Tema 7 LAS FUNCIONES CELULARES EAT

Post on 30-Jun-2015

1.050 views 4 download

Transcript of Tema 7 LAS FUNCIONES CELULARES EAT

FUNCIONES CELULARES1ºBAT

• NUTRICIÓN• RELACIÓN• REPRODUCCIÓN

FUNCIÓN DE NUTRICIÓN

• Conjunto de procesos mediante los cuales los seres vivos intercambian la materia y la energía con el medio para formar sus estructuras celulares y realizar sus funciones vitales.

• Los nutrientes se utilizan para: • Obtener energía.• Obtener materia con que conservar y renovar las

estructuras celulares.

TIPOS DE NUTRICIÓN• Según la manera en la que los seres vivos

obtienen los nutrientes, se pueden distinguir dos tipos de nutrición: autótrofa y heterótrofa.

NUTRICIÓN AUTÓTROFA

Biomoléculas inorgánicas sencillas

Biomoléculas orgánicas

Dióxido de carbonoAguaSales minerales

GlúcidosLípidosProteínasÁcidos nucleicos

Energía

• Se requiere una fuente de energía, bien procedente de la luz solar o la que se desprende en determinadas reacciones químicas.

• Fabrican su propio alimento (auto: por sí mismos; trophos: alimento).

• Es propia de plantas (las partes verdes), algunos protoctistas y algunas bacterias.

• La tienen los productores de un ecosistema.

NUTRICIÓN HETERÓTROFA• No fabrican su propio alimento

(hetero: otro diferente; trophos: alimento)

• Los organismos con nutrición heterótrofa no pueden fabricar las moléculas orgánicas y han de obtenerlas en los alimentos (fabricada por otros organismos).

• Es propia de animales, hongos y la mayoría de protoctistas y de bacterias.

• La tienen los consumidores y descomponedores de un ecosistema.

FUNCIÓN DE NUTRICIÓN• La célula incorpora nutrientes y los transforma para obtener

energía y materiales para crecer o reponer estructuras.• Etapas:

– Ingestión: Captura de nutrientes– Digestión: Descomposición en moléculas más sencillas.– Metabolismo: Reacciones químicas para transformar los

nutrientes en otras sustancias o para obtener energía.– Excreción y/o secreción: Eliminación de productos de desecho

o de nutrientes no utilizados o elaborados.

INGESTIÓN• A través de la membrana

– Por difusión: Moléculas pequeñas como O2, CO2 o H2O.– Mediante proteínas transportadoras: Glucosa, aminoácidos.

• Endocitosis: Moléculas grandes que no pueden atravesar la membrana. Se forma una invaginación de la membrana. Deben ser digeridas en una vacuola alimenticia.– Fagocitosis: Partículas sólidas grandes.– Pinocitosis: Moléculas en suspensión.

DIGESTIÓN• Las vacuolas alimenticias, que

contienen partículas orgánicas, se fusionan con los lisosomas.

• Los enzimas digestivos descomponen la materia orgánica en moléculas más sencillas, como monosacáridos o aminoácidos.

• Estos productos aprovechables por la célula pasan al citosol a través de la membrana de la vacuola (absorción)

• Los producto de desecho son expulsados por exocitosis.

METABOLISMO CELULAR• Metabolismo: Conjunto de reacciones químicas que se producen

en las células, que están catalizadas por enzimas y que conducen a la transformación de diferentes compuestos (orgánicos e inorgánicos), con la finalidad de obtener energía para realizar las funciones vitales y obtener la materia prima para las células.

CARACTERÍSTICAS DE LAS REACCIONES METABÒLICAS

1) Son semejantes en diferentes tipos de organismos (origen común de todos los seres vivos).

2) Se forman nuevas sustancias, los productos, a partir de los reactivos o metabolitos.

3) Son reacciones encadenadas, por eso se habla de rutas o vías metabólicas, en las que el producto de una reacción es el sustrato inicial de otra. Las moléculas que son el origen de una ramificación se llaman metabolitos intermediarios y son puntos de control del metabolismo. Las rutas metabólicas pueden ser: lineales, ramificadas y cíclicas.

CARACTERÍSTICAS DE LAS REACCIONES METABÒLICAS

4) Están encadenadas y la mayoría están acopladas, de manera que la energía liberada en una de las reacciones, que llamamos exergónica, es captada por otra reacción, endergónica, que requiere energía.

