¸c, h (an) eÐnai aÔxousa kai h (bn) eÐnai fjÐnousa.Apì thn [an, bn] ⊆ [a1, b1] blèpoume ìti

a1 ≤ an ≤ bn ≤ b1

gia kje n ∈ N. Sunep¸c, h (an) eÐnai nw fragmènh apì ton b1 kai h (bn) eÐnaiktw fragmènh apì ton a1.

Apì to je¸rhma sÔgklishc monìtonwn akolouji¸n, uprqoun a, b ∈ R ¸ste

an → a kai bn → b.

AfoÔ an ≤ bn gia kje n ∈ N, h Prìtash 2.3.11 deÐqnei ìti a ≤ b. EpÐshc, hmonotonÐa twn (an), (bn) dÐnei

an ≤ a kai b ≤ bn

Page 42: σημειωσεις Π 1 τζανες-ηλιοπουλος

40 · Akoloujiec pragmatikwn arijmwn

gia kje n ∈ N, dhlad [a, b] ⊆

∞⋂n=1

[an, bn],

ìpou sumfwnoÔme ìti [a, b] = a = b an a = b. Eidikìtera,

∞⋂n=1

[an, bn] 6= ∅.

IsqÔei mlista ìti

[a, b] =∞⋂

n=1

[an, bn].

Prgmati, an x ∈ ⋂∞n=1[an, bn] tìte an ≤ x ≤ bn gia kje n ∈ N, ra a =

limn an ≤ x ≤ limn bn = b. Dhlad , x ∈ [a, b].Tèloc, an upojèsoume ìti bn − an → 0, èqoume

b− a = limn

bn − limn

an = limn

(bn − an) = 0.

Dhlad , a = b. 'Ara to sÔnolo⋂∞

n=1[an, bn] perièqei akrib¸c ènan pragmatikìarijmì: ton a(= b). 2

Parat rhsh 2.5.6. H upìjesh ìti ta kibwtismèna diast mata tou Jewr -matoc 2.5.5 eÐnai kleist den mporeÐ na paraleifjeÐ. Gia pardeigma, jewr steta anoikt diast mata (an, bn) =

(0, 1

n

). 'Eqoume

(0, 1) ⊇(

0,12

)⊇ · · · ⊇

(0,

1n

)⊇

(0,

1n + 1

)⊇ · · · ,

ìmwc∞⋂

n=1

(0,

1n

)= ∅.

Ali¸c, ja up rqe x > 0 pou ja ikanopoioÔse thn x < 1n gia kje n ∈ N. Autì

eÐnai adÔnato, lìgw thc Arqim deiac idiìthtac.

2.5dþ Anadromikèc akoloujÐec

KleÐnoume aut n thn Pargrafo me èna pardeigma anadromik c akoloujÐac. Hteqnik pou qrhsimopoioÔme gia th melèth thc sÔgklishc anadromik¸n akolou-ji¸n basÐzetai suqn sto je¸rhma sÔgklishc monìtonwn akolouji¸n.

Pardeigma 2.5.7. JewroÔme thn akoloujÐa (an) pou èqei pr¸to ìro tona1 = 1 kai ikanopoieÐ thn anadromik sqèsh an+1 =

√1 + an gia n ≥ 1. Ja

deÐxoume ìti h (an) sugklÐnei ston arijmì 1+√

52 .

Apìdeixh. Apì ton trìpo orismoÔ thc (an) eÐnai fanerì ìti ìloi oi ìroi thc eÐnaijetikoÐ (deÐxte to austhr me epagwg ).

Ac upojèsoume ìti èqoume katafèrei na deÐxoume ìti an → a gia kpoiona ∈ R. Tìte,

an+1 → a kai√

1 + an →√

1 + a.

Page 43: σημειωσεις Π 1 τζανες-ηλιοπουλος

2.6 Jewrhma Bolzano-Weierstrass · 41

AfoÔ an+1 =√

1 + an, apì th monadikìthta tou orÐou o a prèpei na ikanopoieÐthn exÐswsh a =

√1 + a, dhlad a2 − a− 1 = 0. Sunep¸c,

a =1 +

√5

2 a =

1−√52

.

'Omwc, to ìrio thc (an), an uprqei, eÐnai mh arnhtikì. 'Ara, a = 1+√

52 .

Mènei na deÐxoume thn Ôparxh tou orÐou. ParathroÔme ìti a2 =√

2 > 1 = a1.Mia idèa eÐnai loipìn na deÐxoume ìti eÐnai aÔxousa kai nw fragmènh. Tìte, apìto je¸rhma sÔgklishc monìtonwn akolouji¸n, h (an) sugklinei (kai to ìrio thceÐnai o 1+

√5

2 ).(a) DeÐqnoume me epagwg ìti an+1 ≥ an gia kje n ∈ N. 'Eqoume dh elègxeiìti a2 > a1. Upojètontac ìti am+1 ≥ am, paÐrnoume

am+2 =√

1 + am+1 ≥√

1 + am = am+1,

dhlad èqoume deÐxei to epagwgikì b ma.(b) Tèloc, deÐqnoume me epagwg ìti h (an) eÐnai nw fragmènh. Apì th stigm pou èqoume deÐxei ìti h (an) eÐnai aÔxousa, ja èprepe na mporoÔme na deÐxoumeìti kje pragmatikìc arijmìc megalÔteroc Ðsoc apì to upoy fio ìrio 1+

√5

2eÐnai nw frgma thc (an). Gia pardeigma, mporoÔme eÔkola na doÔme ìti an < 2gia kje n ∈ N. 'Eqoume a1 = 1 < 2 kai an am < 2 tìte am+1 =

√1 + am <√

1 + 2 =√

3 < 2. 2

2.6 Je¸rhma Bolzano-Weierstrass

2.6aþ UpakoloujÐec

Orismìc 2.6.1. 'Estw (an) mia akoloujÐa pragmatik¸n arijm¸n. H akolou-jÐa (bn) lègetai upakoloujÐa thc (an) an uprqei gnhsÐwc aÔxousa akoloujÐafusik¸n arijm¸n k1 < k2 < · · · < kn < kn+1 < · · · ¸ste

bn = akngia kje n ∈ N.

Me lla lìgia, oi ìroi thc (bn) eÐnai oi ak1 , ak2 , . . . , akn , . . ., ìpou k1 < k2 <· · · < kn < kn+1 < · · · . Genik, mia akoloujÐa èqei pollèc (sun jwc peirec topl joc) diaforetikèc upakoloujÐec.

ParadeÐgmata 2.6.2. 'Estw (an) mia akoloujÐa pragmatik¸n arijm¸n.(a) H upakoloujÐa (a2n) twn rtiwn ìrwn thc (an) èqei ìrouc touc

a2, a4, a6, . . . .

Ed¸, kn = 2n.(b) H upakoloujÐa (a2n−1) twn peritt¸n ìrwn thc (an) èqei ìrouc touc

a1, a3, a5, . . . .

Ed¸, kn = 2n− 1.(g) H upakoloujÐa (an2) thc (an) èqei ìrouc touc

a1, a4, a9, . . . .

Page 44: σημειωσεις Π 1 τζανες-ηλιοπουλος

42 · Akoloujiec pragmatikwn arijmwn

Ed¸, kn = n2.(d) Kje telikì tm ma (am, am+1, am+2, . . .) thc (an) eÐnai upakoloujÐa thc (an).Ed¸, kn = m + n− 1.

Parat rhsh 2.6.3. 'Estw (kn) mia gnhsÐwc aÔxousa akoloujÐa fusik¸narijm¸n. Tìte, kn ≥ n gia kje n ∈ N.Apìdeixh. Me epagwg : afoÔ o k1 eÐnai fusikìc arijmìc, eÐnai fanerì ìti k1 ≥ 1.Gia to epagwgikì b ma upojètoume ìti km ≥ m. AfoÔ h (kn) eÐnai gnhsÐwcaÔxousa, èqoume km+1 > km, ra km+1 > m. AfoÔ oi km+1 kai m eÐnai fusikoÐarijmoÐ, èpetai ìti km+1 ≥ m + 1. 2

H epìmenh Prìtash deÐqnei ìti an mia akoloujÐa sugklÐnei se pragmatikìarijmì tìte ìlec oi upakoloujÐec thc eÐnai sugklÐnousec kai sugklÐnoun stonÐdio pragmatikì arijmì.

Prìtash 2.6.4. An an → a tìte gia kje upakoloujÐa (akn) thc (an) isqÔei

akn → a.

Apìdeixh. 'Estw ε > 0. AfoÔ an → a, uprqei n0 = n0(ε) ∈ N me thn ex cidiìthta:

Gia kje m ≥ n0 isqÔei |am − a| < ε.

Apì thn Parat rhsh 2.6.3 gia kje n ≥ n0 èqoume kn ≥ n ≥ n0. Jètontacloipìn m = kn sthn prohgoÔmenh sqèsh, paÐrnoume:

Gia kje n ≥ n0 isqÔei |akn − a| < ε.

Autì apodeiknÔei ìti akn → a: gia to tuqìn ε > 0 br kame n0 ∈ N ¸ste ìloi oiìroi akn0

, akn0+1 , . . . thc (akn) na an koun sto (a− ε, a + ε). 2

Parat rhsh 2.6.5. H prohgoÔmenh Prìtash eÐnai polÔ qr simh an jèloumena deÐxoume ìti mia akoloujÐa (an) den sugklÐnei se kanènan pragmatikì arijmì.ArkeÐ na broÔme dÔo upakoloujÐec thc (an) oi opoÐec na èqoun diaforetik ìria.

Gia pardeigma, ac jewr soume thn (an) = (−1)n. Tìte, a2n = (−1)2n =1 → 1 kai a2n−1 = (−1)2n−1 = −1 → −1.

Ac upojèsoume ìti an → a. Oi (a2n) kai (a2n−1) eÐnai upakoloujÐec thc(an), prèpei loipìn na isqÔei a2n → a kai a2n−1 → a. Apì th monadikìthta touorÐou thc (a2n) paÐrnoume a = 1 kai apì th monadikìthta tou orÐou thc (a2n−1)paÐrnoume a = −1. Dhlad , 1 = −1. Katal xame se topo, ra h (an) densugklÐnei.

2.6bþ Je¸rhma Bolzano-Weierstrass

Je¸rhma 2.6.6 (Bolzano-Weierstrass). Kje fragmènh akoloujÐa èqeiupakoloujÐa pou sugklÐnei se pragmatikì arijmì.

Ja d¸soume dÔo apodeÐxeic autoÔ tou Jewr matoc. H pr¸th basÐzetai stogegonìc ìti kje monìtonh kai fragmènh akoloujÐa sugklÐnei. Gia na broÔme su-gklinousa upakoloujÐa miac fragmènhc akoloujÐac arkeÐ na broÔme mia monìtonhupakoloujÐa thc. To teleutaÐo isqÔei entel¸c genik, ìpwc deÐqnei to epìmenoJe¸rhma:

Je¸rhma 2.6.7. Kje akoloujÐa èqei toulqiston mÐa monìtonh upakoloujÐa.

Page 45: σημειωσεις Π 1 τζανες-ηλιοπουλος

2.6 Jewrhma Bolzano-Weierstrass · 43

Apìdeixh. Ja qreiastoÔme thn ènnoia tou shmeÐou koruf c miac akoloujÐac.

Orismìc 2.6.8. 'Estw (an) mia akoloujÐa pragmatik¸n arijm¸n. Lème ìti oam eÐnai shmeÐo koruf c thc (an) an am ≥ an gia kje n ≥ m.[Gia na exoikeiwjeÐte me ton orismì elègxte ta ex c. An h (an) eÐnai fjÐnousatìte kje ìroc thc eÐnai shmeÐo koruf c thc. An h (an) eÐnai gnhsÐwc aÔxousatìte den èqei kanèna shmeÐo koruf c.]

'Estw (an) mia akoloujÐa pragmatik¸n arijm¸n. DiakrÐnoume dÔo peript¸-seic:(a) H (an) èqei peira to pl joc shmeÐa koruf c. Tìte, uprqoun fusikoÐ arijmoÐk1 < k2 < · · · < kn < kn+1 < · · · ¸ste ìloi oi ìroi ak1 , . . . , akn

, . . . na eÐnaishmeÐa koruf c thc (an) (exhg ste giatÐ). AfoÔ kn < kn+1 gia kje n ∈ N, h(akn

) eÐnai upakoloujÐa thc (an). Apì ton orismì tou shmeÐou koruf c blèpoumeìti gia kje n ∈ N isqÔei akn

≥ akn+1 (èqoume kn+1 > kn kai o akneÐnai shmeÐo

koruf c thc (an)). Dhlad ,

ak1 ≥ ak2 ≥ · · · ≥ akn ≥ akn+1 ≥ · · · .

'Ara, h upakoloujÐa (akn) eÐnai fjÐnousa.(b) H (an) èqei peperasmèna to pl joc shmeÐa koruf c. Tìte, uprqei N ∈ Nme thn ex c idiìthta: an m ≥ N tìte o am den eÐnai shmeÐo koruf c thc (an)(prte N = k + 1 ìpou ak to teleutaÐo shmeÐo koruf c thc (an) N = 1 an denuprqoun shmeÐa koruf c).

Me bsh ton orismì tou shmeÐou koruf c autì shmaÐnei ìti: an m ≥ N tìteuprqei n > m ¸ste an > am.

Efarmìzoume diadoqik to parapnw. Jètoume k1 = N kai brÐskoume k2 > k1

¸ste ak2 > ak1 . Katìpin brÐskoume k3 > k2 ¸ste ak3 > ak2 kai oÔtw kajex c.Uprqoun dhlad k1 < k2 < · · · < kn < kn+1 < · · · ¸ste

ak1 < ak2 < · · · < akn < akn+1 < · · · .

Tìte, h (akn) eÐnai gnhsÐwc aÔxousa upakoloujÐa thc (an). 2

MporoÔme t¸ra na apodeÐxoume to Je¸rhma Bolzano-Weierstrass.

Apìdeixh tou Jewr matoc 2.6.6. 'Estw (an) fragmènh akoloujÐa. Apì to Je¸-rhma 2.6.7 h (an) èqei monìtonh upakoloujÐa (akn). H (akn) eÐnai monìtonh kaifragmènh, sunep¸c sugklÐnei se pragmatikì arijmì. 2

2.6gþ DeÔterh apìdeixh me qr sh thc arq c tou kibwtismoÔ

H deÔterh apìdeixh tou Jewr matoc Bolzano-Weierstrass qrhsimopoieÐ thn arq twn kibwtismènwn diasthmtwn (Je¸rhma 2.5.5). 'Estw (an) mia fragmènh ako-loujÐa pragmatik¸n arijm¸n. Tìte, uprqei kleistì disthma [b1, c1] sto opoÐoan koun ìloi oi ìroi an.

QwrÐzoume to [b1, c1] se dÔo diadoqik diast mata m kouc c1−b12 : ta

[b1,

b1+c12

]

kai[

b1+c12 , c1

]. Kpoio apì aut ta dÔo diast mata perièqei peirouc to pl joc

ìrouc thc (an). PaÐrnontac san [b2, c2] autì to upodisthma tou [b1, c1] èqoumedeÐxei to ex c.

Page 46: σημειωσεις Π 1 τζανες-ηλιοπουλος

44 · Akoloujiec pragmatikwn arijmwn

Uprqei kleistì disthma [b2, c2] ⊂ [b1, c1] to opoÐo perièqei peiroucìrouc thc (an) kai èqei m koc

c2 − b2 =c1 − b1

2.

SuneqÐzoume me ton Ðdio trìpo: qwrÐzoume to [b2, c2] se dÔo diadoqik dia-st mata m kouc c2−b2

2 : ta[b2,

b2+c22

]kai

[b2+c2

2 , c2

]. AfoÔ to [b2, c2] perièqei

peirouc ìrouc thc (an), kpoio apì aut ta dÔo diast mata perièqei peirouc topl joc ìrouc thc (an). PaÐrnontac san [b3, c3] autì to upodisthma tou [b2, c2]èqoume deÐxei to ex c.

Uprqei kleistì disthma [b3, c3] ⊂ [b2, c2] to opoÐo perièqei peiroucìrouc thc (an) kai èqei m koc

c3 − b3 =c2 − b2

2=

c1 − b1

22.

SuneqÐzontac me ton Ðdio trìpo orÐzoume akoloujÐa ([bm, cm]) kleist¸n dia-sthmtwn pou ikanopoieÐ ta ex c:

(i) Gia kje m ∈ N isqÔei [bm+1, cm+1] ⊂ [bm, cm].

(ii) Gia kje m ∈ N isqÔei cm − bm = (c1 − b1)/2m−1.

(iii) Gia kje m ∈ N uprqoun peiroi ìroi thc (an) sto [bm, cm].

Qrhsimopoi¸ntac thn trÐth sunj kh, mporoÔme na broÔme upakoloujÐa (akm)thc (an) me thn idiìthta: gia kje m ∈ N isqÔei akm ∈ [bm, cm]. Prgmati,uprqei k1 ∈ N ¸ste ak1 ∈ [b1, c1] gia thn akrÐbeia, ìloi oi ìroi thc (an)brÐskontai sto [b1, c1]. T¸ra, afoÔ to [b2, c2] perièqei peirouc ìrouc thc (an),kpoioc apì autoÔc èqei deÐkth megalÔtero apì k1. Dhlad , uprqei k2 > k1

¸ste ak2 ∈ [b2, c2]. Me ton Ðdio trìpo, an èqoun oristeÐ k1 < · · · < km ¸steaks ∈ [bs, cs] gia kje s = 1, . . . , m, mporoÔme na broÔme km+1 > km ¸steakm+1 ∈ [bm+1, cm+1] (diìti, to [bm+1, cm+1] perièqei peirouc ìrouc thc (an)).'Etsi, orÐzetai mia upakoloujÐa (akm) thc (an) pou ikanopoieÐ to zhtoÔmeno.

Ja deÐxoume ìti h (akm) sugklÐnei. Apì thn arq twn kibwtismènwn diasth-mtwn uprqei monadikìc a ∈ R o opoÐoc an kei se ìla ta kleist diast mata[bm, cm]. JumhjeÐte ìti

limm→∞

bm = a = limm→∞

cm.

AfoÔ bm ≤ akm ≤ cm gia kje m, to krit rio twn isosugklinous¸n akolouji¸ndeÐqnei ìti akm → a. 2

2.7 AkoloujÐec Cauchy

O orismìc thc akoloujÐac Cauchy èqei san afethrÐa thn ex c parat rhsh: acupojèsoume ìti an → a. Tìte, oi ìroi thc (an) eÐnai telik kont sto a,ra eÐnai telik kai metaxÔ touc kont. Gia na ekfrsoume austhr aut thnparat rhsh, ac jewr soume tuqìn ε > 0. Uprqei n0 = n0(ε) ∈ N ¸ste giakje n ≥ n0 na isqÔei |an − a| < ε

2 . Tìte, gia kje n,m ≥ n0 èqoume

|an − am| ≤ |an − a|+ |a− am| < ε

2+

ε

2= ε.

Page 47: σημειωσεις Π 1 τζανες-ηλιοπουλος

2.7 Akoloujiec Cauchy · 45

Orismìc 2.7.1. Mia akoloujÐa (an) lègetai akoloujÐa Cauchy ( basik akoloujÐa) an gia kje ε > 0 uprqei n0 = n0(ε) ∈ N ¸ste:

an m,n ≥ n0(ε), tìte |an − am| < ε.

Parat rhsh 2.7.2. An h (an) eÐnai akoloujÐa Cauchy, tìte gia kje ε > 0uprqei n0 = n0(ε) ∈ N ¸ste

an n ≥ n0(ε), tìte |an − an+1| < ε.

To antÐstrofo den isqÔei: an, apì kpoion deÐkth kai pèra, diadoqikoÐ ìroi eÐnaikont, den èpetai ìti h akoloujÐa eÐnai Cauchy. Gia pardeigma, jewr ste thn

an = 1 +1√2

+ · · ·+ 1√n

.

Tìte,|an+1 − an| = 1√

n + 1→ 0

ìtan n →∞, ìmwc

|a2n − an| = 1√n + 1

+ · · ·+ 1√2n

>

√n√2→ +∞

ìtan n →∞, ap ìpou blèpoume ìti h (an) den eÐnai akoloujÐa Cauchy (exhg stegiatÐ).

Skopìc mac eÐnai na deÐxoume ìti mia akoloujÐa pragmatik¸n arijm¸n eÐnaisugklÐnousa an kai mìno an eÐnai akoloujÐa Cauchy. H apìdeixh gÐnetai se trÐab mata.

Prìtash 2.7.3. Kje akoloujÐa Cauchy eÐnai fragmènh.

Apìdeixh. 'Estw (an) akoloujÐa Cauchy. Prte ε = 1 > 0 ston orismì: uprqein0 ∈ N ¸ste |an − am| < 1 gia kje n, m ≥ n0. Eidikìtera, |an − an0 | < 1 giakje n > n0. Dhlad ,

|an| < 1 + |an0 | gia kje n > n0.

Jètoume M = max|a1|, . . . , |an0 |, 1 + |an0 | kai eÔkola epalhjeÔoume ìti

|an| ≤ M

gia kje n ∈ N. 2

Prìtash 2.7.4. An mia akoloujÐa Cauchy (an) èqei sugklÐnousa upakoloujÐa,tìte h (an) sugklÐnei.

Apìdeixh. Upojètoume ìti h (an) eÐnai akoloujÐa Cauchy kai ìti h upakoloujÐa(akn) sugklÐnei sto a ∈ R. Ja deÐxoume ìti an → a.'Estw ε > 0. AfoÔ akn → a, uprqei n1 ∈ N ¸ste: gia kje n ≥ n1,

|akn − a| < ε

2.

Page 48: σημειωσεις Π 1 τζανες-ηλιοπουλος

46 · Akoloujiec pragmatikwn arijmwn

AfoÔ h (an) eÐnai akoloujÐa Cauchy, uprqei n2 ∈ N ¸ste: gia kje n,m ≥ n2

|an − am| < ε

2.

Jètoume n0 = maxn1, n2. 'Estw n ≥ n0. Tìte kn ≥ n ≥ n0 ≥ n1, ra

|akn− a| < ε

2.

EpÐshc kn, n ≥ n0 ≥ n2, ra

|akn − an| < ε

2.

'Epetai ìti|an − a| ≤ |an − akn |+ |akn − a| < ε

2+

ε

2= ε.

Dhlad , |an − a| < ε gia kje n ≥ n0. Autì shmaÐnei ìti an → a. 2

Je¸rhma 2.7.5. Mia akoloujÐa (an) sugklÐnei an kai mìno an eÐnai akoloujÐaCauchy.

Apìdeixh. H mÐa kateÔjunsh apodeÐqthke sthn eisagwg aut c thc paragrfou:an upojèsoume ìti an → a kai an jewr soume tuqìn ε > 0, uprqei n0 = n0(ε) ∈N ¸ste gia kje n ≥ n0 na isqÔei |an−a| < ε

2 . Tìte, gia kje n,m ≥ n0 èqoume

|an − am| ≤ |an − a|+ |a− am| < ε

2+

ε

2= ε.

'Ara, h (an) eÐnai akoloujÐa Cauchy.Gia thn antÐstrofh kateÔjunsh: èstw (an) akoloujÐa Cauchy. Apì thn Prìta-sh 2.7.3, h (an) eÐnai fragmènh. Apì to Je¸rhma Bolzano-Weierstrass, h (an)èqei sugklÐnousa upakoloujÐa. Tèloc, apì thn Prìtash 2.7.4 èpetai ìti h (an)sugklÐnei. 2

Autì to krit rio sÔgklishc eÐnai polÔ qr simo. Pollèc forèc jèloume naexasfalÐsoume thn Ôparxh orÐou gia mia akoloujÐa qwrÐc na mac endiafèrei htim tou orÐou. ArkeÐ na deÐxoume ìti h akoloujÐa eÐnai Cauchy, dhlad ìti oiìroi thc eÐnai kont gia meglouc deÐktec, kti pou den apaiteÐ na mantèyoumeek twn protèrwn poiì eÐnai to ìrio. AntÐjeta, gia na doulèyoume me ton orismìtou orÐou, prèpei dh na xèroume poiì eÐnai to upoy fio ìrio (sugkrÐnete toucdÔo orismoÔc: an → a kai (an) akoloujÐa Cauchy.)

2.8 *An¸tero kai kat¸tero ìrio akoloujÐac

Skopìc mac se aut n thn Pargrafo eÐnai na melet soume pio prosektik ticupakoloujÐec miac fragmènhc akoloujÐac. JumhjeÐte ìti an h akoloujÐa (an)sugklÐnei se kpoion pragmatikì arijmì a tìte h katstash eÐnai polÔ apl .An (akn) eÐnai tuqoÔsa upakoloujÐa thc (an), tìte akn → a. Dhlad , ìlec oiupakoloujÐec miac sugklÐnousac akoloujÐac sugklÐnoun kai mlista sto ìriothc akoloujÐac.

Orismìc 2.8.1. 'Estw (an) mia akoloujÐa. Lème ìti o x ∈ R eÐnai shmeÐosuss¸reushc ( upakoloujiakì ìrio) thc (an) an uprqei upakoloujÐa (akn)thc (an) ¸ste akn → x.

