Transients in Quantum Transport: B. Velický, Charles University and Acad. Sci. of CR, Praha A....

Post on 17-Jan-2018

215 views 0 download

description

Transients in Quantum Transport: II. Correlated Initial Condition for Restart Process by Time Partitioning A. Kalvová, Acad. Sci. of CR, Praha B. Velický, Charles University and Acad. Sci. of CR, Praha V. Špička, Acad. Sci. of CR, Praha SEMINÁŘ TEORETICKÉHO ODD. FZÚ SLOVANKA 21. ÚNORA 2006

Transcript of Transients in Quantum Transport: B. Velický, Charles University and Acad. Sci. of CR, Praha A....

Transients in Quantum Transport:

B. Velický, Charles University and Acad. Sci. of CR, Praha

A. Kalvová, Acad. Sci. of CR, PrahaV. Špička, Acad. Sci. of CR, Praha

SEMINÁŘ TEORETICKÉHO ODD. FZÚSLOVANKA 14. ÚNORA 2006

Transients in Quantum Transport:I. Semi-Group Property of Propagators

and the Gauge Invariance of the 1st Kind

B. Velický, Charles University and Acad. Sci. of CR, Praha

A. Kalvová, Acad. Sci. of CR, PrahaV. Špička, Acad. Sci. of CR, Praha

SEMINÁŘ TEORETICKÉHO ODD. FZÚSLOVANKA 14. ÚNORA 2006

Transients in Quantum Transport: II. Correlated Initial Condition for Restart Process

by Time Partitioning

A. Kalvová, Acad. Sci. of CR, Praha

B. Velický, Charles University and Acad. Sci. of CR, PrahaV. Špička, Acad. Sci. of CR, Praha

SEMINÁŘ TEORETICKÉHO ODD. FZÚSLOVANKA 21. ÚNORA 2006

Transients in Quantum Transport: II. Correlated Initial Condition for Restart Process

by Time Partitioning

Progress in Non-Equilibrium Green’s Function III, Kiel Aug 22, 2005Topical Problems in Statistical Physics, TU Chemnitz, Nov 30, 2005

SEMINÁŘ TEORETICKÉHO ODD. FZÚSLOVANKA 21. ÚNORA 2006

Transients in Quantum Transport II ... 5 Teor. Odd. FZÚ 21.II.2006

Prologue

Transients in Quantum Transport II ... 6 Teor. Odd. FZÚ 21.II.2006

(Non-linear) quantum transport non-equilibrium problem many-body Hamiltonian

many-body density matrix

additive operator

Many-body system

Initial state

External disturbance

H

0 0 0at ( )t t t P P0 ( ) for U t t t ( )tU

Transients in Quantum Transport II ... 7 Teor. Odd. FZÚ 21.II.2006

0( ) for t t t

(Non-linear) quantum transport non-equilibrium problem Many-body system

Initial state

External disturbance

Response

many-body Hamiltonian

many-body density matrix

additive operator

one-particle density matrix

H

0 0 0at ( )t t t P P0 ( ) for U t t t ( )tU

Transients in Quantum Transport II ... 8 Teor. Odd. FZÚ 21.II.2006

(Non-linear) quantum transport non-equilibrium problem

Quantum Transport Equation a closed equation for ( )t

drift [ ( ); ]tt

generalized collision term

Many-body system

Initial state

External disturbance

Response

many-body Hamiltonian

many-body density matrix

additive operator

one-particle density matrix

H

0 0 0at ( )t t t P P

0( ) for t t t 0 ( ) for U t t t ( )tU

Transients in Quantum Transport II ... 9 Teor. Odd. FZÚ 21.II.2006

(Non-linear) quantum transport non-equilibrium problem

Quantum Transport Equation a closed equation for ( )t

drift [ ( ); ]tt

Many-body system

Initial state

External disturbance

Response

many-body Hamiltonian

many-body density matrix

additive operator

one-particle density matrix

H

0 0 0at ( )t t t P P

0( ) for t t t

QUESTIONS existence, construction of incorporation of the many-particle

initial condition

0P

interaction term

0 ( ) for U t t t ( )tU

Transients in Quantum Transport II ... 10 Teor. Odd. FZÚ 21.II.2006

This talk: orthodox study of quantum transport using NGF

TWO PATHS

INDIRECT

DIRECT †0(1,1') Tr( (1) (1')) (1) i (1,1)G G CTP

use a NGF solver

use NGF to construct a Quantum Transport Equation

Transients in Quantum Transport II ... 11 Teor. Odd. FZÚ 21.II.2006

This talk: orthodox study of quantum transport using NGF

TWO PATHS

DIRECT

INDIRECT

†0(1,1') Tr( (1) (1')) (1) i (1,1)G G CTP

use a NGF solver

use NGF to construct a Quantum Transport Equation

Lecture on NGF

Transients in Quantum Transport II ... 12 Teor. Odd. FZÚ 21.II.2006

This talk: orthodox study of quantum transport using NGF

TWO PATHS

DIRECT †0(1,1') Tr( (1) (1')) (1) i (1,1)G G CTP

use a NGF solver

Lecture on NGF…continuation

Transients in Quantum Transport II ... 13 Teor. Odd. FZÚ 21.II.2006

Lecture on NGF…continuation

Real time NGF choices Kadanoff and BaymKeldysh

,, ,, Langreth and Wilk, ins

R A

R A

G GG G G GG G G

This talk: orthodox study of quantum transport using NGF

TWO PATHS

DIRECT †0(1,1') Tr( (1) (1')) (1) i (1,1)G G CTP

use a NGF solver

14

TWO PATHS

DIRECT

INDIRECT

†0(1,1') Tr( (1) (1')) (1) i (1,1)G G CTP

use a NGF solver

use NGF to construct a Quantum Transport Equation

This talk: orthodox study of quantum transport using NGF

Transients in Quantum Transport II ... 15 Teor. Odd. FZÚ 21.II.2006

Standard approach based on GKBA Real time NGF our choice Langreth and , Wilkins,R AG G G

Transients in Quantum Transport II ... 16 Teor. Odd. FZÚ 21.II.2006

Standard approach based on GKBA Real time NGF our choice Langreth and , Wilkins,R AG G G