5) Son catalizadas por enzimas (catalizadores biológicos), que son proteínas específicas que aceleran las reacciones químicas disminuyendo la energía de activación de la reacción.

CATALIZADORES: moléculas que no se consumen en la reacción pero que sin ellas no se produciría, por eso pueden actuar de manera indefinida

CARACTERÍSTICAS DE LAS REACCIONES METABÒLICAS

Complejo enzima-sustrato Complejo enzima-productoEnzimaProducto

glucosa

fructosa

Sustrato(sacarosa)

Enzima(sacarasa)

agua

6) Hay dos formas básicas de transferencia de energía en los procesos metabólicos.

1. Mediante la transferencia de electrones, en las que para que una molécula gane electrones (se reduce) otra ha de perderlos (se oxida) y al revés. La mayor parte de las reacciones metabólicas son de oxidación-reducción (reacciones redox). A veces hay también transferencia de átomos de hidrógeno, ya que esto supone también transferencia de electrones.

Reacción redox con transferencia de átomos de hidrógeno

CARACTERÍSTICAS DE LAS REACCIONES METABÒLICAS

La mayoría de las enzimas oxidorreductasas utilizan como coenzima el NAD+ o dinucleótido de nicotinamida y de adenina, presente en cantidades relativamente importantes en el citoplasma de las células.

Cuando un sustrato reducido es oxidado, el NAD+ se reduce según la ecuación siguiente:

NAD+ + 2H+ + 2e– NADH + H+

Esta reacción solamente representa una parte del proceso redox; siempre hay un metabolito que cede los electrones para que otro compuesto, la coenzima, en este caso el nucleótido, los capte.

2. Mediante la transferencia de grupos fosfato.

CARACTERÍSTICAS DE LAS REACCIONES METABÒLICAS

La energía que se libera en algunas reacciones químicas se utiliza en la síntesis de moléculas de adenosín trifosfato o ATP a partir de ácido fosfórico y del ADP o adenosín difosfato, según la reacción química: ADP + H3PO4 + 7,3 kcal/mol ATP + H2O (endergónico)

Esta reacción solamente se puede producir si está acoplada a alguna reacción exergónica.La reacción inversa, en cambio, es un proceso exergónico: ATP + H2O ADP + H3PO4 +7,3kcal/mol

Síntesis y degradación de ATP

DefosforilaciónReacciones del

anabolismo

Trabajo

FosforilaciónSe necesita la energía que se libera del catabolismo

ANABOLISMO

Las rutas metabólicas que consumen energía para llevar a cabo la síntesis de biomoléculas orgánicas complejas a partir de moléculas más simples reciben el nombre de anabolismo o vías de biosíntesis.

Moléculas sencillas (oxidadas)

Orgánicas Inorgánicas

Moléculas orgánicas (reducidas)Síntesis de proteínas Fotosíntesisa partir de aminoácidos, QuimiosíntesisSíntesis de polisacáridosA partir de glucosa, etc.

TIPOS DE PROCESOS METABÓLICOSCATABOLISMO

Las rutas metabólicas que rompen y degradan biomoléculas orgánicas para la obtención de energía útil para las actividades celulares, constituyen el catabolismo o vías de degradación.

Moléculas orgánicas (reducidas)

Moléculas sencillas (orgánicas o inorgánicas) (oxidadas)Ejemplos: fermentación, respiración celular, catabolismo de lípidos, de proteínas y de ácidos nucleicos.

energía

energía

TIPOS DE PROCESOS METABÓLICOS

PROCESOS CATABÓLICOS

• Semejantes en todos los seres vivos

Polisacáridos Triglicéridos Proteínas

Monosacáridos Glicerina y Ácidos grasos Aminoácidos

Respiración celular

Destrucción, por oxidación, de las sustancias orgánicas, con la consiguiente liberación de energía

que se almacena en forma de ATP

PROCESOS ANABÓLICOSMonosacáridos

(glucosa)

Polisacáridos(almidón, glucógeno, celulosa)

Glicerina, ácidos grasos y otros

Triglicéridos y otros lípidos

Aminoácidos

Proteínas

Síntesis de proteínas

Transcripción ADN ARNm. Que sale al citoplasma

Traducción Ribosomas y ARNt unen aminoácidos en un orden concreto determinado por el ARNm

El orden de aas depende del orden de tripletes del ARNm, que a su vez depende de los tripletes del ADN

AUTÓTROFA

Esquema comparativo del metabolismo autótrofo y heterótrofo

HETERÓTROFA

CATABOLISMO: RESPIRACIÓN CELULAR

e-

Moléculas orgánicas complejas Moléculas inorgánicas

Aceptor de e- oxidado Aceptor reducido

reducidas oxidadas

Consiste en la oxidaxión completa de moléculas orgánicas (dador de electrones).