Page 49: σημειωσεις Π 1 τζανες-ηλιοπουλος

2.8 *Anwtero kai katwtero orio akoloujiac · 47

Ta shmeÐa suss¸reushc miac akoloujÐac qarakthrÐzontai apì to epìmeno L mma.

L mma 2.8.2. O x eÐnai shmeÐo suss¸reushc thc (an) an kai mìno an gia kjeε > 0 kai gia kje m ∈ N uprqei n ≥ m ¸ste |an − x| < ε.

Apìdeixh. Upojètoume pr¸ta ìti o x eÐnai shmeÐo suss¸reushc thc (an). Upr-qei loipìn upakoloujÐa (akn) thc (an) ¸ste akn → x.

'Estw ε > 0 kai m ∈ N. Uprqei n0 ∈ N ¸ste |akn − x| < ε gia kjen ≥ n0. JewroÔme ton n1 = maxm, n0. Tìte kn1 ≥ n1 ≥ m kai n1 ≥ n0, ra|akn1

− x| < ε.AntÐstrofa: PaÐrnoume ε = 1 kai m = 1. Apì thn upìjesh uprqei k1 ≥ 1 ¸ste|ak1 − x| < 1. Sth sunèqeia paÐrnoume ε = 1

2 kai m = k1 + 1. Efarmìzontac thnupìjesh brÐskoume k2 ≥ k1 + 1 > k1 ¸ste |ak2 − x| < 1

2 .Epagwgik brÐskoume k1 < k2 < · · · < kn < · · · ¸ste

|akn− x| < 1

n

(knete mìnoi sac to epagwgikì b ma). EÐnai fanerì ìti akn → x. 2

'Estw (an) mia fragmènh akoloujÐa. Dhlad , uprqei M > 0 ¸ste |an| ≤ Mgia kje n ∈ N. JewroÔme to sÔnolo

K = x ∈ R : x eÐnai shmeÐo suss¸reushc thc (an).1. To K eÐnai mh kenì. Apì to Je¸rhma Bolzano-Weierstrass uprqei toulqi-ston mÐa upakoloujÐa (akn) thc (an) pou sugklÐnei se pragmatikì arijmì. Toìrio thc (akn) eÐnai ex orismoÔ stoiqeÐo tou K.2. To K eÐnai fragmèno. An x ∈ K, uprqei akn → x kai afoÔ −M ≤ akn ≤ Mgia kje n, èpetai ìti −M ≤ x ≤ M .

Apì to axÐwma thc plhrìthtac prokÔptei ìti uprqoun ta sup K kai inf K. Toepìmeno L mma deÐqnei ìti to K èqei mègisto kai elqisto stoiqeÐo.

L mma 2.8.3. 'Estw (an) fragmènh akoloujÐa kai

K = x ∈ R : x eÐnai shmeÐo suss¸reushc thc (an).Tìte, supK ∈ K kai inf K ∈ K.

Apìdeixh. 'Estw a = sup K. Jèloume na deÐxoume ìti o a eÐnai shmeÐo suss¸reu-shc thc (an), kai sÔmfwna me to L mma 2.8.2 arkeÐ na doÔme ìti gia kje ε > 0kai gia kje m ∈ N uprqei n ≥ m ¸ste |an − a| < ε.

'Estw ε > 0 kai m ∈ N. AfoÔ a = sup K, uprqei x ∈ K ¸ste a− ε2 < x ≤ a.

O x eÐnai shmeÐo suss¸reushc thc (an), ra uprqei n ≥ m ¸ste |an − x| < ε2 .

Tìte,|an − a| ≤ |an − x|+ |x− a| < ε

2+

ε

2= ε.

Me anlogo trìpo deÐqnoume ìti inf K ∈ K. 2

Orismìc 2.8.4. 'Estw (an) mia fragmènh akoloujÐa. An

K = x ∈ R : x eÐnai shmeÐo suss¸reushc thc (an),orÐzoume

Page 50: σημειωσεις Π 1 τζανες-ηλιοπουλος

48 · Akoloujiec pragmatikwn arijmwn

(i) lim sup an = sup K, to an¸tero ìrio thc (an),

(ii) lim inf an = inf K to kat¸tero ìrio thc (an).

Me bsh to L mma 2.8.3, to lim sup an eÐnai to mègisto stoiqeÐo kai tolim inf an eÐnai to elqisto stoiqeÐo tou K antÐstoiqa:

Je¸rhma 2.8.5. 'Estw (an) fragmènh akoloujÐa. To lim sup an eÐnai o me-galÔteroc pragmatikìc arijmìc x gia ton opoÐo uprqei upakoloujÐa (akn) thc(an) me akn

→ x. To lim inf an eÐnai o mikrìteroc pragmatikìc arijmìc y gia tonopoÐo uprqei upakoloujÐa (aln) thc (an) me aln → y. 2

To an¸tero kai to kat¸tero ìrio miac fragmènhc akoloujÐac perigrfontaimèsw twn perioq¸n touc wc ex c:

Je¸rhma 2.8.6. 'Estw (an) fragmènh akoloujÐa pragmatik¸n arijm¸n kaièstw x ∈ R. Tìte,(1) x ≤ lim sup an an kai mìno an: gia kje ε > 0 to sÔnolo n ∈ N : x−ε < aneÐnai peiro.(2) x ≥ lim sup an an kai mìno an: gia kje ε > 0 to sÔnolo n ∈ N : x+ε < aneÐnai peperasmèno.(3) x ≥ lim inf an an kai mìno an: gia kje ε > 0 to sÔnolo n ∈ N : an < x+ εeÐnai peiro.(4) x ≤ lim inf an an kai mìno an: gia kje ε > 0 to sÔnolo n ∈ N : an < x− εeÐnai peperasmèno.(5) x = lim sup an an kai mìno an: gia kje ε > 0 to n ∈ N : x− ε < an eÐnaipeiro kai to n ∈ N : x + ε < an eÐnai peperasmèno.(6) x = lim inf an an kai mìno an: gia kje ε > 0 to n ∈ N : an < x + ε eÐnaipeiro kai to n ∈ N : an < x− ε eÐnai peperasmèno.

Apìdeixh. (1:⇒) 'Estw ε > 0. Uprqei upakoloujÐa (akn) thc (an) me akn →lim sup an, ra uprqei n0 ¸ste gia kje n ≥ n0

akn > lim sup an − ε ≥ x− ε.

'Epetai ìti to n : an > x− ε eÐnai peiro.(2:⇒) 'Estw ε > 0. An up rqan k1 < k2 < · · · < kn < · · · me akn > x + ε,tìte h (akn) ja eÐqe sugklÐnousa upakoloujÐa (alkn

) (apì to Je¸rhma Bolzano-Weierstrass) me alkn

→ y ≥ x + ε. 'Omwc tìte ja eÐqame

lim sup an ≥ y ≥ x + ε ≥ lim sup an + ε

to opoÐo eÐnai topo. 'Ara, to n : an > x + ε eÐnai peperasmèno.(1: ⇐) 'Estw ìti x > lim sup an. Tìte uprqei ε > 0 ¸ste an y = x−ε na èqoumex > y > lim sup an. Apì thn upìjes mac, to n ∈ N : y < an eÐnai peiro.'Omwc y > lim sup an opìte apì thn (2: ⇒) to sÔnolo n ∈ N : y < an eÐnaipeperasmèno (gryte y = lim sup an + ε1 gia kpoio ε1 > 0). Oi dÔo isqurismoÐèrqontai se antÐfash.(2:⇐) 'Omoia, upojètoume ìti x < lim sup an kai brÐskoume y ¸ste x < y <lim sup an. AfoÔ y > x, sumperaÐnoume ìti to n ∈ N : y < an eÐnai peperasmèno

Page 51: σημειωσεις Π 1 τζανες-ηλιοπουλος

2.8 *Anwtero kai katwtero orio akoloujiac · 49

(aut eÐnai h upìjes mac) kai afoÔ y < lim sup an sumperaÐnoume ìti to n ∈N : y < an eÐnai peiro (apì thn (1:⇒).) 'Etsi katal goume se topo.H (5) eÐnai mesh sunèpeia twn (1) kai (2).Gia tic (3), (4) kai (6) ergazìmaste ìmoia. 2

Mia enallaktik perigraf twn lim sup an kai lim inf an dÐnetai apì to epìmenoje¸rhma:

Je¸rhma 2.8.7. 'Estw (an) fragmènh akoloujÐa.(a) Jètoume bn = supak : k ≥ n. Tìte, lim sup an = infbn : n ∈ N.(b) Jètoume γn = infak : k ≥ n. Tìte, lim inf an = supγn : n ∈ N.

Apìdeixh. DeÐqnoume pr¸ta ìti oi arijmoÐ infbn : n ∈ N kai supγn : n ∈ NorÐzontai kal:

Gia kje n ∈ N, isqÔei γn ≤ an ≤ bn (exhg ste giatÐ). EpÐshc, h (bn)eÐnai fjÐnousa, en¸ h (an) eÐnai aÔxousa (exhg ste giatÐ). AfoÔ h (an) eÐnaifragmènh, èpetai ìti h (bn) eÐnai fjÐnousa kai ktw fragmènh, en¸ h (γn) eÐnaiaÔxousa kai nw fragmènh. Apì to je¸rhma sÔgklishc monìtonwn akolouji¸nsumperaÐnoume ìti bn → infbn : n ∈ N := b kai γn → supγn : n ∈ N := γ.

Ja deÐxoume ìti lim sup an = b. Apì to L mma 2.8.3 uprqei upakoloujÐa(akn) thc (an) me akn → lim sup an. 'Omwc, akn ≤ bkn kai bkn → b (exhg stegiatÐ). 'Ara,

lim sup an = lim akn ≤ lim bkn = b.

Gia thn antÐstrofh anisìthta deÐqnoume ìti o b eÐnai shmeÐo suss¸reushc thc(an). 'Estw ε > 0 kai èstw m ∈ N. Uprqei n ≥ m ¸ste |b − bn| < ε

2 . All,bn = supak : k ≥ n, ra uprqei k ≥ n ≥ m ¸ste bn ≥ ak > bn − ε

2 dhlad |bn − ak| < ε

2 . 'Epetai ìti

|b− ak| ≤ |b− bn|+ |bn − ak| < ε

2+

ε

2= ε.

Apì to L mma 2.8.2 o b eÐnai shmeÐo suss¸reushc thc (an), kai sunep¸c, b ≤lim sup an.

Me anlogo trìpo deÐqnoume ìti lim inf an = γ. 2

KleÐnoume me ènan qarakthrismì thc sÔgklishc gia fragmènec akoloujÐec.

Je¸rhma 2.8.8. 'Estw (an) fragmènh akoloujÐa. H (an) sugklÐnei an kaimìno an lim sup an = lim inf an.

Apìdeixh. An an → a tìte gia kje upakoloujÐa (akn) thc (an) èqoume akn → a.Epomènwc, o a eÐnai to monadikì shmeÐo suss¸reushc thc (an). 'Eqoume K = a,ra

lim sup an = lim inf an = a.

AntÐstrofa: èstw ε > 0. Apì to Je¸rhma 2.8.6 o arijmìc a = lim sup an =lim inf an èqei thn ex c idiìthta:

Ta sÔnola n ∈ N : an < a − ε kai n ∈ N : an > a + ε eÐnaipeperasmèna.

Page 52: σημειωσεις Π 1 τζανες-ηλιοπουλος

50 · Akoloujiec pragmatikwn arijmwn

Dhlad , to sÔnolon ∈ N : |an − a| > ε

eÐnai peperasmèno. IsodÔnama, uprqei n0 ∈ N me thn idiìthta: gia kje n ≥ n0,

|an − a| ≤ ε.

AfoÔ to ε > 0 tan tuqìn, èpetai ìti an → a. 2

Parat rhsh 2.8.9. Ac upojèsoume ìti h akoloujÐa (an) den eÐnai fragmènh.An h (an) den eÐnai nw fragmènh, tìte uprqei upakoloujÐa (akn

) thc (an) ¸steakn → +∞ (skhsh). Me lla lìgia, o +∞ eÐnai shmeÐo suss¸reushc thc(an). Se aut n thn perÐptwsh eÐnai logikì na orÐsoume lim sup an = +∞. Ente-l¸c anloga, an h (an) den eÐnai ktw fragmènh, tìte uprqei upakoloujÐa (akn

)thc (an) ¸ste akn → −∞ (skhsh). Dhlad , o −∞ eÐnai shmeÐo suss¸reushcthc (an). Tìte, orÐzoume lim inf an = −∞.

Page 53: σημειωσεις Π 1 τζανες-ηλιοπουλος

Keflaio 3

SuneqeÐc sunart seic

3.1 Sunart seic

'Estw X kai Y dÔo mh ken sÔnola. Me ton ìro sunrthsh apì to X stoY ennooÔme mia antistoÐqish pou stèlnei kje stoiqeÐo x tou X se èna kaimonadikì stoiqeÐo y tou Y . MporoÔme na kwdikopoi soume thn plhroforÐa ìtito x apeikonÐzetai sto y qrhsimopoi¸ntac to diatetagmèno zeÔgoc (x, y): to pr¸tostoiqeÐo x tou zeÔgouc eÐnai sto X kai to deÔtero eÐnai to stoiqeÐo tou Y stoopoÐo antistoiqÐzoume to x. OdhgoÔmaste ètsi ston ex c orismì:

Orismìc 3.1.1. 'Estw X kai Y dÔo mh ken sÔnola. JewroÔme to kartesianìginìmeno twn X kai Y :

X × Y = (x, y) : x ∈ X, y ∈ Y .

Sunrthsh f apì to X sto Y lègetai kje uposÔnolo f tou X ×Y to opoÐoikanopoieÐ ta ex c:

(i) Gia kje x ∈ X uprqei y ∈ Y ¸ste (x, y) ∈ f . H sunj kh aut perigrfeito gegonìc ìti apaitoÔme kje x ∈ X na apeikonÐzetai se kpoio y ∈ Y .

(ii) An (x, y1) ∈ f kai (x, y2) ∈ f , tìte y1 = y2. H sunj kh aut perigrfei togegonìc ìti apaitoÔme kje x ∈ X na èqei monos manta orismènh eikìnay ∈ Y .

Grfontac f : X → Y ennooÔme ìti f eÐnai mia sunrthsh apì to X sto Y .SumfwnoÔme epÐshc na grfoume y = f(x) gia thn eikìna tou x mèsw thc f .Dhlad , y = f(x) ⇐⇒ (x, y) ∈ f .

'Estw f : X → Y mia sunrthsh. Lème ìti to X eÐnai to pedÐo orismoÔthc f kai to Y eÐnai to pedÐo tim¸n thc f . To sÔnolo tim¸n ( eikìna)thc f eÐnai to sÔnolo

f(X) = y ∈ Y : uprqei x ∈ X ¸ste f(x) = y = f(x) : x ∈ X.

ParadeÐgmata 3.1.2. (a) 'Estw c ∈ R. H sunrthsh f : R→ R me f(x) = cgia kje x ∈ R lègetai stajer sunrthsh. To sÔnolo tim¸n thc f eÐnaito monosÔnolo f(X) = c.

Page 54: σημειωσεις Π 1 τζανες-ηλιοπουλος

52 · Suneqeic sunarthseic

(b) H sunrthsh f : R → R me f(x) = x. To sÔnolo tim¸n thc f eÐnai tosÔnolo f(X) = R.

(g) H sunrthsh f : R → R me f(x) = x2. To sÔnolo tim¸n thc f eÐnai tosÔnolo f(X) = [0, +∞).

(d) H sunrthsh f : R → R me f(x) = 1 an x ∈ Q kai f(x) = 0 an x /∈ Q.To sÔnolo tim¸n thc f eÐnai to sÔnolo f(X) = 0, 1.

(e) H sunrthsh f : R → R me f(x) = 1q an x 6= 0 rhtìc o opoÐoc grfetai

sth morf x = pq ìpou p ∈ Z, q ∈ N, MKD(p, q) = 1, kai f(x) = 0 an x /∈ Q

x = 0. To sÔnolo tim¸n thc f eÐnai to sÔnolo f(X) = 0 ∪ 1/n : n ∈ N.Orismìc 3.1.3. 'Estw f : X → Y mia sunrthsh. H f lègetai epÐ anf(X) = Y , dhlad an gia kje y ∈ Y uprqei x ∈ X ¸ste f(x) = y.

H sunrthsh f lègetai 1-1 an apeikonÐzei diaforetik stoiqeÐa tou X sediaforetik stoiqeÐa tou Y . Dhlad , an gia kje x1, x2 ∈ X me x1 6= x2 èqoumef(x1) 6= f(x2). IsodÔnama, gia na elègxoume ìti h f eÐnai 1-1 prèpei na deÐxoumeìti an x1, x2 ∈ X kai f(x1) = f(x2), tìte x1 = x2.

Orismìc 3.1.4 (sÔnjesh sunart sewn). 'Estw f : X → Y kai g :W → Z dÔo sunart seic. Upojètoume ìti f(X) ⊆ W , dhlad , h eikìna thcf perièqetai sto pedÐo orismoÔ thc g. Tìte, an x ∈ X èqoume f(x) ∈ W kaiorÐzetai h eikìna g(f(x)) tou f(x) mèsw thc g. MporoÔme loipìn na orÐsoumemia sunrthsh g f : X → Z, jètontac

(g f)(x) = g(f(x)) (x ∈ X).

H sunrthsh g f lègetai sÔnjesh thc g me thn f .

Orismìc 3.1.5 (eikìna kai antÐstrofh eikìna). 'Estw f : X → Ymia sunrthsh.(a) Gia kje A ⊆ X, h eikìna tou A mèsw thc f eÐnai to sÔnolo

f(A) = y ∈ Y : uprqei x ∈ A ¸ste f(x) = y = f(x) : x ∈ A.

(b) Gia kje B ⊆ Y , h antÐstrofh eikìna tou B mèsw thc f eÐnai to sÔnolo

f−1(B) = x ∈ X : f(x) ∈ B.

Prìtash 3.1.6. 'Estw f : X → Y mia sunrthsh. IsqÔoun ta ex c:

(i) An A1 ⊆ A2 ⊆ X, tìte f(A1) ⊆ f(A2).

(ii) An A1, A2 ⊆ X, tìte f(A1 ∪A2) = f(A1) ∪ f(A2).

(iii) An A1, A2 ⊆ X, tìte f(A1 ∩ A2) ⊆ f(A1) ∩ f(A2). O egkleismìc mporeÐna eÐnai gn sioc. IsqÔei ìmwc pnta isìthta an h f eÐnai 1-1.

(iv) An B1 ⊆ B2 ⊆ Y tìte f−1(B1) ⊆ f−1(B2).

(v) An B1, B2 ⊆ Y , tìte f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2).

(vi) An B1, B2 ⊆ Y , tìte f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2).

(vii) An B ⊆ Y tìte f−1(Y \B) = X \ f−1(B).

Page 55: σημειωσεις Π 1 τζανες-ηλιοπουλος

3.1 Sunarthseic · 53

(viii) An A ⊆ X tìte A ⊆ f−1(f(A)). O egkleismìc mporeÐ na eÐnai gn sioc.IsqÔei ìmwc pnta isìthta an h f eÐnai 1-1.

(ix) An B ⊆ Y tìte f(f−1(B)) ⊆ B. O egkleismìc mporeÐ na eÐnai gn sioc.IsqÔei ìmwc pnta isìthta an h f eÐnai epÐ.

Orismìc 3.1.7 (antÐstrofh sunrthsh). 'Estw f : X → Y mia 1-1sunrthsh. MporoÔme na jewr soume th sunrthsh f san sunrthsh apì toX sto f(X) (h f paÐrnei timèc sto sÔnolo f(X)). H f : X → f(X) eÐnai 1-1kai epÐ. Sunep¸c, gia kje y ∈ f(X) uprqei x ∈ X ¸ste f(x) = y, kai autìto x ∈ X eÐnai monadikì afoÔ h f eÐnai 1-1. MporoÔme loipìn na orÐsoume miasunrthsh f−1 : f(X) → X, wc ex c:

f−1(y) = x, ìpou x eÐnai to monadikì x ∈ X gia to opoÐo f(x) = y.

Me lla lìgia,f−1(y) = x ⇐⇒ f(x) = y.

H f−1 eÐnai kal orismènh sunrthsh apì to f(X) sto X, h antÐstrofhsunrthsh thc f .

Prìtash 3.1.8. 'Estw f : X → Y mia 1-1 sunrthsh. Oi f−1 f : X → Xkai f f−1 : f(X) → f(X) orÐzontai kal kai ikanopoioÔn tic:

(a) (f−1 f)(x) = x gia kje x ∈ X.(b) (f f−1)(y) = y gia kje y ∈ f(X).

Orismìc 3.1.9 (prxeic kai ditaxh). 'Estw A èna mh kenì sÔnolo kaièstw f : A → R kai g : A → R dÔo sunart seic me pedÐo tim¸n to R. Tìte,

(i) H sunrthsh f + g : A → R orÐzetai wc ex c: (f + g)(x) = f(x) + g(x)gia kje x ∈ A.

(ii) H sunrthsh f · g : A → R orÐzetai wc ex c: (f · g)(x) = f(x) · g(x) giakje x ∈ A.

(iii) Gia kje t ∈ R orÐzetai h sunrthsh tf : A → R me (tf)(x) = tf(x) giakje x ∈ A.

(iv) An g(x) 6= 0 gia kje x ∈ A, tìte orÐzetai hf

g: A → R me

(f

g

)(x) =

f(x)g(x)

gia kje x ∈ A.

Lème ìti f ≤ g an f(x) ≤ g(x) gia kje x ∈ A.

Orismìc 3.1.10 (monìtonec sunart seic). 'Estw A èna mh kenì upo-sÔnolo tou R kai èstw f : A → R mia sunrthsh. Lème ìti:

(i) H f eÐnai aÔxousa an gia kje x, y ∈ A me x < y isqÔei f(x) ≤ f(y).

(ii) H f eÐnai gnhsÐwc aÔxousa an gia kje x, y ∈ A me x < y isqÔeif(x) < f(y).

(iii) H f eÐnai fjÐnousa an gia kje x, y ∈ A me x < y isqÔei f(x) ≥ f(y).

(iv) H f eÐnai gnhsÐwc fjÐnousa an gia kje x, y ∈ A me x < y isqÔeif(x) > f(y).

Page 56: σημειωσεις Π 1 τζανες-ηλιοπουλος

54 · Suneqeic sunarthseic

(v) H f eÐnai monìtonh an eÐnai aÔxousa fjÐnousa.

(vi) H f eÐnai gnhsÐwc monìtonh an eÐnai gnhsÐwc aÔxousa gnhsÐwc fjÐ-nousa.

Orismìc 3.1.11 (fragmènh sunrthsh). 'Estw A èna mh kenì sÔnolokai èstw f : A → R mia sunrthsh. Lème ìti:

(i) H f eÐnai nw fragmènh an uprqei M ∈ R ¸ste gia kje x ∈ A naisqÔei f(x) ≤ M .

(ii) H f eÐnai ktw fragmènh an uprqei m ∈ R ¸ste gia kje x ∈ A naisqÔei f(x) ≥ m.

(iii) H f eÐnai fragmènh an eÐnai nw kai ktw fragmènh. IsodÔnama, anuprqei M > 0 ¸ste gia kje x ∈ A na isqÔei |f(x)| ≤ M .

3.2 Sunèqeia sunrthshc

3.2aþ Orismìc thc sunèqeiac

Orismìc 3.2.1. 'Estw A èna mh kenì uposÔnolo tou R, èstw f : A → R kaièstw x0 ∈ A. Lème ìti h f eÐnai suneq c sto x0 an: gia kje ε > 0 uprqeiδ > 0 ¸ste:

an x ∈ A kai |x− x0| < δ, tìte |f(x)− f(x0)| < ε.

Lème ìti h f eÐnai suneq c sto A an eÐnai suneq c se kje x0 ∈ A.

Parathr seic 3.2.2. (a) To dojèn ε > 0 kajorÐzei mia perioq (f(x0) −ε, f(x0) + ε) thc tim c f(x0). Autì pou zhtme eÐnai na mporoÔme na broÔmemia perioq (x0 − δ, x0 + δ) tou x0 ¸ste kje x ∈ A pou an kei se aut n thnperioq tou x0 na apeikonÐzetai sto (f(x0) − ε, f(x0) + ε). Dhlad , na isqÔeif((x0 − δ, x0 + δ) ∩A) ⊆ (f(x0)− ε, f(x0) + ε).

An to parapnw isqÔei gia kje ε > 0, tìte lème ìti h f eÐnai suneq c stox0.

(b) Apì ton orismì eÐnai fanerì ìti exetzoume th sunèqeia mìno sta shmeÐa toupedÐou orismoÔ thc f .

ParadeÐgmata 3.2.3. (a) f : R→ R me f(x) = c gia kje x ∈ R. JadeÐxoume ìti h f eÐnai suneq c se kje x0 ∈ R. 'Estw ε > 0. Zhtme δ > 0 ¸ste:an x ∈ R kai |x−x0| < δ, tìte |f(x)−f(x0)| < ε. 'Omwc, gia kje x ∈ R èqoume

|f(x)− f(x0)| = |c− c| = 0 < ε.

