Principles of Communications Lecture 7: Analog...

Post on 27-Mar-2020

10 views 0 download

Transcript of Principles of Communications Lecture 7: Analog...

  • Principles of CommunicationsLecture 7: Analog Modulation Techniques (5)

    Chih-Wei Liu 劉志尉National Chiao Tung Universitycwliu@twins.ee.nctu.edu.tw

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 2

    Outlines

    Linear Modulation

    Angle Modulation

    Interference

    Feedback Demodulators

    Analog Pulse Modulation

    Delta Modulation and PCM

    Multiplexing

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 3

    Analog Pulse Modulation

    Message waveform is represented by regularly spaced sample values (sample signals) – discrete in time.

    Historically, these methods are the early attempts to achieve modern communications. They are in the twilight zone between analog and digital modulations.

    Today, their basic forms can still be found in some electronic components such as ADC.

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 4

    Analog/Digital Pulse-coded

    Analog pulse modulation: A pulse train is used as the carrier wave. Some characteristic feature of each pulse (e.g., amplitude, duration, or position) is used to represent message samples.PAM – pulse amplitudePDM – pulse durationPPM – pulse position

    Digital Pulse Modulation: Messages are discrete-amplitude (finite levels) samples.DM – delta modulationPCM – pulse-code modulation

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 5

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 6

    Pulse-Amplitude Modulation (PAM)

    The amplitude of each pulse corresponds to the value of the message signal m(t) (at the leading edge of the pulse).

    The pulse generator can be considered as a “filter”.

    ( 0.5 )( ) ( )

    1, 2where 0, otherwise

    Sc S

    n

    t nTm t m nT

    WttW

    ττ

    =−∞

    − +⎡ ⎤= ⋅Π ⎢ ⎥⎣ ⎦⎧

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 7

    PAM Signals

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 8

    Demodulation

    Recover Mδ(f) ↔ mδ(t) samples

    Recover M(f) ↔ m(t) message

    Equalizer: Recover distorted signals particularly when the distortion method is known or estimated.

    1/H(f) LPF

    equalizer

    mc(t) mδ(t) m(t)

    )()()(

    fHfMfM c=δ

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 9

    Pulse-Width Modulation (PWM)

    Pulse width ∝ the values of messageSpectrum: complicated (Fourier-Bessel spectra)

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 10

    PWM/PPM Generation

    Mod:

    Demod: area of “pulse”.

    Low-pass filtering (integration)

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 11

    Pulse-Position Modulation (PPM)

    Pulse position ∝ the values of message

    Spectrum: complicated

    Demodulation: (1) LPF & integration

    (2) convert PPM to PWM → LPFConversion of PPM or PWM to PAM: a ramp generator (re)starts at kTs and stops at tk. (next page)

    ( ) ( )nn

    x t g t t∞

    =−∞

    = −∑

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 12

    Conversion Between PWM & PPM

    (integration)

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 13

    Delta Modulation

    m(t) → samples (analog amplitude) → difference → binary

    or m(t) → difference → binary → samplesOperations:

    (1)

    (2)

    (3)

    (4)

    )()()( tmtmtd s−=

    0

    0

    , 0( ) ( ( )) =

    , ( ) 0d(t)

    t threshold d td t

    δδ

    ≥⎧Δ = ⎨−

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 14

    DM Signal Generation

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 15

    Slope Overload

    The message signal m(t) has a slope greater than can be followed by the stair-step approximation ms(t).

    Assume step-size = δ0 → slope (max) = δ0/Ts

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 16

    Solution to Overload

    Adaptive delta modulation -- adjust the step-size δ0based on xc(t).

    Idea: If m(t) ≈ constant, xc(t) alternates in sign

    ⇒ make δ0 ↓.

    If m(t) ↑ ( or ↓ ) rapidly, xc(t) has the same polarity

    ⇒ make δ0↑.Method: Detect the “trend” of signal

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 17

    Adaptive DM

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 18

    ADM Receiver

    Transmit step-size or regenerate the step-size at the receiver according to pre-decided “rules”.

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 19

    Pulse-Code Modulation (PCM)

    m(t) → samples (analog amplitude) → quantized samples → binary representation → binary modulated waveform (ASK (AM), PSK (PM), FSK (FM) to be discussed in Commun.II )

    Main advantages of digital communication

    – more reliable communication

    Main disadvantages of digital communication

    – wide BW ( reduced by “compression”)

    – complicated circuits ( cost reduced by VLSI)

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 20

    PCM Signal Generation

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 21

    BW of PCM

    Assume the number of quantization levels=q=2n

    Message BW = W

    Sampling rate = 2W

    ⇒ 2nW binary pulses/secondAssume maximum width of pulse,

    ⇒ transmission BW ≈ knW, k=constant

    Hence, B ≈ k2Wlog2qRecovered message error is due to mainly quantization error. Thus, q↑ error↓ B↑

    12nW

    τΔ =

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 22

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 23

    Multiplexing

    A number of data sources share the same communication channel.

    Frequency-Division Multiplexing (FDM)

    Quadrature Multiplexing (QM)

    Time-Division Multiplexing (TDM)

    Nov 2009hmhang, EE/NCTU 23

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 24

    FDMSeveral message signals are translated, using modulation, to different spectral locations and added to form a baseband signal.

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 25

    Example: Stereophonic FM

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 26

    Quadrature Multiplexing (QM)

    Quadrature-carrier multiplexing: transmit two signals on the same carrier frequency. (not exactly FDM)

    Note that cos and sin are orthogonal.QM Quadrature Amplitude Modulation (QAM)

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 27

    1 2

    1 2

    1

    ( ) [ ( )cos ( )sin ].

    If the receiver has a carrier phase error, i.e.,

    ( ) 2cos( ).( ) 2cos( )

    [ ( )cos ( )sin ] + [ ( )cos(2 )

    c C c c

    c

    r c

    C

    C c

    x t A m t t m t t

    LO t tx t t

    A m t m tA m t t

    ω ω

    ω θω θθ θ

    ω θ

    = +

    = +⋅ +

    = −+ 2

    1 2

    ( )sin(2 )].( ) [ ( )cos ( )sin ]. (ideal : 0 )

    c

    DD C

    m t ty t A m t m t

    ω θθ θ θ+ +

    ⇒ = − →

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 28

    Time-Division Multiplexing (TDM)

    Each message signal occupies a small time slot in every Ts second.

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 29

    BW of TDM

    A “rough” estimate of BW

    1

    1

    Baseband message BW = . There are channels.Samples per second = 2 .

    Total samples per second: 2 . Or,

    Total samples per second = 2 .

    Total baseband BW to accommodate all sources

    i

    iN

    s ii

    N

    ii

    W NT WT

    T n WT

    W

    =

    =

    = ∑

    1

    = .N

    ii

    B W=∑

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 30

    Example: Digital telephony system

  • Commun.-Lec7 cwliu@twins.ee.nctu.edu.tw 31

    Comparison of MUX

    FDM: simple to implement,inter-modulation distortion (crosstalk) due to nonlinear channels

    TDM: less crosstalk (in memoryless channels),difficult to keep synchronization (frame structure, header), “digital” (sampled) signals

    QM: efficient use of channel, crosstalk between I & Q channels (needs coherent demodulation)