DYSON EQUATIONS

1 1 1 10 0( ) ( ) ( ) ( )R R R R A A A AG G G G G G G

Keldysh IC: simple initial state permits to concentrate on the other issues

<G ( , ) d d ( , ) ( , ) ( , )t t

R At t t t G t t t t G t t

Transients in Quantum Transport II ... 17 Teor. Odd. FZÚ 21.II.2006

Standard approach based on GKBA Real time NGF our choice Langreth and , Wilkins,R AG G G

GKBEequal times

drift A R R AG G G Gt

Transients in Quantum Transport II ... 18 Teor. Odd. FZÚ 21.II.2006

Standard approach based on GKBA Real time NGF our choice Langreth and , Wilkins,R AG G G

GKBEequal times

drift A R R AG G G Gt

Specific physical approximation -- self-consistent form R

A

G GG

GR

A

[ ] G

Transients in Quantum Transport II ... 19 Teor. Odd. FZÚ 21.II.2006

Standard approach based on GKBA Real time NGF our choice Langreth and , Wilkins,R AG G G

GKBEequal times

drift A R R AG G G Gt

Specific physical approximation -- self-consistent form R

A

G GG

GR

A

[ ] G

Elimination of by an Ansatz

widely used: KBA (for steady transport), GKBA (transients, optics)

G

Transients in Quantum Transport II ... 20 Teor. Odd. FZÚ 21.II.2006

Standard approach based on GKBA Real time NGF our choice Langreth and , Wilkins,R AG G G

GKBEequal times

drift A R R AG G G Gt

drift [ ( ); | , ]R At G Gt

Specific physical approximation -- self-consistent form R

A

G GG

GR

A

[ ] G

Elimination of by an Ansatz

GKBA

G

( , ') ( , ') ( ') ( ) ( , ')R AG t t G t t t t G t t

Resulting Quantum Transport Equation

Transients in Quantum Transport II ... 21 Teor. Odd. FZÚ 21.II.2006

Standard approach based on GKBA Real time NGF our choice Langreth and , Wilkins,R AG G G

GKBEequal times

drift A R R AG G G Gt

drift [ ( ); | , ]R At G Gt

Specific physical approximation -- self-consistent form R

A

G GG

GR

A

[ ] G

Elimination of by an Ansatz

GKBA

G

( , ') ( , ') ( ') ( ) ( , ')R AG t t G t t t t G t t

Resulting Quantum Transport EquationFamous examples:•Levinson eq. (hot electrons)•Optical quantum Bloch eq. (optical transients)

Transients in Quantum Transport II ... 22 Teor. Odd. FZÚ 21.II.2006

Act I

reconstruction

Transients in Quantum Transport II ... 23 Teor. Odd. FZÚ 21.II.2006

Exact formulation -- Reconstruction Problem

GENERAL QUESTION: conditions under which a many-body interacting systemcan be described in terms of its single-time single-particle characteristics

Transients in Quantum Transport II ... 24 Teor. Odd. FZÚ 21.II.2006

Exact formulation -- Reconstruction Problem

GENERAL QUESTION: conditions under which a many-body interacting systemcan be described in terms of its single-time single-particle characteristics

Reminiscences: BBGKY, Hohenberg-Kohn Theorem

Transients in Quantum Transport II ... 25 Teor. Odd. FZÚ 21.II.2006

Exact formulation -- Reconstruction Problem

GENERAL QUESTION: conditions under which a many-body interacting systemcan be described in terms of its single-time single-particle characteristics

Reminiscences: BBGKY, Hohenberg-Kohn Theorem

Here: time evolution of the system

Transients in Quantum Transport II ... 26 Teor. Odd. FZÚ 21.II.2006

Exact formulation -- Reconstruction Problem

Eliminate by an Ansatz

GKBA ( , ') ( , ') ( ') ( ) ( , ')R AG t t G t t t t G t t

G

… in fact: express , a double-time correlation function, by its time diagonal

( , ')G t t

i ( ) ( , .)t G t t

New look on the NGF procedure:

Any Ansatz is but an approximate solution…

¿Does an answer exist, exact at least in principle?

Transients in Quantum Transport II ... 27 Teor. Odd. FZÚ 21.II.2006

INVERSION SCHEMES

REDUCTION additive ( )0 0

0

at ( ) ( ) ( ) Tr ( )

( ) for

t

t

t tt t X t X t

U t t t

H U XP XP

( , )n x tBOGOLYUBOV

SCHWINGER GENERATING FUNCTIONAL

TIME-DEPENDENT DENSITY FUNCTIONAL

RUNGE - GROSS THEOREM

Reconstruction Problem – Historical Overview

Transients in Quantum Transport II ... 28 Teor. Odd. FZÚ 21.II.2006

INVERSION SCHEMES

REDUCTION additive ( )0 0

0

at ( ) ( ) ( ) Tr ( )

( ) for

t

t

t tt t X t X t

U t t t

H U XP XP

( , )n x tBOGOLYUBOV

SCHWINGER GENERATING FUNCTIONAL

TIME-DEPENDENT DENSITY FUNCTIONAL

RUNGE - GROSS THEOREM

Reconstruction Problem – Historical Overview

Transients in Quantum Transport II ... 29 Teor. Odd. FZÚ 21.II.2006

Postulate/Conjecture:typical systems are controlled by a hierarchy of times

separating the initial, kinetic, and hydrodynamic stages.A closed transport equation

holds for

ParallelsG E N E R A L S C H E M E

REDUCTION additive ( )0 0

0

at ( ) ( ) ( ) Tr ( )

( ) for

t

t

t tt t X t X t

U t t t

H U XP XP

LABELBogolyubov

drift [ ( ); ]tt

C H

0 C .t t

Transients in Quantum Transport II ... 30 Teor. Odd. FZÚ 21.II.2006

Postulate/Conjecture:typical systems are controlled by a hierarchy of times

separating the initial, kinetic, and hydrodynamic stages.A closed transport equation

holds for

ParallelsG E N E R A L S C H E M E

REDUCTION additive ( )0 0

0

at ( ) ( ) ( ) Tr ( )

( ) for

t

t

t tt t X t X t

U t t t

H U XP XP

LABELBogolyubov

drift [ ( ); ]tt

C H

0 C .t t

Transients in Quantum Transport II ... 31 Teor. Odd. FZÚ 21.II.2006

Runge – Gross Theorem:Let be local. Then, for a fixed initial state , the functional relation is bijective and can be inverted.NOTES: U must be sufficiently smooth. no enters the theorem. This is an existence theorem, systematic implementation based on the use of the closed time path generating functional.