Dhlad , mporoÔme na epilèxoume opoiod pote δ > 0 (gia pardeigma, δ = 100).

(b) f : R→ R me f(x) = x gia kje x ∈ R. Ja deÐxoume ìti h f eÐnai suneq c sekje x0 ∈ R. 'Estw ε > 0. Zhtme δ > 0 ¸ste: an x ∈ R kai |x− x0| < δ, tìte|f(x) − f(x0)| < ε. AfoÔ |f(x) − f(x0)| = |x − x0|, arkeÐ na epilèxoume δ = ε.Tìte,

|x− x0| < δ =⇒ |f(x)− f(x0)| = |x− x0| < δ = ε.

Page 57: σημειωσεις Π 1 τζανες-ηλιοπουλος

3.2 Suneqeia sunarthshc · 55

Parathr ste ìti, se autì to pardeigma, to δ exarttai apì to ε all den exar-ttai apì to x0.

(g) f : R→ R me f(x) = 2x2 − 1 gia kje x ∈ R. Ja deÐxoume ìti h f eÐnaisuneq c se kje x0 ∈ R. 'Estw ε > 0. Zhtme δ > 0 ¸ste: an x ∈ R kai|x− x0| < δ, tìte |f(x)− f(x0)| < ε.

Parathr ste ìti, gia kje x ∈ R,

|f(x)− f(x0)| = |(2x2 − 1)− (2x20 − 1)| = |2x2 − 2x2

0| = 2|x + x0| · |x− x0|.

Zhtme loipìn δ > 0 ¸ste: an |x−x0| < δ, tìte 2|x+x0|·|x−x0| < ε. Dedomènouìti emeÐc eÐmaste pou ja knoume thn epilog tou δ, mporoÔme na upojèsoumeapì thn arq ìti to δ ja eÐnai mikrìtero apì 1. Tìte, an |x− x0| < δ ja èqoume|x− x0| < 1, kai sunep¸c,

|x + x0| ≤ |x− x0 + 2x0| ≤ |x− x0|+ 2|x0| < 1 + 2|x0|.

An, epiplèon, δ < ε2(2|x0|+1) , tìte, gia kje x ∈ R me |x− x0| < δ ja èqoume

|f(x)− f(x0)| = 2|x + x0| · |x− x0| ≤ 2(2|x0|+ 1) |x− x0| < 2(2|x0|+ 1)δ < ε.

Dhlad , an epilèxoume

0 < δ < min

1,ε

2(2|x0|+ 1)

,

èqoume|x− x0| < δ =⇒ |f(x)− f(x0)| < ε.

Parathr ste ìti to δ pou epilèxame exarttai apì to dojèn ε all kai apì toshmeÐo x0 sto opoÐo exetzoume th sunèqeia thc f .

3.2bþ H rnhsh tou orismoÔ

'Estw f : A → R kai èstw x0 ∈ A. Upojètoume ìti h f den eÐnai suneq c sto x0.Me bsh th suz thsh pou ègine met ton orismì thc sunèqeiac, autì shmaÐnei ìtiuprqei kpoio ε me thn ex c idiìthta: an jewr soume opoiod pote δ > 0 kai thnantÐstoiqh perioq (x0−δ, x0+δ) tou x0, tìte den isqÔei f((x0−δ, x0+δ)∩A) ⊆(f(x0)− ε, f(x0)+ ε). Me lla lìgia, uprqei kpoio x ∈ A to opoÐo an kei sto(x0 − δ, x0 + δ) all den ikanopoieÐ thn |f(x)− f(x0)| < ε. IsodÔnama,

Gia kje δ > 0 uprqei x ∈ A me |x− x0| < δ kai |f(x)− f(x0)| ≥ ε.

Katal goume loipìn sto ex c:

H f : A → R eÐnai asuneq c sto x0 ∈ A an kai mìno an uprqeiε > 0 ¸ste: gia kje δ > 0 uprqei x ∈ A me |x − x0| < δ kai|f(x)− f(x0)| ≥ ε.

Me lìgia, ja lègame ìti h f eÐnai asuneq c sto x0 an osod pote kont stox0 uprqei x ∈ A ¸ste oi timèc f(x) kai f(x0) na apèqoun arket.

Page 58: σημειωσεις Π 1 τζανες-ηλιοπουλος

56 · Suneqeic sunarthseic

Pardeigma 3.2.4. H sunrthsh tou Dirichlet, f(x) =

1 x ∈ Q

0 x /∈ Q,

eÐnai asuneq c se kje x0 ∈ R. Epilègoume ε = 12 > 0 kai ja deÐxoume ìti: gia

kje δ > 0 uprqei x ∈ R me |x−x0| < δ all |f(x)− f(x0)| ≥ 12 . Prgmati, an

o x0 eÐnai rhtìc, parathroÔme ìti sto (x0−δ, x0 +δ) mporoÔme na broÔme rrhtoα. Apì ton orismì thc f èqoume

|f(α)− f(x0)| = |0− 1| = 1 ≥ 12.

An o x0 eÐnai rrhtoc, parathroÔme ìti sto (x0 − δ, x0 + δ) mporoÔme na broÔmerhtì q. Apì ton orismì thc f èqoume

|f(q)− f(x0)| = |1− 0| = 1 ≥ 12.

3.2gþ Arq thc metaforc

'Estw f : A → R kai èstw x0 ∈ A. H arq thc metaforc dÐnei ènanqarakthrismì thc sunèqeiac thc f sto x0 mèsw akolouji¸n.

Je¸rhma 3.2.5 (arq thc metaforc). H f : A → R eÐnai suneq c stox0 ∈ A an kai mìno an: gia kje akoloujÐa (xn) shmeÐwn tou A me xn → x0, hakoloujÐa (f(xn)) sugklÐnei sto f(x0).

Apìdeixh. Upojètoume pr¸ta ìti h f eÐnai suneq c sto x0. 'Estw xn ∈ A mexn → x0. Ja deÐxoume ìti f(xn) → f(x0): 'Estw ε > 0. AfoÔ h f eÐnai suneq csto x0, uprqei δ > 0 ¸ste: an x ∈ A kai |x− x0| < δ, tìte |f(x)− f(x0)| < ε(autìc eÐnai akrib¸c o orismìc thc sunèqeiac thc f sto x0).

'Eqoume upojèsei ìti xn → x0. 'Ara, gi autì to δ > 0 mporoÔme na broÔmen0 ∈ N ¸ste: an n ≥ n0 tìte |xn − x0| < δ (autìc eÐnai akrib¸c o orismìc thcsÔgklishc thc (xn) sto x0).

Sunduzontac ta parapnw èqoume: an n ≥ n0, tìte |xn − x0| < δ ra

|f(xn)− f(x0)| < ε.

AfoÔ to ε > 0 tan tuqìn, f(xn) → f(x0).Gia thn antÐstrofh kateÔjunsh ja doulèyoume me apagwg se topo. Upo-

jètoume ìti gia kje akoloujÐa (xn) shmeÐwn tou A me xn → x0, h akoloujÐa(f(xn)) sugklÐnei sto f(x0). Upojètoume epÐshc ìti h f den eÐnai suneq c stox0 kai ja katal xoume se topo.

AfoÔ h f den eÐnai suneq c sto x0, uprqei kpoio ε > 0 me thn ex c idiìthta:

(∗) Gia kje δ > 0 uprqei x ∈ A to opoÐo ikanopoieÐ thn |x−x0| < δall |f(x)− f(x0)| ≥ ε.

QrhsimopoioÔme thn (∗) diadoqik me δ = 1, 12 , . . . , 1

n , . . .. Gia kje n ∈ Nèqoume 1/n > 0 kai apì thn (∗) brÐskoume xn ∈ A me |xn − x0| < 1/n kai|f(xn) − f(x0)| ≥ ε. Apì to krit rio parembol c eÐnai fanerì ìti xn → x0 kaiapì thn upìjesh pou kname prèpei h akoloujÐa (f(xn)) na sugklÐnei sto f(x0).Autì ìmwc eÐnai adÔnato afoÔ |f(xn)− f(x0)| ≥ ε gia kje n ∈ N. 2

Page 59: σημειωσεις Π 1 τζανες-ηλιοπουλος

3.2 Suneqeia sunarthshc · 57

Parat rhsh 3.2.6. H arq thc metaforc mporeÐ na qrhsimopoihjeÐ me dÔodiaforetikoÔc trìpouc:

(i) gia na deÐxoume ìti h f eÐnai suneq c sto x0 arkeÐ na deÐxoume ìti xn →x0 =⇒ f(xn) → f(x0).

(ii) gia na deÐxoume ìti h f den eÐnai suneq c sto x0 arkeÐ na broÔme mia ako-loujÐa xn → x0 (sto A) ¸ste limn f(xn) 6= f(x0). PolÔ suqn, exasfa-lÐzoume thn asunèqeia thc f sto x0 brÐskontac dÔo akoloujÐec xn → x0

kai yn → x0 (sto A) ¸ste limn f(xn) 6= limn f(yn). An h f tan suneq csto x0, ja èprepe ta dÔo ìria na eÐnai Ðsa me f(x0), ra kai metaxÔ toucÐsa.

Aplì pardeigma. H sunrthsh tou Dirichlet, f(x) =

1 x ∈ Q

0 x /∈ Q, eÐnai

asuneq c se kje x0 ∈ R. Ja d¸soume mia deÔterh apìdeixh, qrhsimopoi¸ntacthn arq thc metaforc. Apì thn puknìthta twn rht¸n kai twn arr twn, mpo-roÔme na broÔme akoloujÐa (qn) rht¸n arijm¸n me qn → x0 kai akoloujÐa (αn)arr twn arijm¸n me αn → x0. 'Omwc, f(qn) = 1 → 1 kai f(αn) = 0 → 0. Apìthn prohgoÔmenh parat rhsh sumperaÐnoume ìti h f den eÐnai suneq c sto x0.

3.2dþ Sunèqeia kai prxeic metaxÔ sunart sewn

To je¸rhma pou akoloujeÐ dÐnei th sqèsh thc sunèqeiac me tic sun jeic alge-brikèc prxeic anmesa se sunart seic. H apìdeix tou eÐnai mesh, an qrhsimo-poi soume thn arq thc metaforc se sunduasmì me tic antÐstoiqec idiìthtec giata ìria akolouji¸n.

Je¸rhma 3.2.7. 'Estw f, g : A → R kai èstw x0 ∈ A. Upojètoume ìti oi f, geÐnai suneqeÐc sto x0. Tìte,

(i) Oi f + g kai f · g eÐnai suneqeÐc sto x0.

(ii) An epiplèon g(x) 6= 0 gia kje x ∈ A, tìte h fg orÐzetai sto A kai eÐnai

suneq c sto x0.

Apìdeixh. H apìdeixh ìlwn twn isqurism¸n eÐnai apl : gia pardeigma, gia nadeÐxoume ìti h f

g eÐnai suneq c sto x0, sÔmfwna me thn arq thc metaforc, arkeÐna deÐxoume ìti, gia kje akoloujÐa (xn) shmeÐwn tou A pou sugklÐnei sto x0, hakoloujÐa

((fg

)(xn)

)sugklÐnei sto

(fg

)(x0). Apì thn upìjesh, oi f kai g eÐnai

suneqeÐc sto x0. Apì thn arq thc metaforc èqoume èqoume f(xn) → f(x0) kaig(xn) → g(x0). AfoÔ g(xn) 6= 0 gia kje n ∈ N kai g(x0) 6= 0, èqoume

(f

g

)(xn) =

f(xn)g(xn)

→ f(x0)g(x0)

=(

f

g

)(x0).

H apìdeixh thc sunèqeiac twn f + g kai f · g sto x0 af netai wc 'Askhsh gia tonanagn¸sth. 2

H stajer sunrthsh f(x) = c (c ∈ R) kai h tautotik sunrthsh g(x) = xeÐnai suneqeÐc sto R. 'Epetai ìti oi poluwnumikèc sunart seic eÐnai suneqeÐc stoR kai ìti kje rht sunrthsh eÐnai suneq c se ìla ta shmeÐa tou pedÐou orismoÔthc.

Page 60: σημειωσεις Π 1 τζανες-ηλιοπουλος

58 · Suneqeic sunarthseic

Prìtash 3.2.8 (sÔnjesh suneq¸n sunart sewn). 'Estw f : A → Rkai èstw g : B → R dÔo sunart seic me f(A) ⊆ B. An h f eÐnai suneq c sto x0

kai h g eÐnai suneq c sto f(x0), tìte h g f : A → R eÐnai suneq c sto x0.

Apìdeixh. 'Estw (xn) akoloujÐa shmeÐwn tou A me xn → x0. AfoÔ h f eÐnaisuneq c sto x0, h arq thc metaforc deÐqnei ìti f(xn) → f(x0). AfoÔ h g eÐnaisuneq c sto f(x0) ∈ B, gia kje akoloujÐa (yn) shmeÐwn tou B me yn → f(x0)èqoume g(yn) → g(f(xn)).

'Omwc, f(xn) ∈ B kai f(xn) → f(x0). Sunep¸c,

g(f(xn)) → g(f(x0)).

Gia kje akoloujÐa (xn) shmeÐwn tou A me xn → x0 deÐxame ìti

(g f)(xn) = g(f(xn)) → g(f(x0)) = (g f)(x0).

Apì thn arq thc metaforc, h g f eÐnai suneq c sto x0. 2

3.2eþ Sunèqeia kai topik sumperifor

Apì ton orismì thc sunèqeiac eÐnai fanerì ìti h sumperifor miac sunrthshc fmakri apì to x0 den ephrezei th sunèqeia mh thc f sto x0.

Prìtash 3.2.9. 'Estw f : A → R kai èstw x0 ∈ A. Upojètoume ìti uprqeiρ > 0 ¸ste o periorismìc thc f sto A ∩ (x0 − ρ, x0 + ρ) na eÐnai sunrthshsuneq c sto x0. Tìte, h f eÐnai suneq c sto x0.

Apìdeixh. Me ton ìro periorismìc thc f ennooÔme th sunrthsh f : A∩ (x0−ρ, x0 + ρ) → R me f(x) = f(x).

'Estw ε > 0. AfoÔ h f eÐnai suneq c sto x0, uprqei δ1 > 0 ¸ste gia kjex ∈ (A ∩ (x0 − ρ, x0 + ρ)) me |x− x0| < δ1 na isqÔei |f(x)− f(xo)| < ε.

Jètoume δ = minρ, δ1. Tìte, èqoume δ > 0 kai an x ∈ A ∩ (x0 − δ, x0 + δ)èqoume tautìqrona x ∈ A ∩ (x0 − ρ, x0 + ρ) kai |x− x0| < δ ≤ δ1. 'Ara,

|f(x)− f(x0)| = |f(x)− f(xo)| < ε.

Dhlad , h f eÐnai suneq c sto x0. 2

H epìmenh Prìtash deÐqnei ìti an mia sunrthsh f : A → R eÐnai suneq csto x0 ∈ A, tìte eÐnai topik fragmènh, dhlad fragmènh se mia perioq toux0. Parathr ste ìti mia suneq c sunrthsh f den eÐnai aparaÐthta fragmènh seolìklhro to pedÐo orismoÔ thc. Apl paradeÐgmata mac dÐnoun oi sunart seicf(x) = x2 (x ∈ R) kai g(x) = 1

x (x ∈ (0, 1)).

Prìtash 3.2.10. 'Estw f : A → R kai èstw x0 ∈ A. Upojètoume ìti h feÐnai suneq c sto x0. Tìte, mporoÔme na broÔme δ > 0 kai M > 0 ¸ste gia kjex ∈ A ∩ (x0 − δ, x0 + δ) na isqÔei |f(x)| ≤ M .

Apìdeixh. Efarmìzoume ton orismì thc sunèqeiac thc f sto x0 me ε = 1 > 0.Uprqei δ > 0 ¸ste: an x ∈ A kai |x−x0| < δ, tìte |f(x)−f(x0)| < 1. Dhlad ,gia kje x ∈ A ∩ (x0 − δ, x0 + δ) èqoume

|f(x)| ≤ |f(x)− f(x0)|+ |f(x0)| < 1 + |f(x0)|.'Epetai to zhtoÔmeno, me M = 1 + |f(x0)|. 2

Page 61: σημειωσεις Π 1 τζανες-ηλιοπουλος

3.3 Basika jewrhmata gia suneqeic sunarthseic · 59

H teleutaÐa parat rhsh eÐnai ìti an mia sunrthsh f : A → R eÐnai suneq csto x0 ∈ A kai an f(x0) 6= 0, tìte h f diathreÐ to prìshmo tou f(x0) se miaolìklhrh (endeqomènwc mikr ) perioq tou x0.

Prìtash 3.2.11. 'Estw f : A → R kai èstw x0 ∈ A. Upojètoume ìti h feÐnai suneq c sto x0 kai ìti f(x0) 6= 0.

(i) An f(x0) > 0, tìte uprqei δ > 0 ¸ste f(x) > 0 gia kje x ∈ A ∩ (x0 −δ, x0 + δ).

(ii) An f(x0) < 0, tìte uprqei δ > 0 ¸ste f(x) < 0 gia kje x ∈ A ∩ (x0 −δ, x0 + δ).

Apìdeixh. Upojètoume pr¸ta ìti f(x0) > 0. AfoÔ h f eÐnai suneq c sto x0, anjewr soume ton ε = f(x0)

2 > 0 uprqei δ > 0 ¸ste: an x ∈ A kai |x − x0| < δtìte

|f(x)− f(x0)| < f(x0)2

=⇒ −f(x0)2

< f(x)− f(x0) =⇒ f(x) > 0.

Dhlad , f(x) > 0 gia kje x ∈ A ∩ (x0 − δ, x0 + δ).Upojètoume t¸ra ìti f(x0) < 0. AfoÔ h f eÐnai suneq c sto x0, an jew-

r soume ton ε = − f(x0)2 > 0 uprqei δ > 0 ¸ste: an x ∈ A kai |x − x0| < δ

tìte

|f(x)− f(x0)| < −f(x0)2

=⇒ f(x)− f(x0) < −f(x0)2

=⇒ f(x) < 0.

Dhlad , f(x) < 0 gia kje x ∈ A ∩ (x0 − δ, x0 + δ). 2

3.3 Basik jewr mata gia suneqeÐc sunart seic

Se aut n thn pargrafo ja apodeÐxoume dÔo jemeli¸dh kai diaisjhtik aname-nìmena jewr mata gia suneqeÐc sunart seic pou eÐnai orismènec se èna kleistìdisthma: to je¸rhma endimeshc tim c kai to je¸rhma Ôparxhc mègisthc kaielqisthc tim c. H apìdeixh touc apaiteÐ ousiastik qr sh tou axi¸matoc thcplhrìthtac.

3.3aþ To je¸rhma elqisthc kai mègisthc tim c

To pr¸to basikì je¸rhma mac lèei ìti an f : [a, b] → R eÐnai mia suneq csunrthsh, tìte h f eÐnai nw fragmènh kai ktw fragmènh, kai mlista paÐrneimègisth kai elqisth tim . Gia thn apìdeixh ja qrhsimopoi soume thn arq thcmetaforc.

Je¸rhma 3.3.1. 'Estw f : [a, b] → R suneq c sunrthsh. Uprqoun m,M ∈R ¸ste: gia kje x ∈ [a, b],

m ≤ f(x) ≤ M.

Dhlad , h f eÐnai nw kai ktw fragmènh.

Page 62: σημειωσεις Π 1 τζανες-ηλιοπουλος

60 · Suneqeic sunarthseic

Apìdeixh. Ac upojèsoume ìti h f den eÐnai nw fragmènh. Tìte, gia kje M > 0mporoÔme na broÔme x ∈ [a, b] me f(x) > M .Epilègoume diadoqik M = 1, 2, 3, . . . , n, . . . kai brÐskoume xn ∈ [a, b] me

f(xn) > n, n ∈ N.

JewroÔme thn akoloujÐa (xn). AfoÔ a ≤ xn ≤ b, h (xn) eÐnai fragmènh. Apì toJe¸rhma Bolzano–Weierstrass, uprqei upakoloujÐa (xkn

) thc (xn) me xkn→ x0.

AfoÔ a ≤ xkn≤ b gia kje n, èpetai ìti x0 ∈ [a, b].

H f eÐnai suneq c sto x0 kai xkn→ x0. Apì thn arq thc metaforc,

f(xkn) → f(x0).

'Ara, h (f(xkn)) eÐnai fragmènh akoloujÐa. 'Omwc, f(xkn

) > kn ≥ n apì tontrìpo epilog c twn xkn

, dhlad f(xkn) → +∞. Autì eÐnai topo.

'Omoia deÐqnoume thn Ôparxh ktw frgmatoc ( , pio apl, jewr ste thn −f :aut eÐnai suneq c, ra nw fragmènh sto [a, b] klp). 2

Knontac èna akìma b ma, deÐqnoume ìti kje suneq c sunrthsh f : [a, b] →R paÐrnei mègisth kai elqisth tim sto [a, b]:

Je¸rhma 3.3.2. 'Estw f : [a, b] → R suneq c sunrthsh. Uprqoun y1, y2 ∈[a, b] ¸ste f(y1) ≤ f(x) ≤ f(y2) gia kje x ∈ [a, b].

Apìdeixh. Apì to Je¸rhma 3.3.1, h f eÐnai nw fragmènh. Sunep¸c, to sÔnolo

A = f(x) : x ∈ [a, b]

eÐnai nw fragmèno. 'Estw ρ = sup A. Jèloume na deÐxoume ìti uprqei y2 ∈ [a, b]me f(y2) = ρ.

Apì ton orismì tou supremum, gia kje n ∈ N mporoÔme na broÔme stoiqeÐotou A sto (ρ− 1/n, ρ]. Dhlad , uprqei xn ∈ [a, b] gia to opoÐo

ρ− 1n

< f(xn) ≤ ρ.

Apì to krit rio parembol c,f(xn) → ρ.

Apì to Je¸rhma Bolzano–Weierstrass, h akoloujÐa (xn) èqei sugklÐnousa upa-koloujÐa (xkn). Grfoume y2 gia to limxkn . AfoÔ a ≤ xkn ≤ b gia kje n,èpetai ìti y2 ∈ [a, b]. AfoÔ h f eÐnai suneq c sto y2, sumperaÐnoume ìti

f(xkn) → f(y2).

Apì th monadikìthta tou orÐou thc (f(xkn)) èpetai ìti

f(y2) = ρ = sup A.

Autì shmaÐnei ìti f(x) ≤ f(y2) gia kje x ∈ [a, b] (apì ton orismì tou A kai touρ).

Gia thn elqisth tim ergazìmaste anloga. 2

Page 63: σημειωσεις Π 1 τζανες-ηλιοπουλος

3.3 Basika jewrhmata gia suneqeic sunarthseic · 61

DeÔteroc trìpoc. Upojètoume ìti h f den paÐrnei mègisth tim sto sto [a, b].Tìte, f(x) < ρ gia kje x ∈ [a, b], ìpou ρ = supf(x) : x ∈ [a, b] ìpwc sthnprohgoÔmenh apìdeixh. Sunep¸c, mporoÔme na orÐsoume g : [a, b] → R me

g(x) =1

ρ− f(x).

H g eÐnai suneq c sto [a, b], all den eÐnai fragmènh. Prgmati, sthn prohgoÔ-menh apìdeixh, qrhsimopoi same to gegonìc ìti uprqei akoloujÐa (xn) sto [a, b]¸ste ρ− 1

n < f(xn). Tìte,

g(xn) =1

ρ− f(xn)> n.

'Eqoume loipìn katal xei se topo: apì to Je¸rhma 3.3.1, h g èprepe na eÐnainw fragmènh. 2

3.3bþ To je¸rhma endimeshc tim c

Ac upojèsoume ìti mia suneq c sunrthsh f : [a, b] → R paÐrnei eterìshmectimèc sta kra tou [a, b]. Tìte, autì pou perimènei kaneÐc apì thn grafik par-stash thc f eÐnai ìti gia kpoio shmeÐo ξ ∈ (a, b) ja isqÔei f(ξ) = 0 (h kampÔlhy = f(x) ja tm sei ton orizìntio xona). Ja d¸soume treic apodeÐxeic: ìlec qrh-simopoioÔn ousiastik to axÐwma thc plhrìthtac. KajemÐa apì autèc stoqeÔeise diaforetik rÐza thc exÐswshc f(x) = 0.

Je¸rhma 3.3.3. 'Estw f : [a, b] → R suneq c sunrthsh. Upojètoume ìtif(a) < 0 kai f(b) > 0. Tìte, uprqei ξ ∈ (a, b) ¸ste f(ξ) = 0.

Pr¸th apìdeixh. Ja prospaj soume na broÔme th mikrìterh lÔsh thcexÐswshc f(x) = 0 sto (a, b). Yqnoume dhlad gia kpoio ξ ∈ (a, b) gia toopoÐo f(ξ) = 0 kai f(x) < 0 gia kje x me a ≤ x < ξ.