Si el aceptor de electrones es el O2, la respiración es aerobia Si el aceptor de electrones es otra molécula inorgánica (NO3

-, SO4=,

CO2), la respiración es anaerobia

CATABOLISMO: RESPIRACIÓN AEROBIA

• La reaccion global es:

Glucosa + 6O2 6 CO2 + 6 H2O + 36 ATP

• Se da en organismos aerobios: animales, plantas, hongos, protoctistas y la mayoría de bacterias.

• En las células eucariotas, se realiza en las mitocondrias

ESTRUCTURA DE LA MITOCONDRIA

ESTRUCTURA DE LA MITOCONDRIA

La respiración aerobia consta de los siguientes procesos:

1) GLUCOLISIS (en citoplasma):Glucosa + 2NAD + + 2ADP + 2 Pi 2Piruvato + 2NADH +2H+ + 2ATP

+ 2H2O Para entrar los 2NADH +2H+ dentro de la mitocondria se gastan 2 ATP

2)TRANSFORMACIÓN DEL PIRUVATO EN ACETIL COENZIMA A (Acetil CoA) (en matriz mitocondrial): 2 Piruvato + 2CoA + 2 NAD+ 2CO2 + 2acetil CoA + 2NADH + 2H+

3) CICLO DE KREBS o CICLO DEL ÁCIDO CÍTRICO (en matriz mitocondrial):

2 Acetil CoA + 4H2O+6NAD+ + 2GDP + 2Pi + 2FAD 4CO2 + 2CoA + 6NADH + 6H+

+ 2GTP + 2FADH2

4) CADENA DE TRANSPORTE DE ELECTRONES (en la membrana interna mitocondrial):

Los coenzimas reducidos ceden los electrones a la cadena respiratoria de la membrana interna mitocondrial y van pasando por diferentes transportadores. El último aceptor de electrones es el O2, que se reduce a H2O . El paso de coenzimas origina ATP (FOSFORILACIÓN OXIDATIVA)•Por cada NADH+H+ que se oxida se forman 3 ATP•Por cada FADH2 que se oxida se obtienen 2ATP

Los 2 coenzimas reducidos de la glucolisis gastan 2 ATP para entrar en la mitocondria

1. Transformación del piruvato en acetil coenzima A2. β Oxidación3. Ciclo de Krebs4. Cadena respiratoria5. Fosforilación oxidativa.6. Síntesis de proteínas7. Procesos de transporte.

CATABOLISMO: FERMENTACIÓN Consiste en la oxidación incompleta de moléculas orgánicas (dador de

electrones), obteniéndose menos ATP que en la respiración aerobia.

Matéria orgánica compleja Materia orgánica sencillareducida oxidada

Es un proceso anaerobio, donde no interviene la cadena de transporte de electrones.

Se realiza en el citoplasma celular.

Hay diferentes tipos: fermentación láctica, fermentación alcohólica y fermentación pútrida o putrefacción.

Para algunos microorganismos el oxígeno es tóxico, son los anaerobios estrictos que no toleran el oxígeno y otros, los anaerobios facultativos, pueden vivir tanto en ausencia como en presencia de oxígeno.

FERMENTACIÓN LÁCTICA La realizan bacterias del género Lactobacillus y Streptococcus, y

células animales que transforman la glucosa en lactato produciendo 2 ATP.

La ecuación global del proceso es:

glucosa + 2 Pi + 2 ADP 2 lactato + 2 H+ + 2 ATP + 2 H2O

La glucosa se transforma primero en piruvato mediante la glicolisis y a continuación el piruvato se reduce a lactato, de igual forma que en las células animales.

FERMENTACIÓN ALCOHÓLICA Esta fermentación la realizan levaduras

del género Saccharomyces y ciertas bacterias, que transforman la glucosa en etanol y CO2 obteniendo 2 ATP.