ParallelsG E N E R A L S C H E M E

REDUCTION additive ( )0 0

0

at ( ) ( ) ( ) Tr ( )

( ) for

t

t

t tt t X t X t

U t t t

H U XP XP

LABELTDDFT

C

U t 0[ ]n U

0 ,t t

Transients in Quantum Transport II ... 32 Teor. Odd. FZÚ 21.II.2006

Runge – Gross Theorem:Let be local. Then, for a fixed initial state , the functional relation is bijective and can be inverted.NOTES: U must be sufficiently smooth. no enters the theorem. This is an existence theorem, systematic implementation based on the use of the closed time path generating functional.

ParallelsG E N E R A L S C H E M E

REDUCTION additive ( )0 0

0

at ( ) ( ) ( ) Tr ( )

( ) for

t

t

t tt t X t X t

U t t t

H U XP XP

LABELTDDFT

C

U t 0

0 ,t t

( )n t

[ ]n U

Transients in Quantum Transport II ... 33 Teor. Odd. FZÚ 21.II.2006

Closed Time Contour Generating Functional (Schwinger):

Used to invert the relation EXAMPLES OF USE:Fukuda et al. … Inversion technique based on Legendre transformation Quantum kinetic eq.Leuwen et al. … TDDFT context

ParallelsG E N E R A L S C H E M E

REDUCTION additive ( )0 0

0

at ( ) ( ) ( ) Tr ( )

( ) for

t

t

t tt t X t X t

U t t t

H U XP XP

LABELSchwinger

0 0i d ( ( ) ) i d ( ( ) )i ( , )

0e Tr e e

( ) ( )

t t

t tU X U XW U U

tU U U U U U

W WU t U t

T TH H

P

X

[ ]n U

Transients in Quantum Transport II ... 34 Teor. Odd. FZÚ 21.II.2006

Closed Time Contour Generating Functional (Schwinger):

Used to invert the relation EXAMPLES OF USE:Fukuda et al. … Inversion technique based on Legendre transformation Quantum kinetic eq.Leuwen et al. … TDDFT context

ParallelsG E N E R A L S C H E M E

REDUCTION additive ( )0 0

0

at ( ) ( ) ( ) Tr ( )

( ) for

t

t

t tt t X t X t

U t t t

H U XP XP

LABELSchwinger

0 0i d ( ( ) ) i d ( ( ) )i ( , )

0e Tr e e

( ) ( )

t t

t tU X U XW U U

tU U U U U U

W WU t U t

T TH H

P

X

( )n t

[ ]n U

35 Teor. Odd. FZÚ 21.II.2006

„Bogolyubov“: importance of the time hierarchy REQUIREMENT Characteristic times should emerge in a constructive manner during the reconstruction procedure. „TDDFT“ : analogue of the Runge - Gross Theorem REQUIREMENT Consider a general non-local disturbance U in order to obtain the full 1-DM as its dual. „Schwinger“: explicit reconstruction procedure REQUIREMENT A general operational method for the reconstruction (rather than inversion in the narrow sense). Its success in a particular case becomes the proof of the Reconstruction theorem at the same time.

Parallels: Lessons for the Reconstruction Problem

G E N E R A L S C H E M EREDUCTION additive ( )

0 0

0

at ( ) ( ) ( ) Tr ( )

( ) for

t

t

t tt t X t X t

U t t t

H U XP XP

LABELNGF

ReconstructionTheorem

C , ,

Transients in Quantum Transport II ... 36 Teor. Odd. FZÚ 21.II.2006

INVERSION SCHEMES

REDUCTION additive ( )0 0

0

at ( ) ( ) ( ) Tr ( )

( ) for

t

t

t tt t X t X t

U t t t

H U XP XP

( )n tBOGOLYUBOV

SCHWINGER GENERATING FUNCTIONAL

TIME-DEPENDENT DENSITY FUNCTIONAL

RUNGE - GROSS THEOREM

Reconstruction Problem – Summary

Transients in Quantum Transport II ... 37 Teor. Odd. FZÚ 21.II.2006

INVERSION SCHEMES

REDUCTION additive ( )0 0

0

at ( ) ( ) ( ) Tr ( )

( ) for

t

t

t tt t X t X t

U t t t

H U XP XP

( , )n x tBOGOLYUBOV

SCHWINGER GENERATING FUNCTIONAL

TIME-DEPENDENT DENSITY FUNCTIONAL

RUNGE - GROSS THEOREM

Reconstruction Problem – Summary

G

Transients in Quantum Transport II ... 38 Teor. Odd. FZÚ 21.II.2006

Reconstruction theorem :Reconstruction equationsKeldysh IC: simple initial state permits to concentrate on the other issues

DYSON EQUATIONS

1 1 1 10 0( ) ( ) ( ) ( )R R R R A A A AG G G G G G G

Two well known “reconstruction equations” easily follow:RECONSTRUCTION EQUATIONS

' '

1 2 1 1 2 2 2 1 1 1 2 2'

'

1 2 1 1 2 2 2 1 1 1 2'

( , ')

( , ') ( ') ( ) ( , ')

d d ( , ) ( , ) ( , ') d d ( , ) ( , ) ( , ')

d d ( , ) ( , ) ( , ') d d ( , ) ( , ) (

' 'R A

t t t tR A R A

t tt t t

R R A A

t

G t t

G t t t t G t t

t t G t t t t G t t t t G t t t t G t t

t t G t t t t G t t t t G t t t

t t t

t

t

G

'

2 , ')t

t

t t

LSV, Vinogradov … application!