H idèa eÐnai ìti autì to ξ prèpei na eÐnai to supremum tou sunìlou ìlwn twny ∈ (a, b) pou ikanopoioÔn to ex c:

gia kje x me a ≤ x < y isqÔei f(x) < 0.

OrÐzoume loipìn

A = y ∈ (a, b] : a ≤ x < y =⇒ f(x) < 0.

Isqurismìc 1. To A eÐnai mh kenì kai nw fragmèno.Apìdeixh. EÐnai safèc ìti o b eÐnai nw frgma gia to A. Gia na deÐxoume ìti toA eÐnai mh kenì, skeftìmaste wc ex c: h f eÐnai suneq c sto a kai f(a) < 0.Apì thn Prìtash 3.2.11, uprqei 0 < δ < b − a ¸ste h f na paÐrnei arnhtikèctimèc sto [a, b] ∩ (a− δ, a + δ) = [a, a + δ). An loipìn a < y < a + δ, tìte

gia kje x me a ≤ x < y isqÔei f(x) < 0,

to opoÐo shmaÐnei ìti y ∈ A. 'Ara, (a, a + δ) ⊆ A (to A eÐnai mh kenì). 2

Apì to axÐwma thc plhrìthtac uprqei o ξ = sup A. EpÐshc, a < ξ diìti (a, a +δ) ⊆ A.

Page 64: σημειωσεις Π 1 τζανες-ηλιοπουλος

62 · Suneqeic sunarthseic

Isqurismìc 2. Gia ton ξ = sup A isqÔoun oi a < ξ < b kai f(ξ) = 0.Apìdeixh. DeÐqnoume pr¸ta ìti ξ < b: 'Eqoume f(b) > 0 kai h f eÐnai suneq csto b. Qrhsimopoi¸ntac thn Prìtash 3.2.11, brÐskoume 0 < δ1 < b− a ¸ste giakje x ∈ (b− δ1, b] na èqoume f(x) > 0. Tìte, o b− δ1 eÐnai nw frgma tou A.Prgmati, an y ∈ A tìte f(x) < 0 gia kje x ∈ [a, y) kai afoÔ f(x) > 0 sto(b− δ1, b] èqoume y ≤ b− δ1. Sunep¸c,

a < a + δ ≤ ξ ≤ b− δ1 < b.

Eidikìtera, a < ξ < b.Mènei na deÐxoume ìti f(ξ) = 0. Ja apokleÐsoume ta endeqìmena f(ξ) < 0

kai f(ξ) > 0.

(i) 'Estw ìti f(ξ) < 0. Apì th sunèqeia thc f sto ξ, uprqei 0 < δ2 <minξ − a, b − ξ ¸ste f(x) < 0 sto (ξ − δ2, ξ + δ2) (exhg ste giatÐ).'Omwc tìte, f(x) < 0 sto [a, ξ + δ2) (giatÐ uprqei y ∈ A me y > ξ − δ2,opìte f(x) < 0 sto [a, y) ∪ (ξ − δ2, ξ + δ2) = [a, ξ + δ2)). Epomènwc,ξ + δ2 ∈ A. Autì eÐnai topo afoÔ ξ = sup A.

(ii) 'Estw ìti f(ξ) > 0. Tìte, uprqei 0 < δ3 < minξ − a, b − ξ ¸stef(x) > 0 sto (ξ − δ3, ξ + δ3). An proume y ∈ A me y > ξ − δ3 kai z mey > z > ξ − δ3, tìte

y ∈ A =⇒ f(z) < 0

en¸z ∈ (ξ − δ3, ξ + δ3) =⇒ f(z) > 0

dhlad odhgoÔmaste se topo. 2

Me thn apìdeixh tou deÔterou isqurismoÔ oloklhr¸netai kai h apìdeixh touJewr matoc. 2

DeÔterh apìdeixh. Ja prospaj soume na broÔme th megalÔterh lÔshthc exÐswshc f(x) = 0 sto (a, b). Yqnoume dhlad gia kpoio ξ ∈ (a, b) gia toopoÐo f(ξ) = 0 kai f(x) > 0 gia kje x me ξ < x ≤ b.

H idèa eÐnai ìti autì to ξ prèpei na eÐnai to supremum tou sunìlou

A = y ∈ [a, b] : f(y) ≤ 0.

Isqurismìc 1. To A eÐnai mh kenì kai nw fragmèno.Apìdeixh. EÐnai safèc ìti o b eÐnai nw frgma gia to A. To A eÐnai mh kenì:afoÔ f(a) < 0, èqoume a ∈ A. 2

Apì to axÐwma thc plhrìthtac uprqei o ξ = sup A. EpÐshc, a < ξ. Prgmati,sthn prohgoÔmenh apìdeixh eÐdame ìti uprqei 0 < δ < b−a ¸ste (a, a+δ) ⊆ A.Isqurismìc 2. Gia ton ξ = sup A isqÔoun oi a < ξ < b kai f(ξ) = 0.Apìdeixh. DeÐqnoume pr¸ta ìti ξ < b: 'Eqoume f(b) > 0 kai h f eÐnai suneq csto b. Qrhsimopoi¸ntac thn Prìtash 3.2.11, brÐskoume 0 < δ1 < b− a ¸ste giakje x ∈ (b− δ1, b] na èqoume f(x) > 0. Tìte, o b− δ1 eÐnai nw frgma tou A.Prgmati, an y ∈ A tìte f(y) ≤ 0, ra y ∈ [a, b− δ1]. 'Epetai ìti

ξ = sup A ≤ b− δ1 < b.

Mènei na deÐxoume ìti f(ξ) = 0. Ja deÐxoume ìti f(ξ) ≤ 0 kai f(ξ) ≥ 0 qrhsimo-poi¸ntac thn arq thc metaforc.

Page 65: σημειωσεις Π 1 τζανες-ηλιοπουλος

3.3 Basika jewrhmata gia suneqeic sunarthseic · 63

(i) AfoÔ ξ = sup A, uprqei akoloujÐa (xn) shmeÐwn tou A me xn → ξ.'Eqoume f(xn) ≤ 0 kai h f eÐnai suneq c sto ξ. Apì thn arq thc metaforcpaÐrnoume f(ξ) = limn f(xn) ≤ 0.

(ii) AfoÔ ξ < b, uprqei gnhsÐwc fjÐnousa akoloujÐa (yn) sto (ξ, b] me yn → ξ.Gia kje n ∈ N èqoume yn /∈ A, kai sunep¸c, f(yn) > 0. Apì thn arq thcmetaforc paÐrnoume f(ξ) = limn f(yn) ≥ 0. 2

Me thn apìdeixh tou deÔterou isqurismoÔ oloklhr¸netai kai h apìdeixh touJewr matoc. 2

TrÐth apìdeixh. ProspajoÔme na proseggÐsoume mia rÐza x0 thc f opoud -pote anmesa sta a kai b, me diadoqikèc diqotom seic tou [a, b]. H Ôparxh thcrÐzac ja exasfalisteÐ apì thn arq twn kibwtismènwn diasthmtwn kai thn arq thc metaforc.

Sto pr¸to b ma, diqotomoÔme to [a, b] jewr¸ntac to mèso tou a+b2 . An sumbeÐ

na èqoume f(

a+b2

)= 0, jètoume ξ = a+b

2 kai èqoume f(ξ) = 0. Alli¸c, uprqoundÔo endeqìmena. EÐte f(a+b

2 ) > 0 opìte jètoume a1 = a kai b1 = a+b2 , ,

f(a+b2 ) < 0, opìte jètoume a1 = a+b

2 kai b1 = b. Se kje perÐptwsh, èqoumef(a1) < 0 kai f(b1) > 0. Parathr ste epÐshc ìti a ≤ a1 < b1 ≤ b kai ìti tom koc tou [a1, b1] eÐnai Ðso me b−a

2 .Epanalambnoume th diadikasÐa sto [a1, b1]. An f

(a1+b1

2

)= 0, jètoume ξ =

a1+b12 kai èqoume f(ξ) = 0. Alli¸c, brÐskoume a2, b2 pou ikanopoioÔn tic a1 ≤

a2 < b2 ≤ b1, f(a1) < 0, f(b1) > 0 kai b2 − a2 = b−a22 .

SuneqÐzontac epagwgik, eÐte brÐskoume ξ ∈ [a, b] me f(ξ) = 0 orÐzoumeakoloujÐec (an) kai (bn) sto [a, b] me tic ex c idiìthtec:

(i) a ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ an+1 < bn+1 ≤ bn ≤ · · · ≤ b2 ≤ b1 ≤ b gia kjen ∈ N.

(ii) f(an) < 0 < f(bn) gia kje n ∈ N.

(iii) bn − an = b−a2n gia kje n ∈ N.

H akoloujÐa (an) pou kataskeusame eÐnai aÔxousa kai nw fragmènh kai h(bn) eÐnai fjÐnousa kai ktw fragmènh. 'Ara, sugklÐnoun. Apì thn bn − an =b−a2n → 0, èpetai ìti

limn→∞

an = limn→∞

bn = ξ

gia kpoio ξ ∈ [a, b]. AfoÔ f(an) < 0 kai f(bn) > 0, apì th sunèqeia thc f kaiapì thn arq thc metaforc paÐrnoume

f(ξ) = limn→∞

f(an) ≤ 0 ≤ limn→∞

f(bn) = f(ξ),

dhlad , f(ξ) = 0. 2

San pìrisma paÐrnoume to je¸rhma endimeshc tim c:

Je¸rhma 3.3.4. 'Estw f : [a, b] → R suneq c sunrthsh. An f(a) < f(b) kaif(a) < ρ < f(b)), tìte uprqei ξ ∈ (a, b) ¸ste f(ξ) = ρ. 'Omoia, an f(b) < f(a)kai f(b) < ρ < f(a)), tìte uprqei ξ ∈ (a, b) ¸sste f(ξ) = ρ.

Page 66: σημειωσεις Π 1 τζανες-ηλιοπουλος

64 · Suneqeic sunarthseic

Apìdeixh. JewroÔme thn g(x) = f(x) − ρ. H g eÐnai suneq c sto [a, b] kaig(a) = f(a) − ρ < 0, g(b) = f(b) − ρ > 0. Apì to Je¸rhma 3.3.3 uprqeiξ ∈ (a, b) me g(ξ) = 0, dhlad f(ξ) = ρ.

Gia thn llh perÐptwsh, qrhsimopoi ste th suneq sunrthsh h(x) = ρ −f(x). 2

Orismìc 3.3.5 (disthma). 'Ena uposÔnolo I tou R lègetai disthma angia kje x, y ∈ I me x < y olìklhro to eujÔgrammo tm ma [x, y] perièqetai stoI.

Me lla lìgia, diast mata eÐnai ta anoikt, kleist hmianoikt diast matakai oi anoiktèc kleistèc hmieujeÐec.

Je¸rhma 3.3.6. 'Estw I èna disthma sto R kai èstw f : I → R suneq csunrthsh. Tìte, h eikìna f(I) thc f eÐnai disthma.

Apìdeixh. 'Estw u, v ∈ f(I) me u < v kai èstw u < w < v. Uprqoun x, y ∈ I¸ste f(x) = u kai f(y) = v. QwrÐc periorismì thc genikìthtac mporoÔme naupojèsoume ìti x < y. AfoÔ to I eÐnai disthma, èqoume [x, y] ⊆ I kai hf : [x, y] → R eÐnai suneq c sto [x, y]. AfoÔ f(x) = u < w < v = f(y), uprqeiz ∈ (x, y) ¸ste f(z) = w. AfoÔ z ∈ I, sumperaÐnoume ìti w = f(z) ∈ f(I). Apìton orismì tou diast matoc èpetai ìti to f(I) eÐnai disthma. 2

Pìrisma 3.3.7. 'Estw f : [a, b] → R suneq c sunrthsh. Uprqoun m ≤ Msto R ¸ste f([a, b]) = [m,M ].

Apìdeixh. H f eÐnai suneq c kai orÐzetai sto kleistì disthma [a, b]. Sunep¸c,h f paÐrnei elqisth tim m kai mègisth tim M sto [a, b]. Dhlad , m,M ∈f([a, b]) kai f([a, b]) ⊆ [m,M ]. Apì to prohgoÔmeno je¸rhma, to f([a, b]) eÐnaidisthma kai perièqei ta m,M . 'Ara, f([a, b]) ⊇ [m,M ]. 'Epetai ìti f([a, b]) =[m,M ]. 2

3.3gþ ParadeÐgmata

H sunèqeia thc f all kai h upìjesh ìti to pedÐo orismoÔ eÐnai kleistì disthmaeÐnai aparaÐthtec sta prohgoÔmena jewr mata.

(a) JewroÔme th sunrthsh f(x) =

1− |x| x 6= 0

0 x = 0sto [−1, 1]. H f den

paÐrnei mègisth tim sto [−1, 1]. 'Eqoume 1 = supf(x) : x ∈ [−1, 1], all o 1den eÐnai tim thc f : parathr ste ìti 0 ≤ f(x) < 1 gia kje x ∈ [−1, 1]. H feÐnai asuneq c sto shmeÐo 0.

(b) JewroÔme thn sunrthsh f(x) =

−1 0 ≤ x ≤ 1

1 1 < x ≤ 2. Tìte, f(0) < 0 kai

f(2) > 0, all den uprqei lÔsh thc f(x) = 0 sto [0, 2]. H f eÐnai asuneq c stoshmeÐo 1.(g) JewroÔme thn f(x) = 1/x sto (0, 1]. H f eÐnai suneq c sto (0, 1], all deneÐnai nw fragmènh. To pedÐo orismoÔ thc f den eÐnai kleistì disthma.(d) JewroÔme thn f(x) = x sto (0, 1). H f eÐnai suneq c kai fragmènh sto(0, 1), all den paÐrnei mègisth oÔte elqisth tim . To pedÐo orismoÔ thc f deneÐnai kleistì disthma.

Page 67: σημειωσεις Π 1 τζανες-ηλιοπουλος

3.3 Basika jewrhmata gia suneqeic sunarthseic · 65

3.3dþ Efarmogèc twn basik¸n jewrhmtwn

To je¸rhma endimeshc tim c qrhsimopoieÐtai suqn gia thn apìdeixh thc ÔparxhcrÐzac kpoiac exÐswshc. To pr¸to mac pardeigma eÐnai h Ôparxh nost c rÐzacpou eÐqame exasfalÐsei me qr sh tou axi¸matoc thc plhrìthtac.

Je¸rhma 3.3.8. 'Estw n ≥ 2 kai èstw ρ ènac jetikìc pragmatikìc arijmìc.Uprqei monadikìc ξ > 0 ¸ste ξn = ρ.

Apìdeixh. 'Estw ρ > 0. JewroÔme th suneq sunrthsh f : [0,+∞) → R mef(x) = xn. Pr¸ta ja deÐxoume ìti uprqei b > 0 ¸ste f(b) > ρ. DiakrÐnoumetreÐc peript¸seic:

(i) An ρ < 1, tìte f(1) = 1n = 1 > ρ.

(ii) An ρ > 1, tìte f(ρ) = ρn > ρ.

(iii) An ρ = 1, tìte f(2) = 2n > 2 > 1.

DeÐxame ìti uprqei b > 0 ¸ste f(0) = 0 < ρ < f(b). Apì to je¸rhma endimeshctim c, uprqei ξ ∈ (0, b) ¸ste f(ξ) = ρ, dhlad ξn = ρ.

H monadikìthta eÐnai apl : èqoume deÐ ìti an a, b > 0 tìte an = bn an kaimìno an a = b. An loipìn èqoume ξn

1 = ρ = ξn2 gia kpoiouc ξ1, ξ2 > 0, tìte

ξ1 = ξ2. 2

Je¸rhma 3.3.9. Kje polu¸numo perittoÔ bajmoÔ èqei toulqiston mÐa prag-matik rÐza.

Apìdeixh. 'Estw P (x) = amxm + am−1xm−1 + . . . + a1x + a0, ìpou am 6= 0 kai

m perittìc. Grfoume P (x) = amxm + · · ·+ a1x + a0 = amxm(1 + ∆(x)) ìpou

∆(x) =am−1x

m−1 + · · ·+ a1x + a0

amxm.

Parathr ste ìti an

|x| > 2|am−1|+ · · ·+ |a1|+ |a0|

|am| + 1

tìte |x|k ≤ |x|m−1 gia kje k = 0, 1, . . . , m− 1, kai sunep¸c,

|∆(x)| ≤ |am−1|xm−1 + · · ·+ |a1|x + |a0||am| |x|m

≤ |am−1| |x|m−1 + · · ·+ |a1| |x|m−1 + |a0| |x|m−1

|am| |x|m

=|am−1|+ · · ·+ |a1|+ |a0|

|am| |x|<

12.

'Ara, uprqei M > 0 ¸ste an |x| ≥ M tìte

1 + ∆(x) ≥ 1− |∆(x)| ≥ 1− 12

=12

> 0.

Page 68: σημειωσεις Π 1 τζανες-ηλιοπουλος

66 · Suneqeic sunarthseic

Dhlad , an |x| ≥ M tìte oi P (x) kai amxm èqoun to Ðdio prìshmo. 'Epetaiìti o P (−M)P (M) eÐnai omìshmoc me ton a2

m(−M)mMm = a2mM2m(−1)m,

dhlad arnhtikìc. Apì to je¸rhma endimeshc tim c uprqei ξ ∈ (−M, M) ¸steP (ξ) = 0. 2

Je¸rhma 3.3.10 (je¸rhma stajeroÔ shmeÐou). 'Estw f : [0, 1] →[0, 1] suneq c sunrthsh. Uprqei x0 ∈ [0, 1] ¸ste f(x0) = x0.

Apìdeixh. Jèloume na deÐxoume ìti h kampÔlh y = f(x) tèmnei thn diag¸nioy = x. ArkeÐ na deÐxoume ìti h suneq c sunrthsh h(x) = f(x)− x mhdenÐzetaikpou sto [0, 1].

An f(0) = 0 f(1) = 1 èqoume to zhtoÔmeno gia x0 = 0 x0 = 1 antÐstoiqa.Upojètoume loipìn ìti f(0) > 0 kai f(1) < 1. Tìte, h(0) = f(0) > 0 kai

h(1) = f(1)−1 < 0. Apì to je¸rhma endimeshc tim c, uprqei x0 ∈ (0, 1) ¸steh(x0) = 0. Dhlad , f(x0) = x0. 2

3.3eþ Sunèqeia antÐstrofhc sunrthshc

'Estw I èna disthma sto R. Xekinme apì thn parat rhsh ìti mia 1-1 sunrthshf : I → R den eÐnai upoqrewtik monìtonh. Prte gia pardeigma thn f : (0, 2) →

R pou orÐzetai apì thn f(x) =

4− x 0 < x < 12 x = 1

x− 1 1 < x < 2. H f eÐnai 1-1, ìmwc

eÐnai fjÐnousa sto (0, 1) kai aÔxousa sto (1, 2).To je¸rhma pou akoloujeÐ deÐqnei ìti an mia suneq c sunrthsh f : I → R

eÐnai èna proc èna, tìte eÐnai gnhsÐwc monìtonh.

Je¸rhma 3.3.11. 'Estw f : I → R suneq c kai 1-1 sunrthsh. Tìte, h feÐnai gnhsÐwc aÔxousa gnhsÐwc fjÐnousa sto I.

Pr¸th apìdeixh. Ja knoume thn apìdeixh se trÐa b mata.

B ma 1. An a, b, c ∈ I me a < b < c, tìte: f(a) < f(b) < f(c) f(a) > f(b) >f(c).Apìdeixh. AfoÔ h f eÐnai 1-1, oi f(a), f(b) kai f(c) eÐnai diaforetikoÐ an dÔo.MporoÔme na upojèsoume ìti f(a) < f(b) (alli¸c, jewroÔme thn −f). JadeÐxoume ìti f(a) < f(b) < f(c), apokleÐontac tic peript¸seic f(c) < f(a) kaif(a) < f(c) < f(b).

(i) An f(c) < f(a) < f(b) tìte apì to je¸rhma endimeshc tim c uprqeix ∈ (b, c) me f(x) = f(a), to opoÐo eÐnai topo, afoÔ a < x kai h f eÐnai1-1.

(ii) An f(a) < f(c) < f(b) tìte apì to je¸rhma endimeshc tim c uprqeiy ∈ (a, b) me f(y) = f(c), to opoÐo eÐnai epÐshc topo, afoÔ y < c kai h feÐnai 1-1.

B ma 2. An a, b, c, d ∈ I me a < b < c < d, tìte: f(a) < f(b) < f(c) < f(d) f(a) > f(b) > f(c) > f(d).Apìdeixh. MporoÔme na upojèsoume ìti f(a) < f(b). Efarmìzontac to B ma 1gia thn trida a, b, c blèpoume ìti f(a) < f(b) < f(c). Efarmìzontac xan toB ma 1 gia thn trida b, c, d blèpoume ìti f(b) < f(c) < f(d). Dhlad ,

f(a) < f(b) < f(c) < f(d).

Page 69: σημειωσεις Π 1 τζανες-ηλιοπουλος

3.3 Basika jewrhmata gia suneqeic sunarthseic · 67

Xekin¸ntac apì thn upìjesh ìti f(a) > f(b), deÐqnoume me ton Ðdio trìpo ìti

f(a) > f(b) > f(c) > f(d).

B ma 3. StajeropoioÔme dÔo shmeÐa a < b sto I. MporoÔme na upojèsoumeìti f(a) < f(b). Ja deÐxoume ìti h f eÐnai gnhsÐwc aÔxousa, deÐqnontac ìti anx, y ∈ I kai x < y, tìte f(x) < f(y).

An x = a kai y = b, tìte f(x) = f(a) < f(b) = f(y). Alli¸c, anloga methn ditaxh twn x, y sthn tetrda a, b, x, y, to B ma 2 ( to B ma 1 an x = a y = b) deÐqnei ìti h Ðdia ditaxh ja isqÔei gia tic eikìnec f(x), f(y) sthn tetrdaf(a), f(b), f(x), f(y). Gia pardeigma, an x < a < b < y tìte f(x) < f(a) <f(b) < f(y), ra f(x) < f(y). An a < x = b < y tìte f(a) < f(x) = f(b) <f(y), ra f(x) < f(y). 2

DeÔterh apìdeixh. Epilègoume tuqìnta shmeÐa x0 < y0 sto I. 'Eqoumef(x0) 6= f(y0), ra f(x0) < f(y0) f(x0) > f(y0). Upojètoume ìti f(x0) <f(y0) kai ja deÐxoume ìti h f eÐnai gnhsÐwc aÔxousa (ìmoia deÐqnoume ìti anf(x0) > f(y0) tìte h f eÐnai gnhsÐwc fjÐnousa).

'Estw x1, y1 ∈ I me x1 < y1. Jèloume na deÐxoume ìti f(x1) < f(y1).JewroÔme tic sunart seic h, g : [0, 1] → I me

h(t) = (1− t)x0 + tx1 kai g(t) = (1− t)y0 + ty1.

Parathr ste ìti h(t), g(t) ∈ I gia kje t ∈ [0, 1] (kaj¸c to t diatrèqei to [0, 1],to h(t) kineÐtai apì to x0 proc to x1 kai to g(t) kineÐtai apì to y0 proc to y1 afoÔ to I eÐnai disthma, ta h(t), g(t) mènoun mèsa s autì).

Parathr ste epÐshc ìti, lìgw twn x0 < y0 kai x1 < y1 èqoume

h(t) = (1− t)x0 + tx1 < (1− t)y0 + ty1 = g(t)

gia kje t ∈ [0, 1]. OrÐzoume H(t) = f(h(t)) − f(g(t)). H H eÐnai suneq csunrthsh wc diafor sunjèsewn suneq¸n sunart sewn. AfoÔ h(t) 6= g(t) kaih f eÐnai 1-1, paÐrnoume

H(t) 6= 0

gia kje t ∈ [0, 1]. 'Omwc, H(0) = f(h(0)) − f(g(0)) = f(x0) − f(y0) < 0 apìthn upìjesh mac. 'Epetai ìti H(t) < 0 gia kje t ∈ [0, 1]: an h H èpairne kpoujetik tim , tìte ja èpairne kai thn tim 0 apì to je¸rhma endimeshc tim c(topo). 'Eqoume loipìn

f(h(t)) < f(g(t)) gia kje t ∈ [0, 1].

Eidikìtera, f(h(1)) < f(g(1)), dhlad f(x1) < f(y1). 2

Den eÐnai dÔskolo na perigryei kaneÐc thn eikìna f(I) miac suneqoÔc kai 1-1sunrthshc f : I → R. Ac upojèsoume gia pardeigma ìti to I eÐnai èna kleistìdisthma [a, b] kai ìti h f eÐnai gnhsÐwc aÔxousa (apì to Je¸rhma 3.3.11 h f eÐnaignhsÐwc monìtonh). Tìte, h eikìna thc f eÐnai to kleistì disthma [f(a), f(b)].An to I eÐnai disthma anoiktì se kpoio kai sta dÔo apì ta kra tou ( disthma me kro kpoio apì ta ±∞), tìte, ìpwc eÐdame, h eikìna f(I) thc feÐnai kpoio disthma. OrÐzoume thn antÐstrofh sunrthsh f−1 : f(I) → I wcex c: an y ∈ f(I), uprqei monadikì x ∈ I ¸ste f(x) = y. Jètoume f−1(y) = x.Dhlad ,

f−1(y) = x ⇐⇒ f(x) = y.

