PROSES DEKOMPOSISI

Post on 25-Nov-2014

137 views 10 download

Transcript of PROSES DEKOMPOSISI

PROSES DEKOMPOSISI BAHAN ORGANIK:BAKTERI AEROB HETEROTROPIK

Bahan organik - anorganik Bahan organik adalah bahan yang berasal dari

makhluk hidup Contoh : humus Material anorganik adalah mineral, material non

organik yang tidak disintesis secara biologis oleh makhluk hidup.

Contoh : kalium, natrium

Decomposition

Decomposition = Breakdown of organic matter

important for recycling of C and energy, as well as all nutrient elements (N, P, K, etc.).

Many organisms are very beneficial in ecosystems as decomposers.

Types of Decomposition

Abiotic processes - fire, etc. 

OM + O2 CO2, etc. Biotic processes:

Aerobic respiration

OM + O2 CO2, etc. Anaerobic respiration

OM CH4, etc.  Organisms most directly responsible for

decomposition are bacteria and fungi. 

OrganismeHeterotroph: (chemoorganotrophic) require

preformed organic nutrients to serve as sources of energy and carbon1. Fungi2. Protozoa3. Most Bacteria

Autotroph: (lithotrophic) obtain their energy from sunlight or by the oxidation of inorganic compounds and their carbon by the assimilation of CO2

OrganismePhotoautotroph: energy derived from sunlight

1. Algae (blue-green, cyanobacteria)2. Higher Plants3. Some Bacteria

Chemoautotroph: energy for growth obtained by the oxidation of inorganic materials. 1. Few Bacterial species (agronomic importance)a. nitrobacter, nitrosomonas and thiobacillus

METABOLISME HETEROTROF

Jamur dan bakteri tertentu mendapatkan energi dari oksidasi senyawa

organik. Senyawa organik mengandung karbon dan

nitrogen yang digunakan secara aerob atau anaerob untuk menghasilkan tenaga pereduksi seperti nicotinamide adenine dinucleotide tereduksi (NADH + H+), dan energi (ATP)

GROUP CLASS CARBON SOURCES ENERGY SOURCES BACTERIA

1 CHEMOAUTOTROPHS INORGANIC INORGANIC NITRIFYING BACTERIA

2 CHEMOHETEROTROPHS ORGANIC ORGANIC BACILLUS SP.

3 PHOTOAUTOTROPHS INORGANIC LIGHT CYANO BACTERIA

4 PHOTOHETEROTROPHS ORGANIC LIGHT PURPLE NON-SULFURBACTERIA

CLASSIFICATION OF BACTERIA ON CARBON AND ENERGY SOURCES

Decomposition RatesDecomposition rates vary depending on:

Climate and temperature organisms present Aeration Composition of the material (C:N ratio) Etc.– season

C:N Ratios of Selected Materials

Organic matter decompositionCarbon and Nitrogen Cycling

During each cycle of degradation about 2/3 of the organic carbon is used for energy and released as carbon dioxide (CO2)

Bacteria, FungiSoil organic matterBacteria, FungiSoil organic matter Nematodes, protists, humusNematodes, protists, humus

CO2CO2

CO2CO2

Plant litterPlant litter

During each cycle of degradation about 1/3 of the organic carbon is used to build microbial cells or becomes part of the soil organic matter

Organic matter decomposition

Carbon and Nitrogen Ratios

Organic matter decomposition

Carbon and Nitrogen Ratios

2/3 of carbon released as CO2

Average C/N ratio of bacteria and

fungi is 8:1

Litter C/N ratio around

90:1

CO2

C/N ratio 30:1

Immobilization

Soil N

Microbial C/N ratio is maintained at 8:1 by taking up N from soil

Importance of C:N ratio With residues of high C:N, there is

much competition for the limited N available.

If C:N ratio is high: only some organisms can decompose

(some types of bacteria and fungi, protozoan symbionts of termites).

they use up N quickly, so N becomes tied up and unavailable (immobilized).