El piruvato obtenido en la glicolisis se descarboxila para formar acetaldehído y CO2. A continuación, el acetaldehído se reduce a etanol por acción del NADH, regenerándose el NAD+.

El acetaldehído es el aceptor final de los electrones del NADH obtenido en la glicolisis.

La reacción global es:

glucosa + 2 Pi + 2 ADP 2 etanol + 2 CO2 + 2 ATP + 2 H2O

OTRAS VÍAS CATABÓLICAS

• Proceso anabólico en el que a partir de la materia inorgánica se obtiene materia orgánica, utilizando como fuente de energía la luz solar. La reacción global es:

6 CO2 + 6 H2O + luz C6H12O6 + 6 O2

• Es un proceso de oxidación-reducción donde hay un dador de H+ y e- (suele ser el H2O) y un aceptor (suele ser el CO2)

• Es un proceso opuesto a la respiración aerobia.

• Lo realizan las plantas, algunas bacterias y algunos protoctistas.

• Los seres autótrofos realizan la fotosíntesis y la respiración.

• Los seres heterótrofos sólo realizan la respiración y toman la materia orgánica fabricada por los autótrofos.

• En las células vegetales se realiza en los cloroplastos y en las bacterias en los mesosomas.

ANABOLISMO: FOTOSÍNTESIS

ESTRUCTURA DEL CLOROPLASTO

ANABOLISMO: FOTOSÍNTESIS

La fotosíntesis presenta 2 etapas:

Fase luminosa (en los tilacoides)

Hace falta luz y pigmentos fotosintéticos (clorofila, carotenoides), para realizar la fotolisis del agua, de manera que se obtiene oxígeno, que se desprende.

Se obtiene ATP (por FOTOFOSFORILACION) y coenzimas reducidos (NADPH), ambos se utilizarán en la siguiente etapa.

Fase oscura o Ciclo de Calvin (en el estroma)

El ATP y el NADPH producidos en las fase luminosa se utilizan como fuente de energía y de poder reductor respectivamente para convertir el CO2 en azúcares y otras biomoléculas orgánicas.

Es independiente de la luz.

ANABOLISMO: QUIMIOSÍNTESIS Proceso anabólico en el que la energía no procede de la luz solar,

sino de la que se libera en las reacciones químicas de oxidación de moléculas orgánicas.

La realizan bacterias quimiosintéticas, muy importantes en los ciclos biogeoquímicos de nuestro planeta:

• Bacterias nitrificantes: obtienen energía de la oxidación de compuestos de nitrógeno (amoníaco o nitritos), obteniendo nitratos.

• Bacterias sulfatizantes: utilizan la energía producida en la oxidación del sulfuro de hidrógeno para formar azufre o sulfatos.

2H2S + O2 2S + 2 H20 + Energía• Ferrobacterias: oxidan sales de hierro (carbonatos o sulfatos) y

liberan hidróxido de hierro.4FeCO3 + 6 H2O + 6 O2 4 Fe(OH)3 + 4 CO2 + Energía

La célula elimina sustanciasQue deben atravesar la membrana

Para salir al exterior

La célula elimina sustanciasQue deben atravesar la membrana

Para salir al exterior

EXCRECIÓN SECRECIÓN

Se eliminan productos de desecho Procedentes del catabolismo

Son inútiles y perjudiciales Dióxido de Carbono, urea,

amoníaco, etc

Se eliminan productos de desecho Procedentes del catabolismo

Son inútiles y perjudiciales Dióxido de Carbono, urea,

amoníaco, etc

Sustancias del anabolismo Tienen utilidad

Para la célula o para otras células Ejemplos: hormonas,

enzimas digestivas, etc

Sustancias del anabolismo Tienen utilidad

Para la célula o para otras células Ejemplos: hormonas,

enzimas digestivas, etc

EXCRECIÓN• La célula elimina los nutrientes no utilizados y los

productos de desecho del metabolismo.• La expulsión se produce mediante exocitosis o a

través de la membrana plasmática, por transporte activo o pasivo.

FUNCIÓN DE RELACIÓNConsiste en que los organismos captan estímulos del medio (exterior y interior), analizan esa información y elaboran respuestas, para adaptarse a las condiciones cambiantes del medio.

• Se distinguen 3 etapas:1. Recepción de estímulos (cambios físicos o químicos, internos o

externos, que provocan una respuesta en nuestro organismo), que se debe a:• Los receptores internos. • Los receptores externos: órganos de los sentidos.