Page 70: σημειωσεις Π 1 τζανες-ηλιοπουλος

68 · Suneqeic sunarthseic

Parathr ste ìti h f−1 èqei thn Ðdia monotonÐa me thn f . Gia pardeigma, acupojèsoume ìti h f eÐnai gnhsÐwc aÔxousa. 'Estw y1, y2 ∈ f(I) me y1 < y2. An tan f−1(y1) ≥ f−1(y2), tìte ja eÐqame

f(f−1(y1)) ≥ f(f−1(y2)), dhlad y1 ≥ y2.

Autì eÐnai topo, ra f−1(y1) < f−1(y2).Ja deÐxoume ìti h antÐstrofh suneqoÔc kai 1-1 sunrthshc eÐnai epÐshc su-

neq c.

Je¸rhma 3.3.12. 'Estw f : I → R suneq c kai 1-1 sunrthsh. Tìte, hf−1 : f(I) → R eÐnai suneq c.

Apìdeixh. MporoÔme na upojèsoume ìti h f eÐnai gnhsÐwc aÔxousa. 'Estwy0 ∈ f(I). Upojètoume ìti to y0 den eÐnai kro tou f(I) (oi llec peript¸seicelègqontai ìmoia). Tìte, y0 = f(x0) gia kpoio eswterikì shmeÐo tou I.

'Estw ε > 0. MporoÔme na upojèsoume ìti x0 − ε, x0 + ε ∈ I (oÔtwc llwc, gia na elègxoume th sunèqeia mac endiafèroun ta mikr ε > 0). Jèloumena broÔme δ > 0 ¸ste

|y − y0| < δ kai y ∈ f(I) =⇒ |f−1(y)− x0| < ε.

Gia thn epilog tou δ douleÔoume wc ex c: afoÔ f(x0 − ε) < y = f(x0) <f(x0 + ε), uprqoun δ1, δ2 > 0 ¸ste f(x0− ε) = y0− δ1 kai f(x0 + ε) = y0 + δ2.Epilègoume δ = minδ1, δ2 > 0.

An |y− y0| < δ, tìte f(x0− ε) < y < f(x0 + ε). Apì to je¸rhma endimeshctim c, uprqei x ∈ I ¸ste f(x) = y. To x eÐnai monadikì giatÐ h f eÐnai 1-1, kai

x0 − ε < x < x0 + ε

giatÐ h f−1 eÐnai gnhsÐwc aÔxousa. 'Ara, |f−1(y) − f−1(y0)| = |x − x0| < ε.Dhlad , h f−1 eÐnai suneq c sto y0. 2

Page 71: σημειωσεις Π 1 τζανες-ηλιοπουλος

Keflaio 4

'Oria sunart sewn

4.1 ShmeÐa suss¸reushc

Orismìc 4.1.1. 'Estw A èna mh kenì uposÔnolo tou R kai èstw x0 ∈ R.Lème ìti o x0 eÐnai shmeÐo suss¸reushc tou A an gia kje δ > 0 mporoÔmena broÔme x ∈ A ¸ste 0 < |x − x0| < δ (isodÔnama: x ∈ (x0 − δ, x0 + δ) kaix 6= x0).

Dhlad , o x0 eÐnai shmeÐo suss¸reushc tou A an osod pote kont ston x0

mporoÔme na broÔme stoiqeÐa tou A diaforetik apì ton x0. Parathr ste ìtiden apaitoÔme apì ton x0 na eÐnai stoiqeÐo tou A.

ParadeÐgmata 4.1.2. (a) An A = [a, b], tìte o x0 eÐnai shmeÐo suss¸reushctou A an kai mìno an x0 ∈ [a, b]. An A = (a, b], tìte kje shmeÐo tou A eÐnaishmeÐo suss¸reushc tou A, kai uprqei llo èna shmeÐo suss¸reushc tou A, toa, to opoÐo den an kei sto sÔnolo.(b) An A = [0, 1] ∪ 2, tìte 2 ∈ A all o 2 den eÐnai shmeÐo suss¸reushc touA.(g) To N = 1, 2, 3, . . . den èqei kanèna shmeÐo suss¸reushc.(d) An A = 1, 1

2 , 13 , . . ., tìte o 0 eÐnai to monadikì shmeÐo suss¸reushc tou A

(kai den an kei sto A).

Orismìc 4.1.3. 'Estw A èna mh kenì uposÔnolo tou R kai èstw x0 ∈ A. Lèmeìti o x0 eÐnai memonwmèno shmeÐo tou A an den eÐnai shmeÐo suss¸reushctou A, dhlad , an uprqei perioq tou x0 h opoÐa den perièqei lla shmeÐa tou Aektìc apì to x0 (isodÔnama, an uprqei δ > 0 ¸ste A∩ (x0− δ, x0 + δ) = x0).

H epìmenh Prìtash dÐnei qr simouc qarakthrismoÔc tou shmeÐou suss¸reu-shc.

Prìtash 4.1.4. 'Estw A èna mh kenì uposÔnolo tou R kai èstw x0 ∈ R. Taex c eÐnai isodÔnama:

(i) To x0 eÐnai shmeÐo suss¸reushc tou A.

(ii) Gia kje δ > 0 uprqoun peira to pl joc shmeÐa tou A sto (x0−δ, x0+δ).

(iii) Uprqei akoloujÐa (xn) diaforetik¸n an dÔo, kai diaforetik¸n apì to x0,shmeÐwn tou A, h opoÐa sugklÐnei sto x0.

Page 72: σημειωσεις Π 1 τζανες-ηλιοπουλος

70 · Oria sunarthsewn

Apìdeixh. (i)⇒(ii) 'Estw δ > 0. AfoÔ to x0 eÐnai shmeÐo suss¸reushc tou A,sto (x0 − δ, x0 + δ) mporoÔme na broÔme shmeÐa tou A diaforetik apì to x0.Ac upojèsoume ìti aut ta shmeÐa eÐnai peperasmèna to pl joc, ta y1, . . . , ym.Kpoio apì aut, ac poÔme to yj gia kpoion 1 ≤ j ≤ m, eÐnai to plhsièsteroproc to x0. Jètoume δ1 = |x0−yj |. Tìte, δ1 > 0 (diìti yj 6= x0) kai sthn perioq (x0−δ1, x0+δ1) den uprqei shmeÐo tou A diaforetikì apì to x0 (exhg ste giatÐ).Autì eÐnai topo, diìti to x0 eÐnai shmeÐo suss¸reushc tou A.

(ii)⇒(iii) Apì thn upìjesh, sto (x0 − 1, x0 + 1) uprqoun peira to pl jocshmeÐa tou A. MporoÔme loipìn na broÔme x1 ∈ A me x1 6= x0 kai |x1 − x0| < 1.

OmoÐwc, sto(x0 − 1

2 , x0 + 12

)uprqoun peira to pl joc shmeÐa tou A. Mpo-

roÔme loipìn na broÔme x2 ∈ A me x2 6= x0, x1 kai |x2 − x0| < 12 .

SuneqÐzoume me ton Ðdio trìpo: èstw ìti èqoume breÐ x1, x2, . . . , xn−1 ∈ Adiaforetik an dÔo (kai diaforetik apì to x0) ¸ste |xk − x0| < 1

k gia kjek = 1, 2, . . . , n− 1. Sto

(x0 − 1

n , x0 + 1n

)uprqoun peira to pl joc shmeÐa tou

A. MporoÔme loipìn na broÔme xn ∈ A me xn 6= x0, x1, . . . , xn−1 kai |xn−x0| <1n .

H akoloujÐa (xn), pou orÐzetai me autìn ton trìpo, sugklÐnei sto x0 kai èqeiìrouc pou an koun sto A, eÐnai diaforetikoÐ an dÔo kai diaforetikoÐ apì tonx0.

(iii)⇒(i) Upojètoume ìti uprqei akoloujÐa (xn) diaforetik¸n an dÔo shmeÐwntou A, h opoÐa sugklÐnei sto x0. 'Estw δ > 0. Uprqei n0 ∈ N ¸ste |xn−x0| < δgia kje n ≥ n0. AfoÔ oi ìroi thc (xn) eÐnai diaforetikoÐ an dÔo, kpoioc apìautoÔc (gia thn akrÐbeia, peiroi to pl joc) eÐnai diaforetikìc apì to x0 kaian kei sto (x0 − δ, x0 + δ). AfoÔ to δ > 0 tan tuqìn, to x0 eÐnai shmeÐosuss¸reushc tou A. 2

4.2 Orismìc tou orÐou

Orismìc 4.2.1 (ìrio sunrthshc). 'Estw f : A → R kai èstw x0 ènashmeÐo suss¸reushc tou A. Lème ìti to ìrio thc f kaj¸c to x teÐnei sto x0

uprqei kai isoÔtai me ` ∈ R an:

Gia kje ε > 0 uprqei δ > 0 ¸ste: an x ∈ A kai 0 < |x − x0| < δ,tìte |f(x)− `| < ε.

An ènac tètoioc arijmìc ` uprqei, tìte eÐnai monadikìc (deÐxte to) kai grfoume` = limx→x0 f(x) f(x) → ` kaj¸c x → x0.

Orismìc 4.2.2. 'Estw f : A → R kai èstw x0 èna shmeÐo suss¸reushc touA.(a) Lème ìti h f teÐnei sto +∞ kaj¸c to x → x0 an:

Gia kje M > 0 uprqei δ > 0 ¸ste: an x ∈ A kai 0 < |x− x0| < δtìte f(x) > M .

Se aut n thn perÐptwsh, grfoume limx→x0 f(x) = +∞.(b) Lème ìti h f teÐnei sto −∞ kaj¸c to x → x0 an:

Gia kje M > 0 uprqei δ > 0 ¸ste: an x ∈ A kai 0 < |x− x0| < δtìte f(x) < −M .

Page 73: σημειωσεις Π 1 τζανες-ηλιοπουλος

4.2 Orismoc tou oriou · 71

Se aut n thn perÐptwsh, grfoume limx→x0 f(x) = −∞.

Parat rhsh 4.2.3. Parathr ste ìti mporoÔme na exetsoume thn Ôparxh mh tou orÐou thc f : A → R se kje shmeÐo suss¸reushc x0 tou A. To x0 mporeÐna an kei na mhn an kei sto A: arkeÐ na uprqoun x ∈ A osod pote kont stox0. EpÐshc, akìma ki an to x0 an kei sto pedÐo orismoÔ thc f , h tim f(x0) denephrezei thn Ôparxh mh tou limx→x0 f(x) oÔte kai thn tim tou orÐou (an autìuprqei).

ParadeÐgmata 4.2.4. (a) limx→3 x2 = 9.

(b) 'Estw f : R→ R me f(x) =

x2 an x 6= 02 an x = 0 . To limx→0 f(x) uprqei kai

eÐnai Ðso me 0, en¸ f(0) = 2.(g) 'Estw f : (0, +∞) → R me f(x) = 1

x . Tìte, limx→0 f(x) = +∞. Anjewr soume thn g : R \ 0 → R me f(x) = 1

x , tìte to ìrio limx→0 g(x) denuprqei.

MporeÐte na apodeÐxete ìlouc autoÔc touc isqurismoÔc me bsh ton orismì('Askhsh). MporeÐte epÐshc na qrhsimopoi sete thn arq thc metaforc, thnopoÐa ja suzht soume paraktw, ¸ste na anaqjeÐte sta antÐstoiqa ìria ako-louji¸n.(d) 'Estw f : [0, 1] → R me f(x) = 0 an x rrhtoc x = 0, kai f(x) = 1

q an x = pq

me p, q ∈ N kai MKD(p, q) = 1. Tìte, gia kje x0 ∈ [0, 1] to ìrio limx→x0 f(x)uprqei kai isoÔtai me 0.

Prgmati, èstw x0 ∈ [0, 1] kai èstw ε > 0. Jètoume M = M(ε) =[1ε

]kai

A(ε) = y ∈ [0, 1] : y 6= x0 kai f(y) ≥ ε. An o y an kei sto A(ε) tìte eÐnairhtìc o opoÐoc grfetai sth morf y = p

q ìpou p, q ∈ N, p ≤ q kai f(y) = 1q ≥ ε.

To pl joc aut¸n twn arijm¸n eÐnai to polÔ Ðso me to pl joc twn zeugari¸n(p, q) fusik¸n arijm¸n ìpou q ≤ M kai p ≤ q. Epomènwc, den xepernei tonM(M + 1)/2. Dhlad , to A(ε) eÐnai peperasmèno sÔnolo. MporoÔme loipìn nagryoume A(ε) = y1, . . . , ym ìpou m = m(ε) ∈ N.

O arijmìc δ = min|x0 − y1|, . . . , |x0 − ym| eÐnai gn sia jetikìc. 'Estwx ∈ [0, 1] me 0 < |x− x0| < δ. Tìte, x /∈ A(ε), ra 0 ≤ f(x) < ε. AfoÔ to ε > 0 tan tuqìn, sumperaÐnoume ìti limx→x0 f(x) = 0.

Orismìc 4.2.5 (pleurik ìria). 'Estw f : A → R kai èstw x0 shmeÐosuss¸reushc tou A ¸ste gia kje δ > 0 na uprqoun stoiqeÐa tou A sto(x0 − δ, x0) (èna tètoio x0 lègetai shmeÐo suss¸reushc tou A apì arister).Lème ìti:

(i) limx→x−0f(x) = ` ∈ R (o ` eÐnai to pleurikì ìrio thc f kaj¸c to

x teÐnei sto x0 apì arister) an: gia kje ε > 0 uprqei δ > 0 ¸stean x ∈ A kai x0 − δ < x < x0 tìte |f(x)− `| < ε.

TeleÐwc anloga, èstw x0 shmeÐo suss¸reushc tou A ¸ste gia kje δ > 0 nauprqoun stoiqeÐa tou A sto (x0, x0 + δ) (èna tètoio x0 lègetai shmeÐo suss¸-reushc tou A apì dexi). Lème ìti:

(ii) limx→x+0

f(x) = ` ∈ R (o ` eÐnai to pleurikì ìrio thc f kaj¸c tox teÐnei sto x0 apì dexi) an: gia kje ε > 0 uprqei δ > 0 ¸ste anx ∈ A kai x0 < x < x0 + δ tìte |f(x)− `| < ε.

Page 74: σημειωσεις Π 1 τζανες-ηλιοπουλος

72 · Oria sunarthsewn

Af noume wc skhsh gia ton anagn¸sth na d¸sei austhroÔc orismoÔc gia taex c: limx→x−0

f(x) = +∞, limx→x−0f(x) = −∞, limx→x+

0f(x) = +∞ kai

limx→x+0

f(x) = −∞.

Apì ton orismì twn pleurik¸n orÐwn èpetai mesa h akìloujh Prìtash.

Prìtash 4.2.6. 'Estw f : A → R mia sunrthsh kai èstw x0 ∈ R shmeÐosuss¸reushc tou A apì arister kai apì dexi. Tìte to limx→x0 f(x) uprqeian kai mìnon an ta dÔo pleurik ìria limx→x−0

f(x) kai limx→x+0

f(x) uprqounkai eÐnai Ðsa. 2

Orismìc 4.2.7. 'Estw A èna mh kenì uposÔnolo tou R. Lème ìti to +∞ eÐnaishmeÐo suss¸reushc tou A an gia kje M > 0 mporoÔme na broÔme x ∈ A ¸stex > M . EÔkola elègqoume ìti autì sumbaÐnei an kai mìno an uprqei akoloujÐa(xn) sto A me xn → +∞.

AntÐstoiqa, lème ìti to −∞ eÐnai shmeÐo suss¸reushc tou A an gia kjeM > 0 mporoÔme na broÔme x ∈ A ¸ste x < −M . EÔkola elègqoume ìti autìsumbaÐnei an kai mìno an uprqei akoloujÐa (xn) sto A me xn → −∞.

Orismìc 4.2.8. 'Estw f : A → R kai èstw ìti to +∞ eÐnai shmeÐo suss¸-reushc tou A.(a) Lème ìti to ìrio thc f kaj¸c to x teÐnei sto +∞ uprqei kai isoÔtai me ` ∈ Ran:

Gia kje ε > 0 uprqei M > 0 ¸ste: an x ∈ A kai x > M , tìte|f(x)− `| < ε.

An ènac tètoioc arijmìc ` uprqei, tìte eÐnai monadikìc (deÐxte to) kai grfoume` = limx→+∞ f(x).(b) Lème ìti h f teÐnei sto +∞ kaj¸c to x → +∞ an:

Gia kje M1 > 0 uprqei M2 > 0 ¸ste: an x ∈ A kai x > M2 tìtef(x) > M1.

Se aut n thn perÐptwsh, grfoume limx→+∞ f(x) = +∞.(g) Lème ìti h f teÐnei sto −∞ kaj¸c to x → +∞ an:

Gia kje M1 > 0 uprqei M2 > 0 ¸ste: an x ∈ A kai x > M2 tìtef(x) < −M1.

Se aut n thn perÐptwsh, grfoume limx→+∞ f(x) = −∞.TeleÐwc anloga, an f : A → R kai an to −∞ eÐnai shmeÐo suss¸reushc

tou A, mporoÔme na orÐsoume kajemÐa apì tic protseic limx→−∞ f(x) = `,limx→−∞ f(x) = +∞ kai limx→−∞ f(x) = −∞.

4.2aþ Arq thc metaforc

'Estw f : A → R kai èstw x0 ∈ R èna shmeÐo suss¸reushc tou A. H arq thc metaforc dÐnei ènan qarakthrismì thc Ôparxhc tou orÐou thc f kaj¸cto x teÐnei sto x0 mèsw akolouji¸n.

Je¸rhma 4.2.9 (arq thc metaforc gia to ìrio). 'Estw f : A → Rkai èstw x0 èna shmeÐo suss¸reushc tou A. Tìte, limx→x0 f(x) = ` an kai mìnoan: gia kje akoloujÐa (xn) shmeÐwn tou A me xn 6= x0 kai xn → x0, h akoloujÐa(f(xn)) sugklÐnei sto `.

Page 75: σημειωσεις Π 1 τζανες-ηλιοπουλος

4.2 Orismoc tou oriou · 73

Apìdeixh. Upojètoume pr¸ta ìti limx→x0 f(x) = `. 'Estw xn ∈ A me xn 6= x0

kai xn → x0. Ja deÐxoume ìti f(xn) → `: 'Estw ε > 0. AfoÔ limx→x0 f(x) = `,uprqei δ > 0 ¸ste: an x ∈ A kai 0 < |x− x0| < δ, tìte |f(x)− `| < ε.

'Eqoume upojèsei ìti xn 6= x0 kai xn → x0. 'Ara, gi autì to δ > 0 mporoÔmena broÔme n0 ∈ N ¸ste: an n ≥ n0 tìte 0 < |xn − x0| < δ.

Sunduzontac ta parapnw èqoume: an n ≥ n0, tìte 0 < |xn − x0| < δ ra

|f(xn)− `| < ε.

AfoÔ to ε > 0 tan tuqìn, f(xn) → `.Gia thn antÐstrofh kateÔjunsh ja doulèyoume me apagwg se topo. U-

pojètoume ìti gia kje akoloujÐa (xn) shmeÐwn tou A me xn 6= x0 kai xn →x0, h akoloujÐa (f(xn)) sugklÐnei sto `. Upojètoume epÐshc ìti den isqÔei hlimx→x0 f(x) = ` kai ja katal xoume se topo.

AfoÔ den isqÔei h limx→x0 f(x) = `, uprqei kpoio ε > 0 me thn ex cidiìthta:

(∗) Gia kje δ > 0 uprqei x ∈ A to opoÐo ikanopoieÐ thn 0 <|x− x0| < δ all |f(x)− `| ≥ ε.

QrhsimopoioÔme thn (∗) diadoqik me δ = 1, 12 , . . . , 1

n , . . .. Gia kje n ∈ Nèqoume 1/n > 0 kai apì thn (∗) brÐskoume xn ∈ A me 0 < |xn − x0| < 1/n kai|f(xn)−`| ≥ ε. 'Eqoume xn 6= x0 kai apì to krit rio parembol c eÐnai fanerì ìtixn → x0. Apì thn upìjesh pou kname prèpei h akoloujÐa (f(xn)) na sugklÐneisto `. Autì ìmwc eÐnai adÔnato afoÔ |f(xn)− `| ≥ ε gia kje n ∈ N. 2

Parathr seic 4.2.10. (a) H arq thc metaforc mporeÐ na qrhsimopoihjeÐme dÔo diaforetikoÔc trìpouc:

(i) gia na deÐxoume ìti limx→x0 f(x) = ` arkeÐ na deÐxoume ìti xn 6= x0 kaixn → x0 =⇒ f(xn) → `.

(ii) gia na deÐxoume ìti den isqÔei h limx→x0 f(x) = ` arkeÐ na broÔme miaakoloujÐa xn → x0 (sto A), me xn 6= x0, ¸ste limn f(xn) 6= `. PolÔsuqn, exasfalÐzoume kti isqurìtero, ìti den uprqei to limx→x0 f(x),brÐskontac dÔo akoloujÐec xn → x0 kai yn → x0 (sto A), me xn, yn 6= x0,¸ste limn f(xn) 6= limn f(yn). An up rqe to limx→x0 f(x), ja èprepe tadÔo ìria na eÐnai metaxÔ touc Ðsa.

(b) MporoÔme na diatup¸soume kai na apodeÐxoume antÐstoiqec morfèc thc ar-q c thc metaforc gia touc upìloipouc tÔpouc orÐwn pleurik¸n orÐwn pousuzht same.

To je¸rhma pou akoloujeÐ dÐnei th sqèsh tou orÐou me tic sun jeic algebrikècprxeic anmesa se sunart seic. H apìdeix tou eÐnai mesh, an qrhsimopoi sou-me thn arq thc metaforc se sunduasmì me tic antÐstoiqec idiìthtec gia ta ìriaakolouji¸n.

Je¸rhma 4.2.11. 'Estw f, g : A → R kai èstw x0 shmeÐo suss¸reushc touA. Upojètoume ìti uprqoun ta limx→x0 f(x) = ` kai limx→x0 g(x) = m. Tìte,

(i) limx→x0(f(x) + g(x)) = ` + m kai limx→x0(f(x)g(x)) = ` ·m.

Page 76: σημειωσεις Π 1 τζανες-ηλιοπουλος

74 · Oria sunarthsewn

(ii) An epiplèon g(x) 6= 0 gia kje x ∈ A kai limx→x0 g(x) = m 6= 0, tìte h fg

orÐzetai sto A kai limx→x0f(x)g(x) = `

m .

Apìdeixh. H apìdeixh ìlwn twn isqurism¸n, me apl qr sh thc arq c thc meta-forc, af netai wc 'Askhsh gia ton anagn¸sth. 2

Prìtash 4.2.12. 'Estw A èna mh kenì uposÔnolo tou R, èstw x0 ∈ R shmeÐosuss¸reushc tou A kai A : X → R. Upojètoume ìti to ìrio limx→x0 f(x) uprqeikai eÐnai Ðso me `. 'Estw g : B → R me f(A) ⊆ B kai ` ∈ B. An h g eÐnai suneq csto `, tìte to ìrio limx→xo

(g f)(x) uprqei kai isoÔtai me g(`).

Apìdeixh. 'Estw (xn) akoloujÐa shmeÐwn tou A me xn 6= x0 kai xn → x0. AfoÔlimx→x0 f(x) = `, h arq thc metaforc deÐqnei ìti f(xn) → `. AfoÔ h g eÐnaisuneq c sto ` ∈ B, gia kje akoloujÐa (yn) shmeÐwn tou B me yn → ` èqoumeg(yn) → g(`).

'Omwc, f(xn) ∈ B kai f(xn) → `. Sunep¸c,

g(f(xn)) → g(`).

Gia kje akoloujÐa (xn) shmeÐwn tou A me xn 6= x0 kai xn → x0 deÐxame ìti

(g f)(xn) = g(f(xn)) → g(`).

Apì thn arq thc metaforc, sumperaÐnoume ìti limx→xo(g f)(x) = g(`). 2

4.3 Sqèsh orÐou kai sunèqeiac

Se aut n thn pargrafo ja sundèsoume thn ènnoia tou orÐou me thn ènnoia thcsunèqeiac. Parathr ste ìti h sunèqeia elègqetai se kje shmeÐo tou pedÐouorismoÔ miac sunrthshc, èqei loipìn nìhma na exetsoume pr¸ta th sunèqeiasta memonwmèna shmeÐa tou pedÐou orismoÔ. 'Opwc deÐqnei h epìmenh Prìtash,kje sunrthsh eÐnai suneq c se ìla aut ta shmeÐa.

Prìtash 4.3.1. 'Estw f : A → R kai èstw x0 èna memonwmèno shmeÐo touA. Tìte, h f eÐnai suneq c sto x0.