Transients in Quantum Transport II ... 39 Teor. Odd. FZÚ 21.II.2006

DYSON EQUATIONS

1 1 1 10 0( ) ( ) ( ) ( )R R R R A A A AG G G G G G G

Two well known “reconstruction equations” easily follow:RECONSTRUCTION EQUATIONS

' '

1 2 1 1 2 2 2 1 1 1 2 2'

'

1 2 1 1 2 2 2 1 1 1 2'

( , ')

( , ') ( ') ( ) ( , ')

d d ( , ) ( , ) ( , ') d d ( , ) ( , ) ( , ')

d d ( , ) ( , ) ( , ') d d ( , ) ( , ) (

' 'R A

t t t tR A R A

t tt t t

R R A A

t

G t t

G t t t t G t t

t t G t t t t G t t t t G t t t t G t t

t t G t t t t G t t t t G t t t

t t t

t

t

G

'

2 , ')t

t

t t

Source terms … the Ansatz For t=t' … tautology

… input

Reconstruction theorem :Reconstruction equationsKeldysh IC: simple initial state permits to concentrate on the other issues

Transients in Quantum Transport II ... 40 Teor. Odd. FZÚ 21.II.2006

Reconstruction theorem: Coupled equations

DYSON EQ.R AG G G

GKB EQ.

equal times

drift

A R R A

tG G G G

RECONSTRUCTION EQ.

'

1 2 1 1 2 2'

'

1 2 1 1 2 2'

( , ') ( , ') ( ')

d d ( , ) ( , ) ( , ')

d d ( , ) ( , ) ( ,

'

')

R

t tR A

tt t

R R

t

G t t G t t t

t t G t t t t G t t

t t G t t t t G

t

t t

t

Transients in Quantum Transport II ... 41 Teor. Odd. FZÚ 21.II.2006

Reconstruction theorem: operational description

NGF RECONSTRUCTION THEOREMdetermination of the full NGF restructured as a

DUAL PROCESS

quantum transport equation

reconstruction equations

Dyson eq.

G

,R AG G

Transients in Quantum Transport II ... 42 Teor. Odd. FZÚ 21.II.2006

"THEOREM" The one-particle density matrix and the full NGF of a process are in a bijective relationship,

NGF RECONSTRUCTION THEOREMdetermination of the full NGF restructured as a

DUAL PROCESS

quantum transport equation

reconstruction equations

Dyson eq.

G

,R AG G

R

A

G G

G

G

Reconstruction theorem: formal statement

Transients in Quantum Transport II ... 43 Teor. Odd. FZÚ 21.II.2006

Act II

reconstructionand initial conditions

NGF view

Transients in Quantum Transport II ... 44 Teor. Odd. FZÚ 21.II.2006

For an arbitrary initial state at start from the NGF

Problem of determination of G extensively studied

Fujita Hall Danielewicz … Wagner Morozov&Röpke … Klimontovich Kremp … Bonitz&Semkat , Morawetz …

Take over the relevant result for :

The self-energy

depends on the initial state (initial correlations)

has singular components

General initial state

†0(1,1') iTr( (1) (1'))G CTP

0 0 t tP

G

0

0

for Keldysh limit for an arbitrary t

R A

R A

G G G tG G G

0[ | ]U

P

Transients in Quantum Transport II ... 45 Teor. Odd. FZÚ 21.II.2006

General initial state: Structure of

0 0 0

0 0 0 0

( , ') i ( ) ( ) ( ' )( , ') ( , ) ( ' ) ( , ') ( , ') ( )

( , ') ( , ')

t t t t t t tt t t t t t t t t t t t

t t t t

Structure of

Transients in Quantum Transport II ... 46 Teor. Odd. FZÚ 21.II.2006

0 0 0

0 0 0 0

( , ') i ( ) ( ) ( ' )( , ') ( , ) ( ' ) ( , ') ( , ') ( )

( , ') ( , ')

t t t t t t tt t t t t t t t t t t t

t t t t

Structure of

General initial state: Structure of

singular time variable fixed at

t = t0

continuous time variable

t > t0

Transients in Quantum Transport II ... 47 Teor. Odd. FZÚ 21.II.2006

Danielewicz notation

0 0 0

0 0 0 0

( , ') i ( ) ( ) ( ' )( , ') ( , ) ( ' ) ( , ') ( , ') ( )

( , ') ( , ')

t t t t t t tt t t t t t t t t t t t

t t t t

Structure of

General initial state: Structure of

singular time variable fixed at

t = t0

continuous time variable

t > t0

Transients in Quantum Transport II ... 48 Teor. Odd. FZÚ 21.II.2006

Danielewicz notation

0 0 0

0 0 0 0

( , ') i ( ) ( ) ( ' )( , ') ( , ) ( ' ) ( , ') ( , ') ( )

( , ') ( , ')

t t t t t t tt t t t t t t t t t t t

t t t t

Structure of

0t0t

t

't

General initial state: Structure of

singular time variable fixed at

t = t0

continuous time variable

t > t0

General initial state: A try at the reconstruction

DYSON EQ.R AG G G

GKB EQ.

equal times

equal times

drift A R R A

A R R A A R

G G G Gt

G G G G G G

0

0

'

1 2 1 1 2 2'

'

1 2 1 1 2 2'

0( , ') ( , ') ( ')

d d ( , ) ( , ) ( , ')

d d ( , ) ( , )

'

( , ')

t

t

R

t tR A

t

t tR R

t

G t t G t t t

t t G t t t t G t t

t t G t t t

t t

G t t

t

t

RECONSTRUCTION EQ.

DANIELEWICZ CORRECTION

General initial state: A try at the reconstruction

DYSON EQ.R AG G G

GKB EQ.

equal times

equal times

drift A R R A

A R R A A R

G G G Gt

G G G G G G

0

0

'

1 2 1 1 2 2'

'

1 2 1 1 2 2'

0( , ') ( , ') ( ')

d d ( , ) ( , ) ( , ')

d d ( , ) ( , )

'

( , ')

t

t

R

t tR A

t

t tR R

t

G t t G t t t

t t G t t t t G t t

t t G t t t

t t

G t t

t

t

RECONSTRUCTION EQ.

General initial state: A try at the reconstruction

DYSON EQ.R AG G G

GKB EQ.

equal times

equal times

drift A R R A

A R R A A R

G G G Gt

G G G G G G

0

0

'

1 2 1 1 2 2'

'

1 2 1 1 2 2'

0( , ') ( , ') ( ')

d d ( , ) ( , ) ( , ')

d d ( , ) ( , )

'

( , ')

t

t

R

t tR A

t

t tR R

t

G t t G t t t

t t G t t t t G t t

t t G t t t

t t

G t t

t

t

RECONSTRUCTION EQ.