2. Procesamiento de la información y elaboración de respuestas coordinadas, gracias al sistema nervioso, que elabora una respuesta adecuada al estímulo.

3. Ejecución de las respuestas, debido a los órganos efectores: • Sistema locomotor: músculos y huesos.• Glándulas endocrinas: productoras de hormonas.

FUNCIÓN DE RELACIÓN

• La finalidad de la reproducción es la perpetuación de las especies, produciendo individuos semejantes a sus progenitores.

• Así, podemos distinguir:– La reproducción celular– La reproducción de los organismos

FUNCIÓN DE REPRODUCCIÓN

REPRODUCCIÓN CELULAR

• Consiste en la división de células madre en células hijas. Para ello, el material genético ha de dividirse previamente (DUPLICACIÓN) y así transmitir las características biológicas.

• Las células se dividen para:– Sustituir las que mueren– Aumentar su número (crecimiento y regeneración).• En los organismos procariotasorganismos procariotas, el material genético se duplica

y después se divide la célula.• En los organismos eucariotasorganismos eucariotas, es un poco más complejo y

consta de dos etapas:1. MITOSIS O CARIOCINESIS (división del núcleo)2. CITOCINESIS (división del citoplasma)

División delnúcleo

(mitosis o cariocinesis)

División delCitoplasma(citocinesis)

Profase Metafase Anafase Telofase

Comprende

Dividida en

INTERFASE• Es el período comprendido entre dos mitosis sucesivas.• La cromatina se empaqueta formando los cromosomas y a la vez se produce la duplicación del

material genético.• La célula crece y se produce la síntesis de proteínas y otras biomoléculas.

• Los centriolos se duplican.

Núcleo

Cromatina

Nucleolo

Cromosoma

Condensación e individualización de la cromatina

Un cromosoma es como un ovillo

centrómero

Puede transportarse mucho mejor un ovillo de lana que la misma cantidad de lana suelta. Del

mismo modo, es mucho mejor para la célula repartir el material genético a las células hijas si la cromatina se ha condensado en cromosomas.

Duplicación Cada una de las copias es una cromátida

Cromátida 1 Cromátida 2

centrómero

Cuando la célula va a comenzar la división, el

material genético produce una copia exacta de sí mismo, por

lo que en vez de un filamento, contiene dos, llamados

cromátidas, que están unidos por el centrómero.

En la división celular, el material genético (ADN) se reparte por igual

entre las células hijas. Para ello es necesario que, previamente, se halla

producido la duplicación de este ADN.

División celular. Las células hijas necesitan heredar la información

genética de la célula madre.

INTERFASE

En casi todas las células, los cromosomas se observan siempre en parejas, uno procede del padre y otro de la madre (DIPLOIDES).

Los dos cromosomas de una pareja reciben el hombre de cromosomas homólogos.

Pareja de homólogos 1 Pareja de homólogos 2

El número de parejas de homólogos es siempre el mismo en todas las células de una especie. Por ejemplo:

-Los seres humanos tenemos 23 parejas (en total: 46 cromosomas)-La mosca del vinagre tiene sólo 4 parejas (en total: 8 cromosomas)

Drosophila melanogaster(mosca del vinagre)

Célula en reposo (sin dividirse) Célula en división

Los cromosomas se ven al microscopio

cuando la célula entra en división

Núcleo

Cromatina

Nucleolo

Esta fotografía muestra, al microscopio, células de la epidermis de cebolla en división. Los cuerpos oscuros son los cromosomas.

• PROFASE: – El ADN se condensa y se hacen visibles los cromosomas.– Se forma el huso acromático (sistema de túbulos proteicos) que se encargará se separar los

cromosomas.– La membrana nuclear desaparece.

• METAFASE: – Cada cromosoma se une a un filamento del huso acromático.– Los cromosomas se sitúan en el centro de la célula, formando la placa ecuatorial.

• ANAFASE :– Las fibras del huso acromático se van rompiendo y los cromosomas se van rompiendo, de

manera que se separan las cromátidas dirigiéndose cada una hacia un polo de la célula.

• TELOFASE: – Desaparece el huso acromático.– Se forma la membrana nuclear alrededor de cada grupo.– El ADN se va descondensando, haciéndose visibles los cromosomas.

MITOSIS o CARIOCINESIS

Esquema de las fases de la mitosis

.