Apìdeixh. AfoÔ to x0 eÐnai memonwmèno shmeÐo tou A, uprqei δ > 0 ¸steA ∩ (x0 − δ, x0 + δ) = x0. Dhlad , an x ∈ A kai |x − x0| < δ, tìte x = x0.Ja deÐxoume ìti autì to δ douleÔei gia ìla ta ε.

'Estw ε > 0. An x ∈ A kai |x− x0| < δ, tìte x = x0, kai sunep¸c,

|f(x)− f(x0)| = |f(x0)− f(x0)| = 0 < ε.

Br kame δ > 0 ¸ste gia kje x ∈ A me |x−x0| < δ na isqÔei |f(x)−f(x0)| < ε.Me bsh ton orismì thc sunèqeiac, h f eÐnai suneq c sto x0. 2

An to x0 ∈ A eÐnai kai shmeÐo suss¸reushc tou A, tìte h sqèsh orÐou kaisunèqeiac dÐnetai apì thn epìmenh Prìtash.

Prìtash 4.3.2. 'Estw f : A → R kai èstw x0 ∈ A shmeÐo suss¸reushc touA. Tìte, h f eÐnai suneq c sto x0 an kai mìno an limx→x0 f(x) = f(x0).

Page 77: σημειωσεις Π 1 τζανες-ηλιοπουλος

4.3 Sqesh oriou kai suneqeiac · 75

Apìdeixh. Upojètoume pr¸ta ìti h f eÐnai suneq c sto x0. 'Estw ε > 0.Uprqei δ > 0 ¸ste: an x ∈ A kai |x − x0| < δ, tìte |f(x) − f(x0)| < ε.Eidikìtera, an x ∈ A kai 0 < |x − x0| < δ, èqoume |f(x) − f(x0)| < ε. 'Ara,limx→x0 f(x) = f(x0).

AntÐstrofa, ac upojèsoume ìti limx→x0 f(x) = f(x0). 'Estw ε > 0. Uprqeiδ > 0 ¸ste: an x ∈ A kai 0 < |x−x0| < δ, tìte |f(x)−f(x0)| < ε. Parathr steìti, gia x = x0, èqoume oÔtwc llwc |f(x) − f(x0)| = 0 < ε. 'Ara, gia kjex ∈ A me |x− x0| < δ, èqoume |f(x)− f(x0)| < ε. 'Epetai ìti h f eÐnai suneq csto x0. 2

Parat rhsh 4.3.3 (eÐdh asunèqeiac). Ac exetsoume pio prosektik tishmaÐnei h frsh: h f den eÐnai suneq c sto x0, ìpou x0 eÐnai shmeÐo sto pedÐoorismoÔ thc f : A → R. Uprqoun trÐa endeqìmena:

(i) To x0 eÐnai shmeÐo suss¸reushc tou A apì arister kai apì dexi, tapleurik oria thc f kaj¸c x → x0 uprqoun kai limx→x−0

f(x) = ` =limx→x+

0f(x), ìmwc h tim thc f sto x0 den eÐnai o `: dhlad , f(x0) 6= `.

Tìte lème ìti sto x0 parousizetai rsimh asunèqeia ( epousi¸dhcasunèqeia). H f sumperifèretai rista gÔrw apì to x0, all h tim thcsto x0 eÐnai lanjasmènh.

(ii) To x0 eÐnai shmeÐo suss¸reushc tou A apì arister kai apì dexi, tapleurik ìria thc f kaj¸c x → x0 uprqoun all eÐnai diaforetik:

limx→x−0

f(x) 6= limx→x+

0

f(x).

Tìte lème ìti sto x0 parousizetai asunèqeia a' eÐdouc ( lma). Hdiafor limx→x+

0f(x)− limx→x−0

f(x) eÐnai to lma thc f sto x0.

(iii) To x0 eÐnai shmeÐo suss¸reushc tou A all to limx→x0 f(x) den uprqei(gia pardeigma, kpoio apì ta pleurik ìria thc f kaj¸c x → x0 den upr-qei). Tìte, lème ìti sto x0 parousizetai asunèqeia b' eÐdouc ( ousi¸dhcasunèqeia.)

Parat rhsh 4.3.4 (asunèqeiec monìtonwn sunart sewn). 'EstwI èna disthma kai èstw f : I → R mia monìtonh sunrthsh. Tìte ta pleurikìria thc f uprqoun se kje x0 ∈ I. Sunep¸c, an h f eÐnai asuneq c se kpoiox0 ∈ I, tìte ja parousizei lma sto x0.

Apìdeixh. Upojètoume ìti h f eÐnai aÔxousa kai ìti x0 eÐnai èna eswterikì shmeÐotou I. OrÐzoume

A−(x0) = f(x) : x ∈ I, x < x0.To A−(x0) eÐnai mh kenì kai nw fragmèno apì to f(x0). Sunep¸c, orÐzetaio `− = sup A−(x0). Apì ton orismì tou supremum èqoume `− ≤ f(x0). JadeÐxoume ìti limx→x−0

f(x) = `−.'Estw ε > 0. AfoÔ o `− − ε den eÐnai nw frgma tou sunìlou A−(x0),

uprqei x < x0 sto I me f(x) > `− − ε. Jètoume δ = x0 − x. Tìte, gia kjey ∈ (x0 − δ, x0) èqoume y ∈ I (diìti to I eÐnai disthma) kai

`− − ε < f(x0 − δ) ≤ f(y) ≤ `− < `− + ε,

Page 78: σημειωσεις Π 1 τζανες-ηλιοπουλος

76 · Oria sunarthsewn

diìti h f eÐnai aÔxousa. Dhlad , an y ∈ (x0 − δ, x0), tìte

|f(y)− `−| < ε.

Autì apodeiknÔei ìti limx→x−0f(x) = `− ≤ f(x0), kai me ton Ðdio trìpo deÐqnoume

ìti uprqei to limx→x+0

f(x) = `+ ≥ f(x0), ìpou

`+ = inf(f(x) : x ∈ I, x > x0

).

An ta dÔo pleurik ìria diafèroun, tìte èqoume asunèqeia a' eÐdouc (lma), en¸an eÐnai Ðsa, tìte f(x0) = limx→x−0

f(x) = limx→x+0

f(x), opìte h f eÐnai suneq csto x0.

4.4 Trigwnometrikèc sunart seic

Se aut th sÔntomh pargrafo upenjumÐzoume kpoiec basikèc tautìthtec kaianisìthtec gia tic trigwnometrikèc sunart seic sin (hmÐtono), cos (sunhmÐtono)kai tan (efaptomènh). 'Ola ta paraktw eÐnai gnwst apì to LÔkeio. Austhrìcorismìc twn trigwnometrik¸n ja dojeÐ se epìmeno Keflaio (jumhjeÐte ìti denèqoume orÐsei akìma ton arijmì π!).

Prìtash 4.4.1. Gia kje x ∈ R isqÔoun oi

| sin x| ≤ 1, | cosx| ≤ 1 kai sin2 x + cos2 x = 1

kaisin

2− x

)= cos x, cos

2− x

)= sin x.

Oi sunart seic sin : R → [−1, 1] kai cos : R → [−1, 1] eÐnai periodikèc, meelqisth perÐodo 2π. H sin eÐnai peritt sunrthsh, en¸ h cos eÐnai rtia.

Prìtash 4.4.2. An 0 < x < π2 , tìte

sin x < x < tan x :=sinx

cos x.

'Epetai ìti, gia kje x ∈ (−π/2, π/2) isqÔoun oi anisìthtec

| sin x| ≤ |x| ≤ | tan x|

kai ìti gia kje x ∈ R isqÔei h

| sin x| ≤ |x|.

Prìtash 4.4.3 (sunhmÐtono kai hmÐtono ajroÐsmatoc kai diafo-rc). Gia kje a, b ∈ R isqÔoun oi tautìthtec

cos(a− b) = cos a cos b + sin a sin b

cos(a + b) = cos a cos b− sin a sin b

sin(a + b) = sin a cos b + cos a sin b

sin(a− b) = sin a cos b− cos a sin b.

Page 79: σημειωσεις Π 1 τζανες-ηλιοπουλος

4.4 Trigwnometrikec sunarthseic · 77

Prìtash 4.4.4 (sunhmÐtono kai hmÐtono tou 2a). Gia kje a ∈ RisqÔoun oi tautìthtec

cos(2a) = cos2 a− sin2 a = 2 cos2 a− 1 = 1− 2 sin2 a

sin(2a) = 2 sin a cos a.

Prìtash 4.4.5 (metasqhmatismìc ajroÐsmatoc se ginìmeno). Giakje x, y ∈ R isqÔoun oi tautìthtec

sin x + sin y = 2 sinx + y

2cos

x− y

2

sin x− sin y = 2 sinx− y

2cos

x + y

2

cosx + cos y = 2 cosx + y

2cos

x− y

2

cosx− cos y = 2 sinx + y

2sin

y − x

2.

Prìtash 4.4.6. H sunrthsh sin : R→ [−1, 1] eÐnai suneq c.

Apìdeixh. 'Estw x0 ∈ R. Gia kje x ∈ R èqoume

| sin x− sin x0| = 2∣∣∣∣sin

x− x0

2

∣∣∣∣ ·∣∣∣∣cos

x + x0

2

∣∣∣∣ ≤ 2∣∣∣∣sin

x− x0

2

∣∣∣∣ .

Apì thn Prìtash 4.4.2 èqoume∣∣∣∣sin

x− x0

2

∣∣∣∣ ≤∣∣∣∣x− x0

2

∣∣∣∣ .

Sunep¸c,

| sin x− sin x0| ≤ 2∣∣∣∣x− x0

2

∣∣∣∣ = |x− x0|.

T¸ra, eÐnai eÔkolo na doÔme ìti h sin eÐnai suneq c sto x0 (prte δ = ε kaiepalhjeÔste ton orismì thc sunèqeiac). H cos eÐnai suneq c wc sÔnjesh thcsuneqoÔc x 7→ π

2 − x me thn sin. 2

Prìtash 4.4.7 (basikì ìrio).

limx→0

sinx

x= 1.

Apìdeixh. H sunrthsh x 7→ sin xx eÐnai rtia sto R \ 0. ArkeÐ loipìn na

deÐxoume (exhg ste giatÐ) ìti

limx→0+

sin x

x= 1.

Apì thn Prìtash 4.4.2 èqoume sin x < x < tan x sto(0, π

2

). Sunep¸c,

cosx <sin x

x< 1

sto(0, π

2

). AfoÔ h cos eÐnai suneq c, èqoume lim

x→0+cosx = cos 0 = 1. Apì to

krit rio parembol c èpetai to zhtoÔmeno. 2

Page 80: σημειωσεις Π 1 τζανες-ηλιοπουλος

78 · Oria sunarthsewn

Prìtash 4.4.8. Ta ìria limx→0

sin 1x kai lim

x→0cos 1

x den uprqoun.

Apìdeixh. Apì thn arq thc metaforc, arkeÐ na broÔme dÔo akoloujÐec xn → 0,yn → 0 (me xn, yn 6= 0) ¸ste lim sin 1

xn6= lim sin 1

yn. JewroÔme tic akoloujÐec

xn = 1πn kai yn = 1

2πn+ π2

(n ∈ N). EÔkola elègqoume ìti limn xn = 0 = limn yn.'Omwc,

sin1xn

= sin(πn) = 0 → 0

kaisin

1yn

= sin(2πn +

π

2

)= 1 → 1.

TeleÐwc anloga, mporeÐte na deÐxete ìti to ìrio limx→0

cos 1x den uprqei. 2

Page 81: σημειωσεις Π 1 τζανες-ηλιοπουλος

Keflaio 5

Pargwgoc

5.1 Orismìc thc parag¸gou

Orismìc 5.1.1. 'Estw f : (a, b) → R mia sunrthsh kai èstw x0 ∈ (a, b).Lème ìti h f eÐnai paragwgÐsimh sto x0 an uprqei to ìrio

f ′(x0) := limx→x0

f(x)− f(x0)x− x0

.

To ìrio f ′(x0) (an uprqei) lègetai pargwgoc thc f sto x0. Jètontach = x− x0 blèpoume ìti, isodÔnama,

f ′(x0) = limh→0

f(x0 + h)− f(x0)h

an to teleutaÐo ìrio uprqei.

ParadeÐgmata 5.1.2. (a) 'Estw f : R → R me f(x) = c gia kje x ∈ R. Hf eÐnai paragwgÐsimh se kje x0 ∈ R kai f ′(x0) = 0. Prgmati,

f(x0 + h)− f(x0)h

=c− c

h= 0 → 0

kaj¸c to h → 0.(b) 'Estw f : R → R me f(x) = x gia kje x ∈ R. H f eÐnai paragwgÐsimh sekje x0 ∈ R kai f ′(x0) = 1. Prgmati,

f(x0 + h)− f(x0)h

=x0 + h− x0

h=

h

h= 1 → 1

kaj¸c to h → 0.(g) 'Estw f : R→ R me f(x) = |x| gia kje x ∈ R. H f den eÐnai paragwgÐsimhsto 0 (kai eÐnai paragwgÐsimh se kje x0 6= 0). Prgmati,

limh→0+

f(h)− f(0)h

= limh→0+

|h|h

= limh→0+

h

h= lim

h→0+1 = 1,

Page 82: σημειωσεις Π 1 τζανες-ηλιοπουλος

80 · Paragwgoc

en¸lim

h→0−

f(h)− f(0)h

= limh→0−

|h|h

= limh→0−

−h

h= lim

h→0−(−1) = −1.

AfoÔ ta dÔo pleurik ìria eÐnai diaforetik, to limh→0f(h)−f(0)

h den uprqei.(d) 'Estw f : R → R me f(x) = x2 gia kje x ∈ R. H f eÐnai paragwgÐsimh sekje x0 ∈ R kai f ′(x0) = 2x0. Prgmati,

f(x0 + h)− f(x0)h

=(x0 + h)2 − x2

0

h=

2x0h + h2

h= 2x0 + h → 2x0

kaj¸c to h → 0.(e) 'Estw f : R→ R me f(x) = sin x gia kje x ∈ R. H f eÐnai paragwgÐsimh sekje x0 ∈ R kai f ′(x0) = cos x0. Prgmati,

f(x0 + h)− f(x0)h

=sin(x0 + h)− sinx0

h=

1h· 2 sin

h

2cos

(x0 +

h

2

)→ cos x0

kaj¸c to h → 0, afoÔ limh→0sin(h/2)

h/2 = 1 kai limh→0 cos(x0 + h/2) = cos x0.Me anlogo trìpo mporoÔme na deÐxoume ìti h g : R → R me g(x) = cos x eÐnaiparagwgÐsimh se kje x0 ∈ R kai g′(x0) = − sinx0.

(st) 'Estw f : R→ R me f(x) =

x2 an x ∈ Q0 an x /∈ Q . H f eÐnai paragwgÐsimh

sto 0: parathroÔme ìti

f(h)− f(0)h

=

h an h ∈ Q0 an h /∈ Q

'Epetai ìti limh→0f(h)−f(0)

h = 0. Dhlad , f ′(0) = 0. Parathr ste ìti h f eÐnaiasuneq c se kje x0 6= 0 (kai eÐnai suneq c sto 0).

(z) 'Estw f : R → R me f(x) =

x3 an x ≥ 0x2 an x < 0 . H f eÐnai paragwgÐsimh se

kje x0 ∈ R. Gia to shmeÐo 0, jewroÔme to

f(h)− f(0)h

=

h2 an h > 0h an h < 0

'Epetai ìti to ìrio limh→0f(h)−f(0)

h uprqei kai eÐnai Ðso me 0. Dhlad , f ′(0) = 0.EÔkola elègqoume ìti f ′(x0) = 3x2

0 an x0 > 0 kai f ′(x0) = 2x0 an x0 < 0.

Je¸rhma 5.1.3. 'Estw f : (a, b) → R kai èstw x0 ∈ (a, b). An h f eÐnaiparagwgÐsimh sto x0, tìte h f eÐnai suneq c sto x0.

Apìdeixh. Gia x 6= x0 grfoume

f(x)− f(x0) =f(x)− f(x0)

x− x0· (x− x0).

AfoÔ

limx→x0

f(x)− f(x0)x− x0

= f ′(x0) kai limx→x0

(x− x0) = 0,

sumperaÐnoume ìti limx→x0(f(x) − f(x0)) = 0, kai sunep¸c, limx→x0 f(x) =f(x0). Autì apodeiknÔei ìti h f eÐnai suneq c sto x0. 2

Parat rhsh 5.1.4. To antÐstrofo den isqÔei: an h f eÐnai suneq c sto x0,tìte den eÐnai aparaÐthta paragwgÐsimh sto x0. Gia pardeigma, h f(x) = |x|eÐnai suneq c sto 0 all den eÐnai paragwgÐsimh sto 0.

Page 83: σημειωσεις Π 1 τζανες-ηλιοπουλος

5.2 Kanonec paragwgishc · 81

5.2 Kanìnec parag¸gishc

Qrhsimopoi¸ntac tic antÐstoiqec idiìthtec twn orÐwn, mporoÔme na apodeÐxoumetouc basikoÔc kanìnec parag¸gishc se sqèsh me tic lgebrikèc prxeic metaxÔsunart sewn.

Je¸rhma 5.2.1. 'Estw f, g : (a, b) → R dÔo sunart seic kai èstw x0 ∈ (a, b).Upojètoume ìti oi f, g eÐnai paragwgÐsimec sto x0. Tìte:(a) H f + g eÐnai paragwgÐsimh sto x0 kai (f + g)′(x0) = f ′(x0) + g′(x0).(b) Gia kje t ∈ R, h t · f eÐnai paragwgÐsimh sto x0 kai (t · f)′(x0) = t · f ′(x0).(g) H f ·g eÐnai paragwgÐsimh sto x0 kai (f ·g)′(x0) = f ′(x0)g(x0)+f(x0)g′(x0).(d) An g(x) 6= 0 gia kje x ∈ (a, b), tìte h f

g eÐnai paragwgÐsimh sto x0 kai(

f

g

)′(x0) =

f ′(x0)g(x0)− f(x0)g′(x0)(g(x0))2

.

Apìdeixh. Ac doÔme gia pardeigma thn apìdeixh tou (g): grfoume

(f · g)(x0 + h)− (f · g)(x0)h

= f(x0 + h)g(x0 + h)− g(x0)

h

+g(x0)f(x0 + h)− f(x0)

h

gia h 6= 0 (kont sto 0).'Eqoume limh→0

g(x0+h)−g(x0)h = g′(x0) kai limh→0

f(x0+h)−f(x0)h = f ′(x0).

EpÐshc, h f eÐnai paragwgÐsimh, ra kai suneq c, sto x0. Sunep¸c, limh→0 f(x0+h) = f(x0). Af nontac to h → 0, kai qrhsimopoi¸ntac tic basikèc idiìthtec twnorÐwn, paÐrnoume to zhtoÔmeno.

Gia to (d) arkeÐ na deÐxoume ìti h 1/g eÐnai paragwgÐsimh sto x0 kai èqeipargwgo Ðsh me − g′(x0)

g(x0)2(kai na efarmìsoume to (g)). Parathr ste ìti

limh→0

1h

(1

g(x0 + h)− 1

g(x0)

)= lim

h→0

(g(x0)− g(x0 + h)

h· 1g(x0 + h)g(x0)

)

= −g′(x0) · 1g(x0)2

,

ìpou qrhsimopoi same to gegonìc ìti limh→0 g(x0 +h) = g(x0), pou isqÔei logwthc sunèqeiac thc g sto x0. 2

'Amesec sunèpeiec tou prohgoÔmenou jewr matoc eÐnai oi ex c:

(i) Kje poluwnumik sunrthsh eÐnai paragwgÐsimh se kje x0 ∈ R.(ii) Kje rht sunrthsh eÐnai paragwgÐsimh se kje shmeÐo tou pedÐou orismoÔ

thc.

5.2aþ Kanìnac thc alusÐdac

Prìtash 5.2.2 (parat rhsh tou Karajeodwr ). 'Estw f : (a, b) →R kai èstw x0 ∈ (a, b). H f eÐnai paragwgÐsimh sto x0 an kai mìnon an uprqeisunrthsh φ : (a, b) → R pou eÐnai suneq c sto x0 kai ikanopoieÐ thn φ(x) =f(x)−f(x0)

x−x0gia kje x ∈ (a, b)\x0. Tìte, f ′(x0) = φ(x0).

Page 84: σημειωσεις Π 1 τζανες-ηλιοπουλος

82 · Paragwgoc

Apìdeixh. Upojètoume pr¸ta ìti h f eÐnai paragwgÐsimh sto x0. OrÐzoumeφ : (a, b) → R wc ex c:

φ(x) =

f(x)−f(x0)x−x0

an x 6= x0

f ′(x0) an x = x0

H φ eÐnai suneq c sto x0: prgmati,

limx→x0

φ(x) = limx→x0

f(x)− f(x0)x− x0

= f ′(x0) = φ(x0).

AntÐstrofa, upojètoume ìti uprqei φ : (a, b) → R ìpwc sthn Prìtash. AfoÔh φ eÐnai suneq c sto x0, èqoume limx→x0 φ(x) = φ(x0). Dhlad , uprqei to

limx→x0

f(x)− f(x0)x− x0

= limx→x0

φ(x) = φ(x0).

Apì ton orismì thc parag¸gou, h f eÐnai paragwgÐsimh sto x0 kai f ′(x0) =φ(x0). 2

Je¸rhma 5.2.3 (kanìnac thc alusÐdac). 'Estw f : (a, b) → (c, d) kaig : (c, d) → R dÔo sunart seic. An h f eÐnai paragwgÐsimh sto x0 ∈ (a, b) kai hg eÐnai paragwgÐsimh sto f(x0), tìte h g f eÐnai paragwgÐsimh sto x0 kai

(g f)′(x0) = g′(f(x0)) · f ′(x0).

Apìdeixh. Jèloume na deÐxoume ìti to ìrio

limx→x0

g(f(x))− g(f(x0)x− x0

uprqei kai eÐnai Ðso me g′(f(x0)) · f ′(x0). Jètoume y0 = f(x0) ∈ (c, d) kaijewroÔme th sunrthsh

ψ : (c, d) → R ìpou ψ(y) =

g(y)−g(y0)

y−y0an y 6= y0

g′(y0) an y = y0

H ψ eÐnai suneq c sto y0, diìti h g eÐnai paragwgÐsimh sto y0.'Estw x ∈ (a, b)\x0. An f(x) 6= f(x0), tìte

ψ(f(x)) =g(f(x))− g(f(x0))

f(x)− f(x0),

ra èqoume

(∗) g(f(x))− g(f(x0))x− x0

= ψ(f(x))f(x)− f(x0)

x− x0.

An gia to x isqÔei f(x) = f(x0) tìte h (∗) exakoloujeÐ na isqÔei (ta dÔo mèlhmhdenÐzontai). Dhlad , h (∗) isqÔei gia kje x ∈ (a, b)\x0.

ParathroÔme ìti to ìrio limx→x0f(x)−f(x0)

x−x0uprqei kai isoÔtai me f ′(x0).

EpÐshc, h f eÐnai suneq c sto x0 kai h ψ eÐnai suneq c sto y0 = f(x0), ra hsÔnjes touc ψ f eÐnai suneq c sto x0. Sunep¸c, to ìrio limx→x0 ψ(f(x))uprqei kai isoÔtai me ψ(y0) = g′(y0) = g′(f(x0)). Epistrèfontac sthn (∗) kaipaÐrnontac to ìrio kaj¸c to x → x0, blèpoume ìti

limx→x0

g(f(x))− g(f(x0))x− x0

= ψ(f(x0)) · f ′(x0) = g′(f(x0)) · f ′(x0),

dhlad to zhtoÔmeno. 2

Page 85: σημειωσεις Π 1 τζανες-ηλιοπουλος

5.2 Kanonec paragwgishc · 83

5.2bþ Pargwgoc antÐstrofhc sunrthshc.

Je¸rhma 5.2.4. 'Estw f : (a, b) → R gnhsÐwc monìtonh kai suneq c sunr-thsh. Upojètoume oti h f eÐnai paragwgÐsimh sto x0 ∈ (a, b) kai ìti f ′(x0) 6= 0.Tìte, h f−1 eÐnai paragwgÐsimh sto f(x0) kai

(f−1)′(f(x0)) =1

f ′(x0).

Apìdeixh. QwrÐc periorismì thc genikìthtac mporoÔme na upojèsoume ìti h feÐnai gnhsÐwc aÔxousa. H f ′(x0) uprqei, dhlad

limx→x0

f(x)− f(x0)x− x0

= f ′(x0).

Epiplèon èqoume upojèsei oti f ′(x0) 6= 0, ra

limx→x0

x− x0

f(x)− f(x0)=

1f ′(x0)

.

'Estw ε > 0. MporoÔme na broÔme δ > 0 ¸ste [x0 − δ, x0 + δ] ⊂ (a, b) kai an0 < |x− x0| < δ tìte

(∗)∣∣∣∣

x− x0

f(x)− f(x0)− 1

f ′(x0)

∣∣∣∣ < ε.

Jètoumey1 = f (x0 − δ) kai y2 = f (x0 + δ) .