To progress further,

narrow down the selection of the initial states

Transients in Quantum Transport II ... 52 Teor. Odd. FZÚ 21.II.2006

Initial state for restart process

Process, whose initial state coincides withintermediate state of a host process (running)

Aim: to establish relationship between NGF of the host and restart process

To progress further, narrow down the selection of the initial states

Special situation:

Transients in Quantum Transport II ... 53 Teor. Odd. FZÚ 21.II.2006

Let the initial time be , the initial state . In the host NGF

the Heisenberg operators are

Restart at an intermediate time

0P

†(1) ( , ) ( ) ( , ), (1')t t x t t K K

†0(1,1') Tr( (1) (1'))G CTP

i ( , ') ( ( )) ( , '), ( , )t t t t t t t t K H U K K 1

t t

t

t

'tt

Transients in Quantum Transport II ... 54 Teor. Odd. FZÚ 21.II.2006

We may choose any later time as the new initial time.For times the resulting restart GF should be consistent. Indeed, with

we have† †

0 0 0 0(1,1') Tr( (1) (1')) Tr( ( ) (1| ) (1' | ))G t t t C CT TP P

Restart at an intermediate time0t t

0 0, 't t t t

0 0 0 0

†0 0 0 0

( ) ( , ) ( , ),

(1| ) ( , ) ( ) ( , ), (1' | )

t t t t t

t t t x t t t

K KP PK K

t

t

'tt

t

t

'tt

0t

0t

Transients in Quantum Transport II ... 55 Teor. Odd. FZÚ 21.II.2006

t

t

'tt

0t

0t

t

t

'tt

We may choose any later time as the new initial time.For times the resulting GF should be consistent. Indeed, with

we have† †

0 0 0 0(1,1') Tr( (1) (1')) Tr( ( ) (1| ) (1' | ))G t t t C CT TP P

Restart at an intermediate time0t t

0 0, 't t t t

0 0 0 0

†0 0 0 0

( ) ( , ) ( , ),

(1| ) ( , ) ( ) ( , ), (1' | )

t t t t t

t t t x t t t

K KP PK K

whole family of initial states

for varying t 0

Transients in Quantum Transport II ... 56 Teor. Odd. FZÚ 21.II.2006

Restart at an intermediate time

† †0 0 0 0(1,1') Tr( (1) (1')) Tr( ( ) (1| ) (1' | ))G t t t C CT TP P

NGF is invariant with respect to the initial time,

the self-energies must be related in a specific way for

Important difference

0 0, 't t t t

0

0

, ,( , ') ( , ')

( , ') ( , ')t

t

R A R At t t t

t t t t

… causal structure of the Dyson equation

… develops singular parts at as a condensed information about the past

0t0t t

Transients in Quantum Transport II ... 57 Teor. Odd. FZÚ 21.II.2006

0(1,1') (1,1') (1,1')t tG G G

NGF is invariant with respect to the initial time,

the self-energies must be related in a specific way for

Important difference

Restart at an intermediate time

0 0, 't t t t

0

0

, ,( , ') ( , ')

( , ') ( , ')t

t

R A R At t t t

t t t t

… causal structure of the Dyson equation

… develops singular parts at as a condensed information about the past

0t0t t

Transients in Quantum Transport II ... 58 Teor. Odd. FZÚ 21.II.2006

0(1,1') (1,1') (1,1')t tG G G

NGF is invariant with respect to the initial time,

the self-energies must be related in a specific way for

Important difference

Restart at an intermediate time

0 0, 't t t t

0

0

, ,( , ') ( , ')

( , ') ( , ')t

t

R A R At t t t

t t t t

… causal structure of the Dyson equation

… develops singular parts at as a condensed information about the past

0t0t t

Transients in Quantum Transport II ... 59 Teor. Odd. FZÚ 21.II.2006

Act III.

Time-partitioning

Transients in Quantum Transport II ... 60 Teor. Odd. FZÚ 21.II.2006

Time-partitioning: general method

Special position of the (instant-restart) time t0

-Separates the whole time domain into the past and the future

- past - future notion … in reconstruction equation

Transients in Quantum Transport II ... 61 Teor. Odd. FZÚ 21.II.2006

Time-partitioning: general method

Special position of the (instant-restart) time t0

-Separates the whole time domain into the past and the future

- past future notion … in reconstruction equationRECONSTRUCTION EQ.

1 2 1 1 2 2

1 2 1 1'

2

'

'

2

'

( , ) ( , ) ( )

d d ( , ) ( , )

' '

( , ')

d d ( , ) ( ,

'

) ( , )

'

'

t

tt

R

tR A

tR R

t

G t G t

t t G t t t t G t t

t

tt

t G t t t t G t t

tt t

Transients in Quantum Transport II ... 62 Teor. Odd. FZÚ 21.II.2006

Time-partitioning: general method

Special position of the (instant-restart) time t0

-Separates the whole time domain into the past and the future

- past future notion … in reconstruction equationRECONSTRUCTION EQ.

1 1 1

1

'

2 2 2

'

2 2 21

'

'1

d ) ( , ')

( , ) ( , ) ( )

d ( , ) ( ,

d (d ), ) (

'

'

'

( , )

' '

,

t

t

tA

t

R

tR

tR R

t t G t t

G t G t

t G t t t

t G t t

t

t t

t

G t

tt

t t

t

Transients in Quantum Transport II ... 63 Teor. Odd. FZÚ 21.II.2006

Time-partitioning: general method

Special position of the (instant-restart) time t0

-Separates the whole time domain into the past and the future

-past future notion … in reconstruction equationRECONSTRUCTION EQ.

1 1 1

1

'

2 2 2

'

2 2 21

'

'1

d ) ( , ')

( , ) ( , ) ( )

d ( , ) ( ,

d (d ), ) (

'

'

'

( , )

' '

,

t

t

tA

t

R

tR

tR R

t t G t t

G t G t

t G t t t

t G t t

t

t t

t

G t

tt

t t

t

past

Transients in Quantum Transport II ... 64 Teor. Odd. FZÚ 21.II.2006

Time-partitioning: general method

Special position of the (instant-restart) time t0

-Separates the whole time domain into the past and the future

-past future notion … in reconstruction equationRECONSTRUCTION EQ.