Organic matter decomposition

Carbon and Nitrogen Ratios

Organic matter decomposition

Carbon and Nitrogen Ratios

Average C/N ratio of bacteria and

fungi is 8:1

Litter C/N ratio around

9:1

Litter C/N ratio around

9:1

CO2

C/N ratio 3:1

2/3 of carbon released as CO2

MineralizationSoil N

Microbial C/N ratio is maintained at 8:1 by releasing N to the soil

Departemen Kelautan dan Perikanan 2006

Sumber: DKP (2008)

Sumber: BPS (2009)

POLUSI PADA TAMBAK

Sumber: Avnimelech dan Ritvo (2003)

ECOSYSTEM OF MICROORGANISM IN SHRIMP POND

CO2

CO2

CO2,SO42-,NO3

MICROORGANISM NH3H2S

O2

O2

PHYTOPLANKTON(PHOTOSYNTHESIS)

MICROORGANISMSHRIMP

ORGANIC WASTE BENTHOS

BENEFICICEL MICROORGANISM ACTIVITIES IN SHRIMP POND

Tekstur (pipet) Estrak 1:5 Terhadap contoh kering 105° C

Pasir (%)

Debu (%)

Liat

(%)

pHDHL

(dS/m)

Salinitas

(mg/l)

Bahan Organik Olsen P2O5

(ppm)

Asam

humat

(%)

Asam

fulvat

(%)

KTK (cmol(+)/kg)

H2

OKCl

Walkey & Black C

(%)

Kjeldahl N (%)

C/N

0 2674 7,7

7,5 5,40 2840 1,69 0,14 12 48 0,02

0,21

29,66

0 3169 7,8

7,6 5,84 3070 1,59 0,15 11 40 0,06

0,16

25,57

KARAKTERISASI SEDIMEN TAMBAK

SEQUENCE OF MICROBIALLY MEDIATED REACTION IN SEDIMENT, INCLUDING STOICHIOMETRIC

DECOMPOSITION EQUATION (MARTENS 1978)

(CH2O)106(NH4)16H3PO4 + 106O2

106CO2 + 16NH3 + H3PO4 + 106H2O

NH4+ +1.5O2 ==> NO2

- + H2O + 2H+

NO2- + 0.5O2 ==> NO3

-

CH4 + 2O2 ==> 2H2O + CO2 AEROBIC RESPIRATION

(CH2O)106(NH3)16H3PO4 + 84.8NO3-

106 CO2 + 42.4N2 + 16NH3 + H3PO4 +148.4H2O5NH4

+ + 3NO3- ==> 4N2 + 9H2O + 2H+

NITRATE REDUCTION

(CH2O)106(NH3)16H3PO4 + 53SO42-

106 CO2 + 53S2- + 16NH3 + H3PO4 +106H2O

CH4 + SO42- ==> HCO3

- + HS- + H2O

2CH3CHOHCOOH + SO42- ==> 2CH3COOH + 2HCO3

- + H2S

SULFATE REDUCTION

CH3COOH ==> CH4 + CO2

CO2 + 4H2 ==> CH4 + 2H2O METHANE PRODUCTION

WATER

SEDIMENTS

AEROBICZONE

NITRATEREDUCTION

ZONE

SULFATEREDUCTION

ZONE

CARBONATEREDUCTION

ZONE

HOW TO STABLE WATER QUALITY IN SHRIM P POND

NITRATE-NITROGEN GAS CARBONDIOXIDE

DECOMPOSE BACTERIA

SHRIMP FEED

WASTE

PLANKTON

DEATH

ORGANIC SEDIMENT

DISSOLVED ORGANIC

NITROGEN CYCLE

WASTE FORM SHRIMP

NO2-

NH4+

UNEATEN FEED

NH3

ORGANIC CARBON

N2

NO2-

NO3-

DEATH ALGAECHEMOHETEROTROPHSBACILLUS SP.PSEUDOMONAS SP.