Las cromátidas hermanas se separan y cada copia va a una célula hija. Así las dos células hijas tienen la misma información.

OTRAS ANIMACIONES

• http://www.stolaf.edu/people/giannini/flashanimat/celldivision/crome3.swf

• http://www.juntadeandalucia.es/averroes/manuales/materiales_tic/Cell_anim_archivos/Cell_anim_archivos/mitosis_Medina.swf

• http://www.cienciasnaturales.es/MITOSIS.swf• http://www.johnkyrk.com/mitosis.swf• http://highered.mcgraw-hill.com/olc/dl/120073/bio14.swf

CITOCINESIS• Consiste en la división del citoplasma de la célula madre con un reparto

equitativo de los orgánulos celulares.

En células animales se produce la estrangulación de la membrana por la zona central de la célula (de fuera hacia dentro)

En células vegetales se produce por la fusión, en la zona central, de vesículas procedentes del aparato de Golgi (FRAGMOPLASTO) (de dentro hacia fuera)

• Proceso de división en el que a partir de una célula madre se obtienen dos células hijas (CLONES) con el mismo número y el mismo tipo de cromosomas que la célula madre (DIVISIÓN CONSERVATIVA).

• Lo sufren tanto las células haploides (n) como diploides (2n).• Consta de una división en la que no hay apareamiento de

cromosomas homólogos.• Las células hijas son idénticas entre sí y a la célula madre.• En organismos unicelulares es el mecanismo de reproducción .• En organismos pluricelulares es el mecanismo de crecimiento y

renovación de tejidos.• Ocurre en la mayoría de las células eucariotas.

CARACTERÍSTICAS DE LA MITOSIS

• REPRODUCCIÓN ASEXUAL: Un individuo se divide por mitosis y da lugar a nuevos individuos genéticamente idénticos (clones). Es más frecuente en plantas que en animales. En seres unicelulares hay varios tipos:

Bipartición: Dos individuos hijos del mismo tamaño. Gemación: Dos individuos hijos de distinto tamaño. División múltiple o esporulación : Se forman varias células hijas. Ventajas: Proceso rápido y sencillo. Sólo se necesita un individuo. Desventajas: Todos los individuos son idénticos.

• REPRODUCCIÓN SEXUAL: Dos gametos haploides, que proceden de dos individuos distintos, se fusionan mediante

fecundación y originan un cigoto diploide, que da lugar a un nuevo organismo, con características de los dos progenitores.

Los gametos se originan por meiosis. Ventajas: Aumenta la variabilidad genética porque contiene información de los dos progenitores.

Favorece la evolución. Desventajas: Es más costoso, más lento, y produce menos descendientes.

REPRODUCCIÓN DE LOS ORGANISMOS

BIPARTICIÓN GEMACIÓN ESPORULACIÓN

REPRODUCCIÓN ASEXUAL

REPRODUCCIÓN EN UNICELULARES

Bipartición

Gemación

División múltiple

• Proceso de división en el que a partir de una célula madre diploide (2n) se obtienen cuatro células hijas haploides (n) con la mitad de cromosomas que la célula madre (DIVISIÓN REDUCCIONAL).

• Lo sufren las células diploides (2n) productoras de gametos de individuos con reproducción sexual, para mantener constante el número de cromosomas de la especie.

• En organismos pluricelulares es el mecanismo de formación de las células sexuales o gametos de la reproducción sexual.

• Consta de dos divisiones sucesivas y entre ellas no hay interfase.• Las células hijas tienen combinaciones variadas de cromosomas y no son

idénticas a la célula madre.• Los cromosomas homólogos se aparean en sinapsis y puede ocurrir

entrecruzamiento.

CARACTERÍSTICAS DE LA MEIOSIS

MEIOSISConsta de dos divisiones consecutivas, pero antes de comenzar, en la interfase, se produce la duplicación del material genético.

MEIOSIS I•PROFASE I: (proceso largo y complejo)

– El nucléolo desaparece, el ADN se condensa y se hacen visibles los cromosomas, cada cromosoma con dos cromátidas hermanas.

– Los cromosomas homólogos se aparean longitudinalmente y se forma una estructura llamada bivalente o tétrada.

– Se produce entrecruzamiento, sobrecruzamiento ocrossing-over entre las cromátidas no hermanas de cromosomas homólogos, produciéndose intercambio de información genética (recombinación genética). Los puntos donde se realiza el intercambio se llaman quiasmas.