'

'

2 2 2

2

1 1 1'

21 1 1 2'

( , ) ( , ) ( )

d )d ( , ) ( , ')

d ) ( , ')

'

( ,

d ( ,

' '

) ( ,

't

R

tt

R

t

tR

R

A

t

G t G t

t G t t t

t G t

t t G t t

t

t t

t t t G t

t t

t

t

future

Transients in Quantum Transport II ... 65 Teor. Odd. FZÚ 21.II.2006

Time-partitioning: general method

Special position of the (instant-restart) time t0

-Separates the whole time domain into the past and the future

- past - future notion … in reconstruction equation for G<

Transients in Quantum Transport II ... 66 Teor. Odd. FZÚ 21.II.2006

Time-partitioning: general method

Special position of the (instant-restart) time t0

-Separates the whole time domain into the past and the future

- past - future notion … in reconstruction equation for G<

- past - future notion … in renormalized semigroup rule GR

67 Teor. Odd. FZÚ 21.II.2006

Time-partitioning: general method

Special position of the (instant-restart) time t0

-Separates the whole time domain into the past and the future

- past - future notion … in reconstruction equation for G<

1 2 1 1 2

''

''2

'

( , ') i ( , ) ( , ')

d d ( , ) ( , ) (

'

)

'

'

''

,t

R R R

tR R

t

t

R

G t t G t G t

t t G t t t t

t t

G t t

'' 't t t

- past - future notion … in renormalized semigroup rule GR

RENORM. SEMIGROUP RULE

68 Teor. Odd. FZÚ 21.II.2006

Time-partitioning: general method

Special position of the (instant-restart) time t0

-Separates the whole time domain into the past and the future

- past - future notion … in reconstruction equation for G<

RENORM. SEMIGROUP RULE

1 2 1 1 2

''

''2

'

( , ') i ( , ) ( , ')

d d ( , ) ( , ) (

'

)

'

'

''

,t

R R R

tR R

t

t

R

G t t G t G t

t t G t t t t

t t

G t t

'' 't t t

last time

- past - future notion … in renormalized semigroup rule GR

Time-partitioning: general method

Special position of the (instant-restart) time t0

-Separates the whole time domain into the past and the future

- past - future notion … in reconstruction equation for G<

1 2 1 1 2

''

''2

'

( , ') i ( , ) ( , ')

d d ( , ) ( , ) (

'

)

'

'

''

,t

R R R

tR R

t

t

R

G t t G t G t

t t G t t t t

t t

G t t

'' 't t t

t

't

't

t

tt

t

t

- past - future notion … in renormalized semigroup rule GR

RENORM. SEMIGROUP RULE

Transients in Quantum Transport II ... 70 Teor. Odd. FZÚ 21.II.2006

Time-partitioning: general method

Special position of the (instant-restart) time t0

-Separates the whole time domain into the past and the future

- past - future notion … in reconstruction equation for G<

- past - future notion … in renormalized semigroup rule GR

Transients in Quantum Transport II ... 71 Teor. Odd. FZÚ 21.II.2006

Time-partitioning: general method

Special position of the (instant-restart) time t0

-Separates the whole time domain into the past and the future

- past - future notion … in reconstruction equation for G<

- past - future notion … in restart NGF

unified description—time-partitioning formalism

- past - future notion … in renormalized semigroup rule GR

Transients in Quantum Transport II ... 72 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: formal tools

Past and Future with respect to the initial (restart) time 0t0tt

t0 0( ) ( ) ( ) ( )t t t t t t t t

Transients in Quantum Transport II ... 73 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: formal tools

Past and Future with respect to the initial (restart) time 0t0tt

t0 0( ) ( ) ( ) ( )t t t t t t t t

pas futur

0 0

et

( ) ( ) ( ') ( ) ( ') ( ) ( ')( , ') ( , ') ( , ')

t t t t t t I t t t t I t t t t It t t t t t

P F 1P F 1Projection operators

Transients in Quantum Transport II ... 74 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: formal tools

Past and Future with respect to the initial (restart) time 0t0tt

t0 0( ) ( ) ( ) ( )t t t t t t t t

pas futur

0 0

et

( ) ( ) ( ') ( ) ( ') ( ) ( ')( , ') ( , ') ( , ')

t t t t t t I t t t t I t t t t It t t t t t

P F 1P F 1Projection operators

Double time quantity X X= X X X X P P P F F P F F…four quadrants of the two-time plane

Transients in Quantum Transport II ... 75 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: for propagators1. Dyson eq.

0 0R R R R RG G G G

2. Retarded quantity R ( , ') 0X t t only for 't t

0RX P F3. Diagonal blocks of RG

0 0

0 0

R R R R R

R R R R R

G G G G

G G G G

P P P P P P P PF F F F F F F F

Transients in Quantum Transport II ... 76 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: for propagators …continuation

0 0R R R R RG G G G

0 0 ( ) ( )R R R R RG G G G F P F P F F P F P P

4. Off-diagonal blocks of RG-free propagator corresponds to a unitary evolution multiplicative composition law semigroup rule

0 0 0 0 0 0( , ') i ( , ) ( , ') 'R R RG t t G t t G t t t t t

0 0 0R R R RG G L G F P F F P P

0 0( , ') i ( ) ( ')RL t t t t t t I … time local operator

Transients in Quantum Transport II ... 77 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: for propagators …continuation

0 0R R R R RG G G G

R R R R R RG G L G G G RF P F F P P F F F P P P

4. Off-diagonal blocks of RG-free propagator corresponds to a unitary evolution multiplicative composition law semigroup rule

0 0 0 0 0 0( , ') i ( , ) ( , ') 'R R RG t t G t t G t t t t t

0 0 0R R R RG G L G F P F F P P

0 0( , ') i ( ) ( ')RL t t t t t t I … time local operator

Transients in Quantum Transport II ... 78 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: for propagators …continuation

0 0R R R R RG G G G

R RR R RR GG GL GG RF P F P F FPF PFP P

4. Off-diagonal blocks of RG-free propagator corresponds to a unitary evolution multiplicative composition law semigroup rule

0 0 0 0 0 0( , ') i ( , ) ( , ') 'R R RG t t G t t G t t t t t

0 0 0R R R RG G L G F P F F P P

0 0( , ') i ( ) ( ')RL t t t t t t I … time local operator

Transients in Quantum Transport II ... 79 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: for propagators …continuation

0

0

0'