Tìte, to (y1, y2) eÐnai èna anoiqtì disthma pou perièqei to f(x0), ra uprqeiδ1 > 0 ¸ste

(f(x0)− δ1, f(x0) + δ1) ⊆ (y1, y2) = (f (x0 − δ) , f (x0 + δ)) .

'Estw y pou ikanopoieÐ thn 0 < |y − f(x0)| < δ1. Tìte, y = f(x) gia kpoiox ∈ (a, b) me 0 < |x− x0| < δ. 'Ara,

f−1(y)− f−1(f(x0))y − f(x0)

=x− x0

f(x)− f(x0),

opìte h (∗) dÐnei ∣∣∣∣f−1(y)− f−1(f(x0))

y − f(x0)− 1

f ′(x0)

∣∣∣∣ < ε.

Afou to ε > 0 tan tuqìn, èpetai oti

limy→f(x0)

f−1(y)− f−1(f(x0))y − f(x0)

=1

f ′(x0).

Dhlad , h f−1 eÐnai paragwgÐsimh sto f(x0) kai (f−1)′(f(x0)) = 1f ′(x0)

. 2

Parat rhsh 5.2.5. An f ′(x0) = 0 tìte h (f−1)′(y0) den uprqei. Alli¸c,apì ton kanìna thc alusÐdac h pargwgoc thc sÔnjeshc f−1 f sto x0 jaup rqe, kai ja eÐqame

(f−1 f)′(x0) = (f−1)′(f(x0)) · f ′(x0) = 0.

'Omwc, (f−1 f)(x) = x, ra (f−1 f)′(x0) = 1, opìte odhgoÔmaste se topo.

Page 86: σημειωσεις Π 1 τζανες-ηλιοπουλος

84 · Paragwgoc

5.2gþ Pargwgoi an¸terhc txhc

Orismìc 5.2.6. 'Estw f : (a, b) → R paragwgÐsimh se kje x ∈ (a, b). H pa-rgwgoc sunrthsh thc f eÐnai h sunrthsh f ′ : (a, b) → R me x 7→ f ′(x).An h sunrthsh f ′ eÐnai paragwgÐsimh sto (a, b), tìte h pargwgoc sunrthshthc f ′ orÐzetai sto (a, b), lègetai deÔterh pargwgoc thc f , kai sumbolÐ-zetai me f ′′.

Epagwgik, an èqei oristeÐ h n-ost pargwgoc f (n) : (a, b) → R thc f kaieÐnai paragwgÐsimh sunrthsh sto (a, b), tìte h pargwgoc thc f (n), orÐzetai sto(a, b), lègetai h (n+1)txhc pargwgoc thc f sto (a, b) kai sumbolÐzetaime f (n+1).

Mia sunrthsh pou èqei pargwgo txhc n lègetai n forèc paragwgÐsimh.Mia sunrthsh f : (a, b) → R lègetai aperiìrista paragwgÐsimh stoshmeÐo x0 ∈ (a, b) an h f (n)(x0) uprqei gia kje n ∈ N.Pardeigma 5.2.7. Kje poluwnumik sunrthsh p(x) = amxm+· · ·+a1x+a0 eÐnai aperiìrista paragwgÐsimh se kje shmeÐo x0 ∈ R. Oi suntelestèc toupoluwnÔmou p upologÐzontai apì tic

ak =p(k)(0)

k!, k = 0, 1, . . . , m.

H apìdeixh gÐnetai me diadoqikèc paragwgÐseic kai upologismì thc p(k)(0). Ank > m, tìte h p(k) eÐnai mhdenÐzetai se kje x0 ∈ R.

5.3 KrÐsima shmeÐa

Skopìc mac stic epìmenec Paragrfouc eÐnai na apodeÐxoume ta kÔria jewr matatou DiaforikoÔ LogismoÔ kai na doÔme p¸c efarmìzontai sth melèth sunart se-wn pou orÐzontai se kpoio disthma I thc pragmatik c eujeÐac. Ja xekin soumeme kpoia paradeÐgmata pou deÐqnoun ìti h monotonÐa h Ôparxh kpoiou topikoÔakrìtatou miac paragwgÐsimhc sunrthshc dÐnoun kpoiec plhroforÐec gia thnpargwgo. To monadikì ergaleÐo pou ja qrhsimopoi soume eÐnai o orismìc thcparag¸gou.

L mma 5.3.1. 'Estw f : (a, b) → R paragwgÐsimh sunrthsh. An h f eÐnaiaÔxousa sto (a, b) tìte f ′(x) ≥ 0 gia kje x ∈ (a, b).

Apìdeixh. 'Estw x ∈ (a, b). Uprqei δ > 0 ¸ste (x − δ, x + δ) ⊂ (a, b). Anloipìn |h| < δ tìte h f orÐzetai sto x + h.

AfoÔ h f eÐnai paragwgÐsimh sto x, èqoume

(5.3.1) f ′(x) = limh→0+

f(x + h)− f(x)h

= limh→0−

f(x + h)− f(x)h

.

'Estw 0 < h < δ. AfoÔ h f eÐnai aÔxousa sto (a, b) èqoume f(x + h) ≥ f(x).Sunep¸c,

(5.3.2)f(x + h)− f(x)

h≥ 0 ra f ′(x) = lim

h→0+

f(x + h)− f(x)h

≥ 0.

Parathr ste ìti deÐxame to zhtoÔmeno qwrÐc na koitxoume ti gÐnetai gia arnhti-kèc timèc tou h (elègxte ìmwc ìti an −δ < h < 0 tìte h klÐsh f(x+h)−f(x)

h eÐnaipli mh arnhtik , opìte odhgoÔmaste sto Ðdio sumpèrasma). 2

Page 87: σημειωσεις Π 1 τζανες-ηλιοπουλος

5.3 Krisima shmeia · 85

Parat rhsh 5.3.2. To antÐstrofo er¸thma diatup¸netai wc ex c: an f ′(x) ≥0 gia kje x ∈ (a, b) tìte eÐnai swstì ìti h f eÐnai aÔxousa sto (a, b)? H ap-nthsh eÐnai nai, aut eÐnai mÐa apì tic basikèc sunèpeiec tou jewr matoc mèshctim c (blèpe §5.4). Qrhsimopoi¸ntac mìno ton orismì thc parag¸gou, mporoÔmena deÐxoume kti polÔ asjenèstero:

L mma 5.3.3. 'Estw f : (a, b) → R. Upojètoume ìti h f eÐnai paragwgÐsimhsto x0 ∈ (a, b) kai f ′(x0) > 0. Tìte, uprqei δ > 0 ¸ste (x0− δ, x0 + δ) ⊆ (a, b)kai

(a) f(x) > f(x0) gia kje x ∈ (x0, x0 + δ).(b) f(x) < f(x0) gia kje x ∈ (x0 − δ, x0).

Apìdeixh. 'Eqoume upojèsei ìti limx→x0

f(x)−f(x0)x−x0

= f ′(x0) > 0. Efarmìzontac

ton ε − δ orismì tou orÐou me ε = f ′(0)2 > 0, brÐskoume δ > 0 ¸ste: an 0 <

|x− x0| < δ tìte x ∈ (a, b) kai

(5.3.3)f(x)− f(x0)

x− x0> f ′(x0)− ε =

f ′(x0)2

> 0.

'Epetai ìti:(a) Gia kje x ∈ (x0, x0 + δ) èqoume

(5.3.4) f(x)− f(x0) >f ′(x0)

2(x− x0) > 0 → f(x) > f(x0).

(b) Gia kje x ∈ (x0 − δ, x0) èqoume

(5.3.5) f(x)− f(x0) <f ′(x0)

2(x− x0) < 0 → f(x) < f(x0). 2

Parathr ste ìti oi (5.3.4) kai (5.3.5) den deÐqnoun ìti h f eÐnai aÔxousa sto(x0, x0 + δ) sto (x0 − δ, x0). 2

Parat rhsh 5.3.4. An upojèsoume ìti h paragwgÐsimh sunrthsh f : (a, b) →R eÐnai gnhsÐwc aÔxousa, den mporoÔme na isquristoÔme ìti h f ′ eÐnai gnhsÐwcjetik sto (a, b). Gia pardeigma, h f : R → R me f(x) = x3 eÐnai gnhsÐwcaÔxousa sto R, ìmwc f ′(x) = 3x2, ra uprqei shmeÐo sto opoÐo h pargwgocmhdenÐzetai: f ′(0) = 0. To L mma 5.3.1 mac exasfalÐzei fusik ìti f ′ ≥ 0 pantoÔsto R.

Orismìc 5.3.5. 'Estw f : I → R kai èstw x0 ∈ I. Lème ìti h f èqei topikìmègisto sto x0 an uprqei δ > 0 ¸ste:

an x ∈ I kai |x− x0| < δ tìte f(x0) ≥ f(x).OmoÐwc, lème ìti h f èqei topikì elqisto sto x0 an uprqei δ > 0 ¸ste:

an x ∈ I kai |x− x0| < δ tìte f(x0) ≤ f(x).An h f èqei topikì mègisto topikì elqisto sto x0 tìte lème ìti h f èqeitopikì akrìtato sto shmeÐo x0.

Autì pou qreiast kame gia thn apìdeixh tou L mmatoc 5.3.1 tan h Ôparxh thcf ′(x) (o orismìc thc parag¸gou) kai to gegonìc ìti (lìgw monotonÐac) h el-qisth tim thc f sto [x, x + δ) tan h f(x). Epanalambnontac loipìn to Ðdioousiastik epiqeÐrhma paÐrnoume thn akìloujh Prìtash (Fermat).

Page 88: σημειωσεις Π 1 τζανες-ηλιοπουλος

86 · Paragwgoc

Je¸rhma 5.3.6 (Fermat). 'Estw f : [a, b] → R. Upojètoume ìti h f èqeitopikì akrìtato se kpoio x0 ∈ (a, b) kai ìti h f eÐnai paragwgÐsimh sto x0. Tìte,

(5.3.6) f ′(x0) = 0.

Apìdeixh. QwrÐc periorismì thc genikìthtac upojètoume oti h f èqei topikìmègisto sto x0. Uprqei δ > 0 ¸ste (x0−δ, x0+δ) ⊆ (a, b) kai f(x0+h) ≤ f(x0)gia kje h ∈ (−δ, δ).

An 0 < h < δ tìte

(5.3.7)f(x0 + h)− f(x0)

h≤ 0, ra lim

h→0+

f(x0 + h)− f(x0)h

≤ 0.

Sunep¸c, f ′(x0) ≤ 0.An −δ < h < 0 tìte

(5.3.8)f(x0 + h)− f(x0)

h≥ 0, ra lim

h→0−

f(x0 + h)− f(x0)h

≥ 0.

Sunep¸c, f ′(x0) ≥ 0.Apì tic dÔo anisìthtec èpetai ìti f ′(x0) = 0. 2

Orismìc 5.3.7. 'Estw f : I → R. 'Ena eswterikì shmeÐo x0 tou I lègetaikrÐsimo shmeÐo gia thn f an f ′(x0) = 0.

Pardeigma 5.3.8. Ta krÐsima shmeÐa miac sunrthshc eÐnai polÔ qr simaìtan jèloume na broÔme th mègisth thn elqisth tim thc. 'Estw f : [a, b] → Rsuneq c sunrthsh. GnwrÐzoume ìti h f paÐrnei mègisth tim max(f) kai elqisthtim min(f) sto [a, b]. An x0 ∈ [a, b] kai f(x0) = max(f) f(x0) = min(f),tìte anagkastik sumbaÐnei kpoio apì ta paraktw:

(i) x0 = a x0 = b (kro tou diast matoc).

(ii) x0 ∈ (a, b) kai f ′(x0) = 0 (krÐsimo shmeÐo).

(iii) x0 ∈ (a, b) kai h f den eÐnai paragwgÐsimh sto x0.

Dedomènou ìti, sthn prxh, to pl joc twn shmeÐwn pou an koun se autèc tictreic omdec eÐnai sqetik mikrì, mporoÔme me aplì upologismì kai sÔgkrishmerik¸n tim¸n thc sunrthshc na apant soume sto er¸thma.Pardeigma: Na brejeÐ h mègisth tim thc sunrthshc f(x) = x3−x sto [−1, 2].H f eÐnai paragwgÐsimh sto (−1, 2), me pargwgo f ′(x) = 3x2−1. Ta shmeÐa staopoÐa mhdenÐzetai h pargwgoc eÐnai ta x1 = − 1√

3kai x2 = 1√

3ta opoÐa an koun

sto (−1, 2). 'Ara, ta shmeÐa sta opoÐa mporeÐ na paÐrnei mègisth elqisth tim h f eÐnai ta kra tou diast matoc kai ta dÔo krÐsima shmeÐa:

x0 = −1, x1 = − 1√3, x2 =

1√3, x3 = 2.

Oi antÐstoiqec timèc eÐnai:

f(−1) = 0, f(−1/√

3) =2

3√

3, f(1/

√3) = − 2

3√

3, f(2) = 6.

SugkrÐnontac autèc tic tèsseric timèc blèpoume ìti max(f) = f(2) = 6 kaimin(f) = f(1/

√3) = −2/(3

√3). 2

Page 89: σημειωσεις Π 1 τζανες-ηλιοπουλος

5.4 Jewrhma meshc timhc · 87

5.4 Je¸rhma Mèshc Tim c

'Estw f : [a, b] → R mia stajer sunrthsh. Dhlad , uprqei c ∈ R ¸stef(x) = c gia kje x ∈ [a, b]. GnwrÐzoume ìti f ′(x) = 0 gia kje x ∈ (a, b).AntÐstrofa, ac upojèsoume ìti f : [a, b] → R eÐnai mia suneq c sunrthsh,paragwgÐsimh sto (a, b), me thn idiìthta f ′(x) = 0 gia kje x ∈ (a, b). EÐnaiswstì ìti h f eÐnai stajer sto [a, b]?

To er¸thma autì eÐnai parìmoiac fÔshc me ekeÐno thc Parat rhshc 5.3.2: anmia paragwgÐsimh sunrthsh èqei pantoÔ mh arnhtik pargwgo, eÐnai swstì ìtieÐnai aÔxousa? EÐnai logikì na perimènoume ìti h apnthsh eÐnai nai sta dÔoaut erwt mata. SkefteÐte èna kinhtì: f(x) eÐnai h proshmasmènh apìstashapì thn arqik jèsh th qronik stigm x kai f ′(x) eÐnai h taqÔthta th qronik stigm x. An h taqÔthta eÐnai suneq¸c mhdenik , to kinhtì mènei akÐnhto kai hapìstash paramènei stajer . An h taqÔthta eÐnai pantoÔ mh arnhtik , to kinhtìapomakrÔnetai apì thn arqik tou jèsh kai h apìstash auxnei me thn prodotou qrìnou.

Gia thn austhr ìmwc apìdeixh aut¸n twn dÔo isqurism¸n, ja qreiasteÐ nasundusoume thn ènnoia thc parag¸gou me ta basik jewr mata gia suneqeÐcsunart seic se kleist diast mata. To basikì teqnikì b ma eÐnai h apìdeixh toujewr matoc mèshc tim c.

'Estw f : [a, b] → R suneq c sunrthsh. Upojètoume oti h f eÐnai paragw-gÐsimh sto (a, b): dhlad , gia kje x ∈ (a, b) orÐzetai kal h efaptomènh tougraf matoc thc f sto (x, f(x)). JewroÔme thn eujeÐa (`) pou pernei apì tashmeÐa A = (a, f(a)) kai B = (b, f(b)). An th metakin soume parllhla proc toneautì thc, kpoia apì tic parllhlec ja efptetai sto grfhma thc f se kpoioshmeÐo (x0, f(x0)), x0 ∈ (a, b). H klÐsh thc efaptomènhc ja prèpei na isoÔtai methn klÐsh thc eujeÐac (`). Dhlad ,

(5.4.1) f ′(x0) =f(b)− f(a)

b− a.

Sto pr¸to mèroc aut c thc paragrfou dÐnoume austhr apìdeixh autoÔ touisqurismoÔ (Je¸rhma Mèshc Tim c). ApodeiknÔoume pr¸ta mia eidik perÐptwsh:to je¸rhma tou Rolle.

Je¸rhma 5.4.1 (Rolle). 'Estw f : [a, b] → R. Upojètoume ìti h f eÐnaisuneq c sto [a, b] kai paragwgÐsimh sto (a, b). Upojètoume epiplèon ìti f(a) =f(b). Tìte, uprqei x0 ∈ (a, b) ¸ste

(5.4.2) f ′(x0) = 0.

Apìdeixh. Exetzoume pr¸ta thn perÐptwsh pou h f eÐnai stajer sto [a, b],dhlad f(x) = f(a) = f(b) gia kje x ∈ [a, b]. Tìte, f ′(x) = 0 gia kjex ∈ (a, b) kai opoiod pote apì aut ta x mporeÐ na paÐxei to rìlo tou x0.

'Estw loipìn ìti h f den eÐnai stajer sto [a, b]. Tìte, uprqei x1 ∈ (a, b)¸ste f(x1) 6= f(a) kai qwrÐc periorismì thc genikìthtac mporoÔme na upojèsoumeìti f(x1) > f(a). H f eÐnai suneq c sto [a, b], ra paÐrnei mègisth tim : uprqeix0 ∈ [a, b] ¸ste

(5.4.3) f(x0) = maxf(x) : x ∈ [a, b] ≥ f(x1) > f(a).

Page 90: σημειωσεις Π 1 τζανες-ηλιοπουλος

88 · Paragwgoc

Eidikìtera, x0 6= a, b. Dhlad , to x0 brÐsketai sto anoiktì disthma (a, b). Hf èqei (olikì) mègisto sto x0 kai eÐnai paragwgÐsimh sto x0. Apì to Je¸rhma5.3.6 (Fermat) sumperaÐnoume ìti f ′(x0) = 0. 2

To je¸rhma mèshc tim c eÐnai mesh sunèpeia tou jewr matoc tou Rolle.

Je¸rhma 5.4.2 (je¸rhma mèshc tim c). 'Estw f : [a, b] → R suneq csto [a, b] kai paragwgÐsimh sto (a, b). Tìte, uprqei x0 ∈ (a, b) ¸ste

(5.4.4) f ′(x0) =f(b)− f(a)

b− a.

Apìdeixh. Ja anaqjoÔme sto Je¸rhma tou Rolle wc ex c. JewroÔme th grammik sunrthsh h : [a, b] → R pou paÐrnei tic Ðdiec timèc me thn f sta shmeÐa a kai b.Dhlad ,

(5.4.5) h(x) = f(a) +f(b)− f(a)

b− a(x− a).

OrÐzoume mia sunrthsh g : [a, b] → R me

(5.4.6) g(x) = f(x)− h(x) = f(x)− f(a)− f(b)− f(a)b− a

(x− a).

H g eÐnai suneq c sto [a, b], paragwgÐsimh sto (a, b) kai apì ton trìpo epilog cthc h èqoume

(5.4.7) g(a) = f(a)− h(a) = 0 kai g(b) = f(b)− h(b) = 0.

SÔmfwna me to je¸rhma tou Rolle, uprqei x0 ∈ (a, b) ¸ste g′(x0) = 0. 'Omwc,

(5.4.8) g′(x) = f ′(x)− f(b)− f(a)b− a

sto (a, b). 'Ara, to x0 ikanopoieÐ thn (5.4.4). 2

Parat rhsh 5.4.3. H upìjesh ìti h f eÐnai suneq c sto kleistì disthma[a, b] qrhsimopoi jhke sthn apìdeixh kai eÐnai aparaÐthth. Jewr ste, gia par-deigma, thn f : [0, 1] → R me f(x) = x an 0 ≤ x < 1 kai f(1) = 0. H f eÐnaiparagwgÐsimh (ra, suneq c) sto (0, 1) kai èqoume f(0) = f(1) = 0. 'Omwc denuprqei x ∈ (0, 1) pou na ikanopoieÐ thn f ′(x) = f(1)−f(0)

1−0 = 0, afoÔ f ′(x) = 1gia kje x ∈ (0, 1). To prìblhma eÐnai sto shmeÐo 1: h f eÐnai asuneq c sto 1,dhlad den eÐnai suneq c sto [0, 1].

To je¸rhma mèshc tim c mac epitrèpei na apant soume sta erwt mata pou suzh-t same sthn arq thc paragrfou.

Je¸rhma 5.4.4. 'Estw f : (a, b) → R paragwgÐsimh sunrthsh.

(i) An f ′(x) ≥ 0 gia kje x ∈ (a, b), tìte h f eÐnai aÔxousa sto (a, b).

(ii) An f ′(x) > 0 gia kje x ∈ (a, b), tìte h f eÐnai gnhsÐwc aÔxousa sto (a, b).

(iii) An f ′(x) ≤ 0 gia kje x ∈ (a, b), tìte h f eÐnai fjÐnousa sto (a, b).

(iv) An f ′(x) < 0 gia kje x ∈ (a, b), tìte h f eÐnai gnhsÐwc fjÐnousa sto(a, b).

Page 91: σημειωσεις Π 1 τζανες-ηλιοπουλος

5.4 Jewrhma meshc timhc · 89

(v) An f ′(x) = 0 gia kje x ∈ (a, b), tìte h f eÐnai stajer sto (a, b).

Apìdeixh. Ja deÐxoume ènan apì touc pr¸touc tèsseric isqurismoÔc: upojètoumeìti f ′(x) ≥ 0 sto (a, b), kai ja deÐxoume ìti an a < x < y < b tìte f(x) ≤ f(y).JewroÔme ton periorismì thc f sto [x, y]. H f eÐnai suneq c sto [x, y] kaiparagwgÐsimh sto (x, y), opìte efarmìzontac to je¸rhma mèshc tim c brÐskoumeξ ∈ (x, y) pou ikanopoieÐ thn

(5.4.9) f ′(ξ) =f(y)− f(x)

y − x.

AfoÔ f ′(ξ) ≥ 0 kai y − x > 0, èqoume f(y)− f(x) ≥ 0. Dhlad , f(x) ≤ f(y).Gia ton teleutaÐo isqurismì parathr ste ìti an f ′ = 0 sto (a, b) tìte f ′ ≥ 0

kai f ′ ≤ 0 sto (a, b). 'Ara, h f eÐnai tautìqrona aÔxousa kai fjÐnousa: an x < ysto (a, b) tìte f(x) ≤ f(y) kai f(x) ≥ f(y), dhlad f(x) = f(y). 'Epetai ìti hf eÐnai stajer . 2

Mia parallag (kai genÐkeush) tou jewr matoc Mèshc Tim c eÐnai to je¸rhmamèshc tim c tou Cauchy:

Je¸rhma 5.4.5 (je¸rhma mèshc tim c tou Cauchy). 'Estw f, g :[a, b] → R, suneqeÐc sto [a, b] kai paragwgÐsimec sto (a, b). Tìte, uprqei x0 ∈(a, b) ¸ste

(5.4.10) [f(b)− f(a)] g′(x0) = [g(b)− g(a)] f ′(x0).

ShmeÐwsh: Parathr ste pr¸ta ìti to je¸rhma mèshc tim c eÐnai eidik perÐptwshtou jewr matoc pou jèloume na deÐxoume: an g(x) = x tìte g′(x) = 1 kai h(5.4.10) paÐrnei th morf

(5.4.11) [f(b)− f(a)] · 1 = (b− a) f ′(x).

H Ôparxh kpoiou x0 ∈ (a, b) to opoÐo ikanopoieÐ thn (5.4.11) eÐnai akrib¸c oisqurismìc tou jewr matoc mèshc tim c.

JumhjeÐte t¸ra thn idèa thc apìdeixhc tou jewr matoc mèshc tim c. Efar-mìsame to je¸rhma tou Rolle gia th sunrthsh

(5.4.12) f(x)− f(a)− f(b)− f(a)b− a

(x− a).

IsodÔnama (pollaplasiste thn prohgoÔmenh sunrthsh me b−a) ja mporoÔsamena èqoume prei thn

(5.4.13) [f(x)− f(a)] (b− a)− [f(b)− f(a)] (x− a).

Ja jewr soume loipìn sunrthsh antÐstoiqh me aut n thc (5.4.13) antikaji-st¸ntac thn x me thn g(x).

Apìdeixh. JewroÔme th sunrthsh h : [a, b] → R me

(5.4.14) h(x) = [f(x)− f(a)] (g(b)− g(a))− [f(b)− f(a)] (g(x)− g(a)).

H h eÐnai suneq c sto [a, b] kai paragwgÐsimh sto (a, b) (giatÐ oi f kai g èqountic Ðdiec idiìthtec). EÔkola elègqoume ìti

(5.4.15) h(a) = 0 = h(b).

Page 92: σημειωσεις Π 1 τζανες-ηλιοπουλος

90 · Paragwgoc

MporoÔme loipìn na efarmìsoume to je¸rhma tou Rolle: uprqei x0 ∈ (a, b)¸ste h′(x0) = 0. AfoÔ

(5.4.16) h′(x0) = f ′(x0) (g(b)− g(a))− g′(x0) (f(b)− f(a)),

paÐrnoume thn (5.4.10). 2

Parat rhsh 5.4.6. To endiafèron shmeÐo sthn (5.4.10) eÐnai ìti oi pargw-goi f ′(x0) kai g′(x0) upologÐzontai sto Ðdio shmeÐo x0.