NITRIFICATION(CHEMOAUTOTROPHS)NITROSOMONAS

NITROBACTER

DENITRIFICATIONNITROGEN FIXATION

HOW CAN BACTERIA BENEFIT TO FOOD CHAIN? COMPOSTING IS A PROCESS OF MICROBIAL D

EGRADATION THAT IS OF IMPORTANCE IN THE RECYCLING OF ORGANIC MATTER

Organic Matter New Organism

Compost / HumusOxygen

Energy / HeatCO2 Water

Water Microbs

FECAL MATERIALSLUDGEWASTE ORGANIC

MATTERMICRO-ORGANISM

CILIATEPROTOZOA

ROTIFERCOPEPOD

FRIENDLYBACTERIA

OXYGEN + MOISTURE

AUTOTROPHIC AQUACULTURE POND

HETEROTROPHIC AQUACULTURE POND

BENEFITS OF BOTH CONDITION

BEGINNING (AUTOTROPHIC CONDITION) UTILIZE OF NUTURAL FOOD IN POND BY SHRI

MP OXYGEN WAS PRODUCED BY PHOTOSYNTHESIS

TOWARDS THE END OF THE CYCLE (HETEROTROPHIC CONDITION) N-ASSIMILATION BY MICROBIAL POPULATION FOOD SUPPLEMENTATION BY BACTERIAL FLOC MORE STABLE ECOSYSTEM

MICROBIAL ECOLOGY

ALGAE-DOMINATED

HIGH PHYTOPLANKTON GREEN WATER

LOW TBC N-UPTAKE VIA PHOT

OSYNTHESIS PRODUCE O2

USE CO2

INCREASE pH

BACTERIAL-DOMINATED

HIGH TBC AND FLOC LOW “GREEN WATER” MO

RE BROWNISH COLOR N-ASSIMILATION AND N

ITRIFICATION USE O2

PRODUCE CO2

REDUCE pH

POND AND WATER MANAGEMENT

SHRIMPFEED

ALGAE/PLANKTON

ORGANIC MATTER/WASTE

VACCINE

PROBIOTICSUPPLEMENTARY FEED

SEDIMENT/SLUDGEDECOMPOSING BACTERIA(FRIENDLY BACTERIA)

DECOMPOSING BACTERIA(FRIENDLY BACTERIA)

CO2

O2

REMOVE SLUDGEDRAIN-OUT

DRIAN-OUT

CHEMICAL/SEDIMENTATION

PHYSICALMETHOD

FILTERTANK

SCREENINGFILTER

OUTHER

MOLLUSCS

FISH

OTHERBIOLOGICALMETHOD

PRACTICE

INCREASE POND WATER VOLUMN (WATER DEPTH, SHOULD NOT LESS THAN 1 m.) REDUCE TEMPERATURE FLUCTUATION DILUTE TOXIC (IF BE PRODUCED IN POND) REDUCE LIGHT PENETRATION INCREASE BUFFER CAPACITY

PREVENT PLANKTON DIE OFF/OVER BLOOMING

PRACTICE

MAINTAIN ECOLOGICAL BALANCE FRIENDLY BACTERIA AND NUTRIENTS ADDITION REGULARLY MONITOR pH (and DO)

INCREASE RESERVOIR CAPACITY AERATION LOW SALINITY CULTURE PROPER STOCKING DENSITY

POND BOTTOM IMPROVEMENT

Conventional Remove Sludge Change Surface Layer Of Soil Over Layer The Bottom With New Soil Alternative Treatments Combination Of Above Methods

WHAT DO YOU GET? LESS ORGANIC LEFT-OVER AT BOTTOM GOOD WATER COLOUR STABILITY GOOD NATURAL (SUPPLEMENT)FOOD FOR

POST LARVA GOOD GROWTH & FCR LESS BACTERIAL DISEASE INCIDENCE SUSTAINABLE CULTURE FARMER HAPPY