1 2 1 20 1 2( , ) ( , )( , ')( , ') i d '( ,d , ( ))t

R Rt

R R

t

Rt

RGG t t G tG t t t t tt t tt G tt

4. Off-diagonal blocks of RG-free propagator corresponds to a unitary evolution multiplicative composition law semigroup rule

0 0 0 0 0 0( , ') i ( , ) ( , ') 'R R RG t t G t t G t t t t t

0 0 0R R R RG G L G F P F F P P

0 0( , ') i ( ) ( ')RL t t t t t t I … time local operator

0 0R R R R RG G G G

Transients in Quantum Transport II ... 80 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: for propagators …continuation

0

0

0'

1 2 1 20 1 2( , ) ( , )( , ')( , ') i d '( ,d , ( ))t

R Rt

R R

t

Rt

RGG t t G tG t t t t tt t tt G tt

4. Off-diagonal blocks of RG-free propagator corresponds to a unitary evolution multiplicative composition law semigroup rule

0 0 0 0 0 0( , ') i ( , ) ( , ') 'R R RG t t G t t G t t t t t

0 0 0R R R RG G L G F P F F P P

0 0( , ') i ( ) ( ')RL t t t t t t I … time local operator

0 0R R R R RG G G G

time-local factorization

vertex correction: universal form

(gauge invariance) link past-future

non-local in timewidth 2 Q

Transients in Quantum Transport II ... 81 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: for propagators …continuation

0

0

0'

1 2 1 20 1 2( , ) ( , )( , ')( , ') i d '( ,d , ( ))t

R Rt

R R

t

Rt

RGG t t G tG t t t t tt t tt G tt

4. Off-diagonal blocks of RG-free propagator corresponds to a unitary evolution multiplicative composition law semigroup rule

0 0 0 0 0 0( , ') i ( , ) ( , ') 'R R RG t t G t t G t t t t t

0 0 0R R R RG G L G F P F F P P

0 0( , ') i ( ) ( ')RL t t t t t t I … time local operator

0 0R R R R RG G G G

time-local factorization

vertex correction: universal form

(gauge invariance) link past-future

non-local in timewidth 2 Q

renormalized semi-group rule

Transients in Quantum Transport II ... 82 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: for corr. function G

R AG G G Question: to find four blocks of G

1. Selfenergy … split into four blocks

2. Propagators ,R AG G … by partitioning expressions

R AG G G P P P P P P …(diagonal) past blocks only

Transients in Quantum Transport II ... 83 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: for corr. function G

R AG G G Question: to find four blocks of G

1. Selfenergy … split into four blocks

2. Propagators ,R AG G … by partitioning expressionsR AG G G P P P P P P

( )R A A A AG G G G L G P F P P F F P P F F

Transients in Quantum Transport II ... 84 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: for corr. function G

R AG G G Question: to find four blocks of G

1. Selfenergy … split into four blocks

2. Propagators ,R AG G … by partitioning expressionsR AG G G P P P P P P

( )R A AA AG GLGG G FP P PF PP FF F…diagonals of GF’s

Transients in Quantum Transport II ... 85 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: for corr. function G

R AG G G Question: to find four blocks of G

1. Selfenergy … split into four blocks

2. Propagators ,R AG G … by partitioning expressionsR AG G G P P P P P P

( )R A AAAG G LG G G FPP F P P FF P F…off-diagonals of selfenergies

Transients in Quantum Transport II ... 86 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: for corr. function G

R AG G G Question: to find four blocks of G

1. Selfenergy … split into four blocks

2. Propagators ,R AG G … by partitioning expressionsR AG G G P P P P P P

( )R A A A AG G G G L G P F P P F F P P F F( )R A R R RG G G G L G F P F F P P F F P P

Transients in Quantum Transport II ... 87 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: for corr. function G

R AG G G Question: to find four blocks of G

1. Selfenergy … split into four blocks

2. Propagators ,R AG G … by partitioning expressionsR AG G G P P P P P P

( )R A A A AG G G G L G P F P P F F P P F F( )R A R R RG G G G L G F P F F P P F F P P( )

( )

( ) ( )

R A

R A A A A

R R R R A

R R R A A A

G G G

G G L G

G L G G

G L G L G

F F F F F F F F P P F F F F P P F F F F P P F F

Transients in Quantum Transport II ... 88 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: for corr. function G

R AG G G Question: to find four blocks of G

1. Selfenergy … split into four blocks

2. Propagators ,R AG G … by partitioning expressionsR AG G G P P P P P P

( )R A A A AG G G G L G P F P P F F P P F F( )R A R R RG G G G L G F P F F P P F F P P( )

( )

( ) ( )

A A

R R

R R

R A

R A

R A

R A

A

R

AA

G

G

G

L

L

L L

G G

G G

G G

G G G

F F F FF F F FF F F FF F

F F

P P

P P FP P

F

…diagonals of GF’s

Transients in Quantum Transport II ... 89 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: for corr. function G

R AG G G Question: to find four blocks of G

1. Selfenergy … split into four blocks

2. Propagators ,R AG G … by partitioning expressionsR AG G G P P P P P P

( )R A A A AG G G G L G P F P P F F P P F F( )R A R R RG G G G L G F P F F P P F F P P( )

( )

( ) ( )

A A

R

R A

R A A

R

R R A A

R R A

R A

G G G

G G GL

L

L

G G

G GL

G

G

F F F F F F F F

F FF FF F

P PP

P

PF PF F F

…off-diagonals of

selfenergy

Transients in Quantum Transport II ... 90 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: for corr. function G

R AG G G Question: to find four blocks of G

1. Selfenergy … split into four blocks

2. Propagators ,R AG G … by partitioning expressionsR AG G G P P P P P P

( )R A A A AG G G G L G P F P P F F P P F F( )R A R R RG G G G L G F P F F P P F F P P( )

( )

( ) ( )

A A

R

R A

R A A

R

R R A A

R R A

R A

G G G

G G GL

L

L

G G

G GL

G

G

F F F F F F F F

F FF FF F

P PP

P

PF PF F F

…off-diagonals of

selfenergy

Exception!!!