PolÔ suqn, to je¸rhma mèshc tim c tou Cauchy diatup¸netai wc ex c.

Pìrisma 5.4.7. 'Estw f, g : [a, b] → R, suneqeÐc sto [a, b] kai paragwgÐsimecsto (a, b). Upojètoume epiplèon ìti

(a) oi f ′ kai g′ den èqoun koin rÐza sto (a, b).(b) g(b)− g(a) 6= 0.

Tìte uprqei x0 ∈ (a, b) ¸ste

(5.4.17)f(b)− f(a)g(b)− g(a)

=f ′(x0)g′(x0)

.

Apìdeixh. Apì to je¸rhma mèshc tim c tou Cauchy, uprqei x0 ∈ (a, b) ¸ste

(5.4.18) (f(b)− f(a))g′(x0) = (g(b)− g(a))f ′(x0).

ParathroÔme ìti g′(x0) 6= 0: an eÐqame g′(x0) = 0, tìte ja tan (g(b) −g(a))f ′(x0) = 0 kai, afoÔ apì thn upìjes mac g(b) − g(a) 6= 0, ja èprepena èqoume f ′(x0) = 0. Dhlad oi f ′ kai g′ ja eÐqan koin rÐza. MporoÔme loipìnna diairèsoume ta dÔo mèlh thc (5.4.18) me (g(b)− g(a))g′(x0) kai na proume tozhtoÔmeno. 2

5.5 Aprosdiìristec morfèc

To je¸rhma mèshc tim c tou Cauchy qrhsimopoieÐtai sthn apìdeixh twn ka-nìnwn tou L’ Hospital gia ìria thc morf c 0

0 ∞∞ . Tupik paradeÐgmata thc

katstashc pou ja suzht soume se aut thn pargrafo eÐnai ta ex c: jèloumena exetsoume an uprqei to ìrio

(5.5.1) limx→x0

f(x)g(x)

ìpou f, g eÐnai dÔo sunart seic paragwgÐsimec dexi kai arister apì to x0, meg(x) 6= 0 an x kont sto x0 kai x 6= x0 kai

(5.5.2) limx→x0

f(x) = limx→x0

g(x) = 0

(5.5.3) limx→x0

f(x) = limx→x0

g(x) = +∞.

Tìte lème ìti èqoume aprosdiìristh morf 00 ( ∞

∞ antÐstoiqa) sto x0.Oi kanìnec tou l’Hospital mac epitrèpoun suqn na broÔme tètoia ìria (an

uprqoun) me th bo jeia twn parag¸gwn twn f kai g. Tupikì je¸rhma autoÔtou eÐdouc eÐnai to ex c.

Page 93: σημειωσεις Π 1 τζανες-ηλιοπουλος

5.5 Aprosdioristec morfec · 91

Je¸rhma 5.5.1. 'Estw f, g : (a, x0)∪ (x0, b) → R paragwgÐsimec sunart seicme tic ex c idiìthtec:

(a) g(x) 6= 0 kai g′(x) 6= 0 gia kje x ∈ (a, x0) ∪ (x0, b).(b) lim

x→x0f(x) = lim

x→x0g(x) = 0.

An uprqei to limx→x0

f ′(x)g′(x) = ` ∈ R, tìte uprqei to lim

x→x0

f(x)g(x) kai

(5.5.4) limx→x0

f(x)g(x)

= ` = limx→x0

f ′(x)g′(x)

.

Apìdeixh. OrÐzoume tic f kai g sto x0 jètontac f(x0) = g(x0) = 0. AfoÔ

(5.5.5) limx→x0

f(x) = limx→x0

g(x) = 0,

oi f kai g gÐnontai t¸ra suneqeÐc sto (a, b). Ja deÐxoume ìti

(5.5.6) limx→x+

0

f(x)g(x)

= ` = limx→x+

0

f ′(x)g′(x)

.

'Eqoume

(5.5.7)f(x)g(x)

=f(x)− f(x0)g(x)− g(x0)

gia kje x ∈ (x0, b). Oi f ′, g′ den èqoun koin rÐza sto (x0, x) giatÐ h g′ denmhdenÐzetai poujen. EpÐshc g(x) 6= 0, dhlad g(x)− g(x0) 6= 0. Efarmìzontacloipìn to je¸rhma mèshc tim c tou Cauchy mporoÔme gia kje x ∈ (x0, b) nabroÔme ξx ∈ (x0, x) ¸ste

(5.5.8)f(x)g(x)

=f ′(ξx)g′(ξx)

.

'Estw t¸ra ìti limx→x0f ′(x)g′(x) = ` kai èstw ε > 0. MporoÔme na broÔme δ > 0

¸ste: an x0 < y < x0 + δ tìte

(5.5.9)∣∣∣∣f ′(y)g′(y)

− `

∣∣∣∣ < ε.

Sunduzontac tic (5.5.8) kai (5.5.9) blèpoume ìti an x0 < x < x0 + δ tìte

(5.5.10)∣∣∣∣f(x)g(x)

− `

∣∣∣∣ =∣∣∣∣f ′(ξx)g′(ξx)

− `

∣∣∣∣ < ε

(giatÐ x0 < ξx < x < x0 + δ). 'Ara,

(5.5.11) limx→x+

0

f(x)g(x)

= ` = limx→x+

0

f ′(x)g′(x)

.

Me anlogo trìpo deÐqnoume ìti limx→x−0f(x)g(x) = `. 2

O antÐstoiqoc kanìnac ìtan x0 = +∞ eÐnai o ex c.

Page 94: σημειωσεις Π 1 τζανες-ηλιοπουλος

92 · Paragwgoc

Je¸rhma 5.5.2. 'Estw f, g : (a,+∞) → R paragwgÐsimec sunart seic me ticex c idiìthtec:

(a) g(x) 6= 0 kai g′(x) 6= 0 gia kje x > a.(b) lim

x→+∞f(x) = lim

x→+∞g(x) = 0.

An uprqei to limx→+∞

f ′(x)g′(x) = ` ∈ R tìte uprqei to lim

x→+∞f(x)g(x) kai

(5.5.12) limx→+∞

f(x)g(x)

= ` = limx→+∞

f ′(x)g′(x)

.

Apìdeixh. OrÐzoume f1, g1 :(0, 1

a

) → R me

(5.5.13) f1(x) = f

(1x

)kai g1(x) = g

(1x

).

Oi f1, g1 eÐnai paragwgÐsimec kai

(5.5.14)f ′1(x)g′1(x)

=− 1

x2 f ′(

1x

)

− 1x2 g′

(1x

) =f ′

(1x

)

g′(

1x

) .

'Eqoume limx→0+

f1(x) = limx→+∞

f(x) = 0 kai limx→0+

g1(x) = limx→+∞

g(x) = 0 (giatÐ?).

EpÐshc, g1 6= 0 kai g′1 6= 0 sto (0, 1/a). Tèloc,

(5.5.15) limx→0+

f ′1(x)g′1(x)

= limx→0+

f ′(

1x

)

g′(

1x

) = limx→+∞

f ′(x)g′(x)

.

'Ara, efarmìzetai to Je¸rhma 5.5.1 gia tic f1, g1 kai èqoume

(5.5.16) limx→0+

f1(x)g1(x)

= limx→0+

f ′1(x)g′1(x)

= limx→+∞

f ′(x)g′(x)

.

AfoÔ

(5.5.17) limx→+∞

f(x)g(x)

= limx→0+

f1(x)g1(x)

,

èpetai h (5.5.12). 2

Uprqoun arketèc akìma peript¸seic aprosdiìristwn morf¸n gia tic opoÐecmporoÔme na diatup¸soume katllhlo kanìna tou l’Hospital. Den ja d¸soumellec apodeÐxeic, ac doÔme ìmwc th diatÔpwsh enìc kanìna gia aprosdiìristhmorf ∞

∞ .

Je¸rhma 5.5.3. 'Estw f, g : (a, b) → R paragwgÐsimec sunart seic me ticex c idiìthtec:

(a) g(x) 6= 0 kai g′(x) 6= 0 gia kje x ∈ (a, b).(b) lim

x→a+f(x) = lim

x→a+g(x) = +∞.

An uprqei to limx→a+

f ′(x)g′(x) = ` ∈ R, tìte uprqei to lim

x→a+

f(x)g(x) kai

(5.5.18) limx→a+

f(x)g(x)

= limx→a+

f ′(x)g′(x)

.

Page 95: σημειωσεις Π 1 τζανες-ηλιοπουλος

5.6 Idiothta Darboux · 93

5.6 Idiìthta Darboux gia thn pargwgo

Orismìc 5.6.1. Lème ìti mia sunrthsh f : I → R èqei thn idiìthta Darboux(idiìthta thc endimeshc tim c) an: gia kje x < y sto I me f(x) 6= f(y) kaigia kje pragmatikì arijmì ρ anmesa stouc f(x) kai f(y) mporoÔme na broÔmez ∈ (x, y) ¸ste f(z) = ρ. Apì to Je¸rhma Endimeshc Tim c èpetai ìti kjesuneq c sunrthsh f : I → R èqei thn idiìthta Darboux.

Ja deÐxoume ìti h pargwgoc miac paragwgÐsimhc sunrthshc èqei pnta thnidiìthta Darboux (an kai den eÐnai pnta suneq c sunrthsh).

Je¸rhma 5.6.2. 'Estw f : (a, b) → R paragwgÐsimh sunrthsh. Tìte, h f ′

èqei thn idiìthta Darboux.

Apìdeixh: 'Estw x < y ∈ (a, b) me f ′(x) 6= f ′(y). QwrÐc periorismì thcgenikìthtac mporoÔme na upojèsoume ìti f ′(x) < f ′(y). Upojètoume ìti f ′(x) <ρ < f ′(y) kai ja broÔme z ∈ (x, y) ¸ste f ′(z) = ρ.

JewroÔme th sunrthsh g : (a, b) → R pou orÐzetai apì thn g(t) = f(t)− ρt.Tìte, h g eÐnai paragwgÐsimh sto (a, b) kai g′(t) = f ′(t) − ρ. 'Ara, èqoumeg′(x) < 0 < g′(y) kai zhtme z ∈ (x, y) me thn idiìthta g′(z) = 0.

Isqurismìc. Uprqoun x1, y1 ∈ (x, y) ¸ste g(x1) < g(x) kai g(y1) < g(y).

Apìdeixh tou isqurismoÔ. H g eÐnai paragwgÐsimh sto x, dhlad

(5.6.1) limh→0+

g(x + h)− g(x)h

= g′(x) < 0.

Epilègontac ε = − g′(x)2 > 0 blèpoume ìti uprqei 0 < δ1 < y − x ¸ste

(5.6.2)g(x + h)− g(x)

h< g′(x) + ε =

g′(x)2

< 0

gia kje 0 < h < δ1. PaÐrnontac x1 = x+ δ12 èqoume x1 ∈ (x, y) kai g(x1) < g(x).

'Omoia, h g eÐnai paragwgÐsimh sto y, dhlad

(5.6.3) limh→0−

g(y + h)− g(y)h

= g′(y) > 0.

Epilègontac ε = g′(y)2 > 0 blèpoume ìti uprqei 0 < δ1 < y − x ¸ste

(5.6.4)g(y + h)− g(y)

h> g′(y)− ε =

g′(y)2

> 0

gia kje −δ1 < h < 0. PaÐrnontac y1 = y − δ12 èqoume y1 ∈ (x, y) kai g(y1) <

g(y). 2

Sunèqeia thc apìdeixhc tou Jewr matoc 5.6.2. H g eÐnai paragwgÐsimh sto (a, b),ra suneq c sto [x, y]. Epomènwc, h g paÐrnei elqisth tim sto [x, y]: uprqeix0 ∈ [x, y] me thn idiìthta g(x0) ≤ g(t) gia kje t ∈ [x, y].

Apì ton Isqurismì blèpoume ìti h g den paÐrnei elqisth tim sto x oÔtesto y. 'Ara, x0 ∈ (x, y). AfoÔ h g eÐnai paragwgÐsimh sto x0, to Je¸rhma 5.3.6(Fermat) mac exasfalÐzei ìti g′(x0) = 0. 'Epetai to zhtoÔmeno, me z = x0. 2

Page 96: σημειωσεις Π 1 τζανες-ηλιοπουλος

94 · Paragwgoc

5.7 Gewmetrik shmasÐa thc deÔterhc parag¸gou

Sthn §5.3 eÐdame ìti o mhdenismìc thc parag¸gou se èna shmeÐo x0 den eÐnaiikan sunj kh gia thn Ôparxh topikoÔ akrìtatou sto x0. H sunrthsh f(x) =x3 den èqei akrìtato sto x0 = 0, ìmwc f ′(x0) = 0. Koitzontac th deÔterhpargwgo sta shmeÐa mhdenismoÔ thc pr¸thc parag¸gou mporoÔme pollèc forècna sumpernoume an èna krÐsimo shmeÐo eÐnai ìntwc shmeÐo akrìtatou.

Je¸rhma 5.7.1. 'Estw f : (a, b) → R paragwgÐsimh sunrthsh kai èstwx0 ∈ (a, b) me f ′(x0) = 0.(a) An uprqei h f ′′(x0) kai f ′′(x0) > 0, tìte èqoume topikì elqisto sto x0.(b) An uprqei h f ′′(x0) kai f ′′(x0) < 0, tìte èqoume topikì mègisto sto x0.

ShmeÐwsh: An f ′′(x0) = 0 an den uprqei h f ′′(x0), tìte prèpei na exetsoumeti sumbaÐnei me llo trìpo.

Apìdeixh. Ja deÐxoume mìno to (a). 'Eqoume

(5.7.1) 0 < f ′′(x0) = limx→x0

f ′(x)− f ′(x0)x− x0

= limx→x0

f ′(x)x− x0

.

Epomènwc, mporoÔme na broÔme δ > 0 ¸ste:

(i) An x0 < x < x0 + δ, tìte f ′(x) > 0.

(ii) An x0 − δ < x < x0 tìte f ′(x) < 0.

'Estw y ∈ (x0 − δ, x0 + δ).

(i) An x0 < y < x0 + δ, tìte efarmìzontac to je¸rhma mèshc tim c sto [x0, y]brÐskoume x ∈ (x0, y) ¸ste

(5.7.2) f(y)− f(x) = f ′(x)(y − x0) > 0.

(ii) An x0− δ < y < x0, tìte efarmìzontac to je¸rhma mèshc tim c sto [y, x0]brÐskoume x ∈ (y, x0) ¸ste

(5.7.3) f(y)− f(x) = f ′(x)(y − x0) > 0.

Dhlad , f(y) ≤ f(x0) gia kje y ∈ (x0 − δ, x0 + δ). 'Ara, h f èqei topikìelqisto sto x0. 2

5.7aþ Kurtèc kai koÐlec sunart seic

Se epìmeno Keflaio ja asqolhjoÔme susthmatik me tic kurtèc kai tic koÐlecsunart seic f : I → R. Se aut thn upopargrafo apodeiknÔoume kpoiec aplècprotseic gia paragwgÐsimec sunart seic, oi opoÐec mac bohjne na sqedisoumeth grafik touc parstash.

JewroÔme mia paragwgÐsimh sunrthsh f : (a, b) → R. An x0 ∈ (a, b), hexÐswsh thc efaptomènhc tou graf matoc thc f sto (x0, f(x0)) eÐnai h

(5.7.4) y = f(x0) + f ′(x0)(x− x0).

Page 97: σημειωσεις Π 1 τζανες-ηλιοπουλος

5.7 Gewmetrikh shmasia thc deuterhc paragwgou · 95

Lème ìti h f eÐnai kurt sto (a, b) an gia kje x0 ∈ (a, b) èqoume

(5.7.5) f(x) ≥ f(x0) + f ′(x0)(x− x0)

gia kje x ∈ (a, b). Dhlad , an to grfhma (x, f(x)) : a < x < b brÐsketaipnw apì thn efaptomènh. Lème ìti h f eÐnai gnhsÐwc kurt sto (a, b) an giakje x 6= x0 h anisìthta sthn (5.7.5) eÐnai gn sia.Lème ìti h f eÐnai koÐlh sto (a, b) an gia kje x0 ∈ (a, b) èqoume

(5.7.6) f(x) ≤ f(x0) + f ′(x0)(x− x0)

gia kje x ∈ (a, b). Dhlad , an to grfhma (x, f(x)) : a < x < b brÐsketaiktw apì thn efaptomènh. Lème ìti h f eÐnai gnhsÐwc koÐlh sto (a, b) an giakje x 6= x0 h anisìthta sthn (5.7.6) eÐnai gn sia.Tèloc, lème ìti h f èqei shmeÐo kamp c sto shmeÐo x0 ∈ (a, b) an uprqei δ > 0¸ste h f na eÐnai gnhsÐwc kurt sto (x0−δ, x0) kai gnhsÐwc koÐlh sto (x0, x0+δ) gnhsÐwc koÐlh sto (x0 − δ, x0) kai gnhsÐwc kurt sto (x0, x0 + δ).

Je¸rhma 5.7.2. 'Estw f : (a, b) → R paragwgÐsimh sunrthsh.(a) An h f ′ eÐnai (gnhsÐwc) aÔxousa sto (a, b), tìte h f eÐnai (gnhsÐwc) kurt sto (a, b).(b) An h f ′ eÐnai (gnhsÐwc) fjÐnousa sto (a, b), tìte h f eÐnai (gnhsÐwc) koÐlhsto (a, b).

Apìdeixh. 'Estw x0 ∈ (a, b) kai èstw x ∈ (a, b). Upojètoume pr¸ta ìti x > x0.Apì to je¸rhma mèshc tim c, uprqei ξx ∈ (x0, x) me thn idiìthta

(5.7.7) f(x)− f(x0) = (x− x0)f ′(ξx).

AfoÔ x0 < ξx èqoume f ′(ξx) ≥ f ′(x0), kai afoÔ x− x0 > 0 blèpoume ìti

(5.7.8) f(x)− f(x0) = (x− x0)f ′(ξx) ≥ (x− x0)f ′(x0).

Upojètoume t¸ra ìti x < x0. Apì to je¸rhma mèshc tim c, uprqei ξx ∈ (x, x0)me thn idiìthta

(5.7.9) f(x)− f(x0) = (x− x0)f ′(ξx).

AfoÔ ξx < x0 èqoume f ′(ξx) ≤ f ′(x0), kai afoÔ x− x0 < 0 blèpoume ìti

(5.7.10) f(x)− f(x0) = (x− x0)f ′(ξx) ≥ (x− x0)f ′(x0).

Se kje perÐptwsh, isqÔei h (5.7.5). Elègxte ìti an h f ′ upotejeÐ gnhsÐwcaÔxousa sto (a, b) tìte paÐrnoume gn sia anisìthta sthn (5.7.5).(b) Me ton Ðdio trìpo. 2

H deÔterh pargwgoc (an uprqei) mporeÐ na mac d¸sei plhroforÐa gia to an hf eÐnai kurt koÐlh.

Je¸rhma 5.7.3. 'Estw f : (a, b) → R dÔo forèc paragwgÐsimh sunrthsh.(a) An f ′′(x) > 0 gia kje x ∈ (a, b), tìte h f eÐnai gnhsÐwc kurt sto (a, b).(b) An f ′′(x) < 0 gia kje x ∈ (a, b), tìte h f eÐnai gnhsÐwc koÐlh sto (a, b).

Page 98: σημειωσεις Π 1 τζανες-ηλιοπουλος

96 · Paragwgoc

Apìdeixh: (a) Afou f ′′ > 0 sto (a, b), h f ′ eÐnai gnhsÐwc aÔxousa sto (a, b)(Je¸rhma 5.4.4). Apì to Je¸rhma 5.7.2 èpetai to zhtoÔmeno.(b) Me ton Ðdio trìpo. 2

Tèloc, dÐnoume mia anagkaÐa sunj kh gia na eÐnai to x0 shmeÐo kamp c thc f .

Je¸rhma 5.7.4. 'Estw f : (a, b) → R dÔo forèc paragwgÐsimh sunrthsh kaièstw x0 ∈ (a, b). An h f èqei shmeÐo kamp c sto x0, tìte f ′′(x0) = 0.

Apìdeixh. JewroÔme th sunrthsh g(x) = f(x) − f(x0) − f ′(x0)(x − x0). H gden èqei topikì mègisto elqisto sto x0: èqoume g(x0) = 0 kai g > 0 aristertou x0, g < 0 dexi tou x0 to antÐstrofo.

EpÐshc, g′(x0) = 0 kai g′′(x0) = f ′′(x0). An tan g′′(x0) > 0 g′′(x0) < 0tìte apì to Je¸rhma 5.7.1 h g ja eÐqe akrìtato sto x0, topo. 'Ara, f ′′(x0) = 0.2

ShmeÐwsh. H sunj kh tou Jewr matoc 5.7.4 den eÐnai ikan . H f(x) = x4 denèqei shmeÐo kamp c sto x0 = 0. EÐnai gnhsÐwc kurt sto R. 'Omwc f ′′(x) = 12x2,ra f ′′(0) = 0.

Pardeigma. Melet ste th sunrthsh f : R→ R me

(5.7.11) f(x) =1

x2 + 1.

H f eÐnai paragwgÐsimh sto R, me

(5.7.12) f ′(x) = − 2x

(x2 + 1)2.

'Ara, h f eÐnai gnhsÐwc aÔxousa sto (−∞, 0) kai gnhsÐwc fjÐnousa sto (0,+∞).PaÐrnei mègisth tim sto 0: f(0) = 1, kai lim

x→±∞f(x) = 0. H deÔterh pargwgoc

thc f orÐzetai pantoÔ kai eÐnai Ðsh me

(5.7.13) f ′′(x) =2(3x2 − 1)(x2 + 1)3

.

'Ara, f ′′ > 0 sta(−∞,− 1√

3

)kai

(1√3,∞

), en¸ f ′′ < 0 sto

(− 1√

3, 1√

3

). 'Epetai

ìti h f èqei shmeÐo kamp c sta ± 1√3kai eÐnai: gnhsÐwc kurt sta

(−∞,− 1√

3

)

kai(

1√3,∞

), gnhsÐwc koÐlh sto

(− 1√

3, 1√

3

). Autèc oi plhroforÐec eÐnai arketèc

gia na sqedisoume arket pist th grafik parstash thc f .

5.7bþ AsÔmptwtec

1. 'Estw f : (a, +∞) → R.(a) Lème ìti h eujeÐa y = β eÐnai orizìntia asÔmptwth thc f sto +∞ an

(5.7.14) limx→+∞

f(x) = β.

Pardeigma: h f : (1,+∞) → R me f(x) = x+1x−1 èqei orizìntia asÔmptwth thn

y = 1.

Page 99: σημειωσεις Π 1 τζανες-ηλιοπουλος

5.7 Gewmetrikh shmasia thc deuterhc paragwgou · 97

(b) Lème ìti h eujeÐa y = αx +β (α 6= 0) eÐnai plgia asÔmptwth thc f sto +∞an

(5.7.15) limx→+∞

(f(x)− (αx + β)) = 0.

Parathr ste ìti h f èqei to polÔ mÐa plgia asÔmptwth sto +∞ kai ìti any = αx + β eÐnai h asÔmptwth thc f tìte h klish thc α upologÐzetai apì thn

(5.7.16) α = limx→+∞

f(x)x

kai h stajer β upologÐzetai apì thn

(5.7.17) β = limx→+∞

(f(x)− αx).

AntÐstrofa, gia na doÔme an h f èqei plgia asÔmptwth sto +∞, exetzoumepr¸ta an uprqei to lim

x→+∞f(x)

x . An autì to ìrio uprqei kai an eÐnai diaforetikì

apì to 0, to sumbolÐzoume me α kai exetzoume an uprqei to limx→+∞

(f(x)−αx).An kai autì to ìrio ac to poÔme β uprqei, tìte h y = αx + β eÐnai h plgiaasÔmptwth thc f sto +∞.

Pardeigma: h f : (1, +∞) → R me f(x) = x2+x−1x−1 èqei plgia asÔmptwth sto

+∞ thn y = x + 2. Prgmati,

(5.7.18) limx→+∞

f(x)x

= limx→+∞

x2 + x− 1x2 − x

= 1,

kai

(5.7.19) limx→+∞

(f(x)− x) = limx→+∞

2x− 1x− 1

= 2.

2. Me anlogo trìpo orÐzoume kai brÐskoume thn orizìntia plgia asÔm-ptwth miac sunrthshc f : (−∞, a) → R sto −∞ (an uprqei).

3. Tèloc, lème ìti h f : (a, x0)∪ (x0, b) → R èqei (arister dexi) katakìrufhasÔmptwth sto x0 an

(5.7.20) limx→x−0

f(x) = ±∞ limx→x+

0

f(x) = ±∞

antÐstoiqa. Gia pardeigma, h f(x) = 1x èqei arister kai dexi asÔmptwth sto

0 thn eujeÐa x = 0, afoÔ limx→0−

1x = −∞ kai lim

x→0+

1x = +∞.