Pinning Mode Resonances of 2D Electron Stripe Phases in High Landau Levels

Post on 19-Mar-2016

24 views 1 download

description

Pinning Mode Resonances of 2D Electron Stripe Phases in High Landau Levels. Han Zhu ( 朱涵 ) Physics Department, Princeton University National High Magnetic Field Laboratory, Florida State University G. Sambandamurthy, NHMFL/FSU&Princeton EE, now SUNY buffalo - PowerPoint PPT Presentation

Transcript of Pinning Mode Resonances of 2D Electron Stripe Phases in High Landau Levels

Pinning Mode Resonances of 2D Electron Stripe Phases in High Landau Levels

Han Zhu (朱涵 )

Physics Department, Princeton UniversityNational High Magnetic Field Laboratory, Florida State University

G. Sambandamurthy, NHMFL/FSU&Princeton EE, now SUNY buffaloPei-Hsun Jiang, NHMFL/FSU&Princeton EER. M. Lewis, NHMFL/FSU, now U MarylandYong Chen Princeton EE&NHMFL/FSU, now Purdue

L. Engel NHMFL/FSUD. C. Tsui, Princeton EE

L. N. Pfeiffer and K. W. West Bell Labs, Alcatel-Lucent

2D electron systemsAlxGa1-xAs

AlxGa1-xAsGaAs 10~50 nm

-Lat

e 90

’s, 1

0 m

Integer Quantum

Hall Effect

Fractional Quantum

Hall Effect

Fractional Quantum

Hall Effect of Composite Fermions

Stripes, Bubbles, etc.

Non-Abelian states

-198

0, 1

00 k

-200

5 30

m

-200

7 45

m

-80’

-90’

, 1 m

Electron mobility(cm2/Vs)

Lilly et al, ’99 ...

CDW in Quantum Hall systems Landau Level filling ν> 4

Fogler et al. ’96,R. Moessner, and J. T. Chalker, 96’

4

IQHE-WignerCrsytal hard

easy

R_yy

R_xx

Different viewpoints on the stripe phase

Stripe crystal smectic nematic

Also, elliptical Fermi surface...Oganesyan, Kivelson, Fradkin’01

A review available by Fogler in cond-mat . . .

Wigner crystal: Pinning modes

B

fpk is a measure of average pinning energy per electron; pinning energy lowers overall energy

In high B, at low filling factors, electrons form a Wigner crystal

Microwave/rf measuring technique

Stripe phase: anisotropic pinning mode

Stripe phase in In-plane field:Turns resonances on and offInterpretation: pinning energy

measured by resonance frequency

Outline

W=78 m

• Metal-film coplanar waveguide

Microwave/Rf spectroscopy

Re(xx) = (1/NZ0)ln(P/P0)

Erf

stripe

[110], “x”, “hard” [110], “y”, “easy”n = 2.61011 cm-2

μ= 2.9107 cm2/VsT ~ 35 mK

Predicted ν range:Shibata&Yoshioka, PRL ’01

Spectra 4<ν<5

bubble

bubble

[110], “x”, “hard” [110], “y”, “easy” Spectra 4<ν<5 : overview

stripe

bubble

bubble

DC experiments:Pan et al., PRL, ‘99 &

PRL,‘00; Lilly et al., PRL,

’99; Zhu et al., PRL, ‘02;Cooper et al., PRL,

‘04 etc.and more...

Lilly et al., PRL, 1999

Bip

Bip

ν =9/2 in Bip DC transport: R_xx

R_yy

y, [110]

x, [110]

(Finite thickness) Bip - induced anisotropy energy CDW picture Finite layer thickness Favors stripe BipJungwirth et al. PRB 99’; Stanescu et al. PRL 00’.

Rotator Probe for Microwave/Rf spectroscopy

Sample Flexible transmission line Coax cable

Bip=0 stripes y, [110]

x, [110]

Four cases:

_xx or _yy Bip || x or y

Bip brings up fpk of resonance in xx

Bip=0 stripes

x, [11 ̅0]

y, [110]

Bip

Bip along y

Resonance switches from xx to yy around Bip=1 T

Bip

Bip along x Bip=0 stripes

x, [11 ̅0]

y, [110]

Peak Conductivity

Bip

Bip

y, [110]

x, [110]

Bip

Bip

Peak Frequency

K B Cooper et al.. Solid State Comm 119 89 (2001)

30 nm QW, 2.7 1011/cm2

Native Anisotropy not understood, weak, sample dependent

Finite thickness Bip - induced anisotropy energy

Calculated from CDW, finite layer thickness, Favors stripe Bip

Jungwirth et al. PRB 99’; Stanescu et al. PRL 00’

Measured by us: Pinning energy anisotropy Disorder-carrier interaction, Bip dependent: increases with Bip

Favors stripe | | Bip

What can be determining the stripe orientation

Pinning energy is relevant to determining stripe orientation!

Stripe phase resonance

Hard direction 100 MHz, pinning mode interpretation

Apply Bip: switches resonance direction fpk increase with Bip

measure of pinning energy

Bip along x

xx

yy

Summary