Future-future diagonal

Transients in Quantum Transport II ... 91 Teor. Odd. FZÚ 21.II.2006

( )

( )

( ) ( )

A A

R

R A

R A A

R

R R A A

R R A

R A

G G G

G G GL

L

L

G G

G GL

G

G

F F F F F F F F

F FF FF F

P PP

P

PF PF F F

Partitioning in time: restartrestart corr. function 0t

G

R AG G G HOST PROCESS

RESTART PROCESS0 0R A

t tG G G F F F F

Transients in Quantum Transport II ... 92 Teor. Odd. FZÚ 21.II.2006

( )

( )

( ) ( )

A A

R

R A

R A A

R

R R A A

R R A

R A

G G G

G G GL

L

L

G G

G GL

G

G

F F F F F F F F

F FF FF F

P PP

P

PF PF F F

Partitioning in time: restartrestart corr. function 0t

G

R AG G G HOST PROCESS

RESTART PROCESS0 0R A

t tG G G F F F F

0t

Transients in Quantum Transport II ... 93 Teor. Odd. FZÚ 21.II.2006

( )

( )

( ) ( )

A A

R

R A

R A A

R

R R A A

R R A

R A

G G G

G G GL

L

L

G G

G GL

G

G

F F F F F F F F

F FF FF F

P PP

P

PF PF F F

Partitioning in time: restartrestart corr. function 0t

G

R AG G G HOST PROCESS

RESTART PROCESS0 0R A

t tG G G F F F F

0t

future

memory of the past folded

down into the future by

partitioning

Transients in Quantum Transport II ... 94 Teor. Odd. FZÚ 21.II.2006

( )

( )

( ) ( )

A A

R

R A

R A A

R

R R A A

R R A

R A

G G G

G G GL

L

L

G G

G GL

G

G

F F F F F F F F

F FF FF F

P PP

P

PF PF F F

Partitioning in time: restartrestart corr. function 0t

G

R AG G G HOST PROCESS

RESTART PROCESS0 0R A

t tG G G F F F F

0initial conditionst F F

future

memory of the past folded

down into the future by

partitioning

Transients in Quantum Transport II ... 95 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: initial conditioninitial condition 0tG

0initial conditionst F F

0 0[ ]t t

00 0 0( , ') i ( ) ( ) ( ' )

tt t t t t t t

Singular time variable fixed at restart time 0t t

Transients in Quantum Transport II ... 96 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: initial conditioninitial condition 0tG

0initial conditionst F F

0 0[ ]t t

0t F F

R AL G L P PR AG F P P F R AL G P P FR AG L F P P

A AG L F P PA AG F P P FR RG F P P F R RL G P P F

Transients in Quantum Transport II ... 97 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: initial conditioninitial condition 0tG

0initial conditionst F F

0 0[ ]t t

0t F F

R AL G L P PR AG F P P F R AL G P P FR AG L F P P

A AG L F P PA AG F P P FR RG F P P F R RL G P P F

Transients in Quantum Transport II ... 98 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: initial conditioninitial condition 0tG

0initial conditionst F F

0 0[ ]t t

0t F F

R AL G L P PR AG F P P F R AL G P P FR AG L F P P

A AG L F P PA AG F P P FR RG F P P F R RL G P P F

Transients in Quantum Transport II ... 99 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: initial conditioninitial condition 0tG

0initial conditionst F F

0 0[ ]t t

0t F F

R AL G L P PR AG F P P F R AL G P P FR AG L F P P

A AG L F P PA AG F P P FR RG F P P F R RL G P P F

Transients in Quantum Transport II ... 100 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: initial conditioninitial condition 0tG

0initial conditionst F F

0 0[ ]t t

0t F F

R AL G L P PR AG F P P F R AL G P P FR AG L F P P

A AG L F P PA AG F P P FR RG F P P F R RL G P P F

Transients in Quantum Transport II ... 101 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: initial conditioninitial condition 0tG

0initial conditionst F F

0 0[ ]t t

0t F F

R AL G L P PR AG F P P F R AL G P P FR AG L F P P

A AG L F P PA AG F P P FR RG F P P F R RL G P P F

… omitted initial condition, 0

[ ]t

0t t Keldysh limit

Transients in Quantum Transport II ... 102 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: initial conditioninitial condition 0tG

0initial conditionst F F

0 0[ ]t t

0t F F

R AL G L P PR AG F P P F R AL G P P FR AG L F P P

A AG L F P PA AG F P P FR RG F P P F R RL G P P F

… with uncorrelated initial condition,

Transients in Quantum Transport II ... 103 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: initial conditioninitial condition 0tG

0initial conditionst F F

0 0[ ]t t

0t F F

R AL G L P PR AG F P P F R AL G P P FR AG L F P P

A AG L F P PA AG F P P FR RG F P P F R RL G P P F

… with uncorrelated initial condition,

0 0

d d ( , ) ( , ) ( , )t t

R A

t t

t t t t G t t t t

0 0 0i ( ) ( ) ( )t t t t t

Transients in Quantum Transport II ... 104 Teor. Odd. FZÚ 21.II.2006

Partitioning in time: initial conditioninitial condition 0tG

0initial conditionst F F

0 0[ ]t t

0t F F

R AL G L P PR AG F P P F R AL G P P FR AG L F P P

A AG L F P PA AG F P P FR RG F P P F R RL G P P F

Transients in Quantum Transport II ... 105 Teor. Odd. FZÚ 21.II.2006

Act IVapplications:

restarted switch-on processespump and probe signals

....

NEXT TIME

Transients in Quantum Transport II ... 107 Teor. Odd. FZÚ 21.II.2006

Conclusions• time partitioning as a novel general technique for

treating problems, which involve past and future with respect to a selected time

• semi-group property as a basic property of NGF dynamics

• full self-energy for a restart process including all singular terms expressed in terms of the host process GF and self-energies

• result consistent with the previous work (Danielewicz etc.)

• explicit expressions for host switch-on states (from KB -- Danielewicz trajectory to Keldysh with t0 -

....

Transients in Quantum Transport II ... 108 Teor. Odd. FZÚ 21.II.2006

Conclusions• time partitioning as a novel general technique for

treating problems, which involve past and future with respect to a selected time

• semi-group property as a basic property of NGF dynamics

• full self-energy for a restart process including all singular terms expressed in terms of the host process GF and self-energies

• result consistent with the previous work (Danielewicz etc.)

• explicit expressions for host switch-on states (from KB -- Danielewicz trajectory to Keldysh with t0 -

....

THE END