– La membrana nuclear desaparece y se ha formado el huso acromático.

• METAFASE I:– Cada bivalente o tétrada se coloca en el plano

ecuatorial unidos por el centrómero al huso acromático.

• ANAFASE I:− Se produce la separación de los cromosomas

homólogos (con sus dos cromátidas), dirigiéndose cada uno hacia un polo.

− Los cromosomas se distribuyen en los polos al azar, pero en cada polo siempre habrá una dotación de n cromosomas con dos cromátidas cada uno.

MEIOSIS I

TELOFASE I:− La membrana nuclear se forma alrededor de los

cromosomas, cada una de las células hijas (haploides) tiene un núcleo con cromosomas recombinados.

− Cada cromosoma todavía se compone por dos cromátidas unidas por un centrómero.

Los cromosomas sufren una ligera descondensación y pasan a un estado de reposo o interfase en la que no se produce duplicación del ADN. Las fases de la segunda división celular (MEIOSIS II) ocurren en las dos células haploides formadas por la primera división. Esta meiosis II es semejante a una mitosis normal en la que se separan las cromátidas.

MEIOSIS II:PROFASE II:

La membrana nuclear desaparece. Los cromosomas se acortan y se hacen visibles. Cada cromosoma se compone de dos cromátidas y un centrómero.

METAFASE II: Las cromátidas todavía pegadas por el centrómero, se mueven hacia el ecuador de la célula.

ANAFASE II:Las cromátidas se separan. Una cromátida de cada cromosoma se mueve hacia un polo de la célula y la otra cromátida hacia el otro polo.

TELOFASE II:El citoplasma se divide, formando dos células cada una con el número haploide de cromosomas. En cada célula hija, se forma la membrana nuclear alrededor de los cromosomas.

Animación de la MEIOSIS I

LA MEIOSIS

Actividad de las ranas.

LA MEIOSIS

LA MITOSIS Y LA MEIOSISCompara con estas animaciones las semejanzas y diferencias entre mitosis y meiosis:

Partimos de una célula con 3 parejas de cromosomas

1 y 2 representan los miembros de una pareja de cromosomas homólogos. Cada pareja está representada con el mismo color.

MITOSIS Y MEIOSIS

Metafase I

Anafase I

Metafase II

Anafase II

Recombinacióncromosomas homólogos

Profase I

Importancia de las divisiones

MITOSIS MEIOSIS

En unicelulares En pluricelulares

Necesaria para la reproducción sexual

El nº de cromosomas se mantiene constante

a lo largo de sucesivas Generaciones

El cigoto 2n se forma a partir de dos gametos n

3 efectos

Reducir cromosomas de 2n a n

Modificar cromosomas por recombinación

Distribuir cromosomas entre los gametos

Formación de nuevos

individuos

• Nuevas células en el crecimiento y desarrollo

• Sustitución de células muertas

• Regeneración de partes del cuerpo perdidas

o destruidas• Producir células especiales

para la reproducción

CICLOS BIOLÓGICOS

• Según el momento de la vida de un organismo en que se produce la meiosis, los organismos presentan un tipo determinado de ciclo biológico.

• Los ciclos biológicos pueden ser de tres tipos:– Ciclo diplonte.– Ciclo haplonte.– Ciclo diplohaplonte.

CICLO DIPLONTE• En animales, algunas algas y hongos y en la mayoría de protozoos.• La meiosis se da en las células que originan los gametos (haploides).

2n2n

2n

Cigotos

Individuoadulto

Meiosis Meiosis

nn Gametos

mitosis mitosis

CICLO HAPLONTE• En algas primitivas y muchos hongos. • La meiosis se da en el zigoto (diploide)

2n

nn

nnnn

Meiosis

Esporas sexuales

Células haploides

cigotomitosis mitosis

CICLO DIPLOHAPLONTE• En plantas.• La meiosis la sufre el esporofito (2n), originándose meiosporas (n), que por mitosis

dan un gametofito (n)• Hay una alternancia de generaciones, con un esporofito diploide y un gametofito

haploide.

2n

nn

nnnn

Meiosis

Esporas sexuales o meiosporas

ESPOROFITO (2n)

GAMETOFITO (n) GAMETOFITO (n)

mitosis mitosis

Ciclo vital musgo

CICLO DIPLOHAPLONTE: HELECHOS