HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 ·...

Post on 01-Mar-2020

2 views 0 download

Transcript of HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 ·...

Hot Carrier EffectsHot Carrier Effects

충북대학교 전자정보대학 김영석

2 12 32012.3

1

Evolution of MOSFET technologyITRS predictions in 2009

2005, λ=90nm2011, λ=40nm, vdd=0.9V, tox,eff=1nm

2017 λ 162017, λ=16nm

2전자정보대학 김영석

Moor’s LawIC complexity roughly doubles every 2 years” Gordon Moore, 1965

Higher Density

But, Hot Carrier Effects

3전자정보대학 김영석

ScalingDennard (IBM) in 1974

Constant Electric Field Scaling

4전자정보대학 김영석

ScalingThreshold Voltage VTH

V

CQ

VVVox

depFFBoxsiFBTH

+

−++=Δ+Δ+=

)2(2

2

εφε

φφφ

VqNCQ

tCWqNQ

qNVW

SBFsubsidep

ox

oxoxdepsubdep

sub

SBFsidep

+=

==−+

=

/)2)((2

,,)2(2

φε

εφε

kV

tkkVqkN

VV

tC

TH

oxox

SBFsubsisiFBTH

oxoxox

=+

+Δ+≈/

)/2)((2:scalingafter

/

'

εφε

φ

ε

Drain Current

D l

kIkVkV

kLkWkCI D

THGSoxnD =−≈ 2' )//(//)(

21 μ

WLCCVC GSGS 2Delay

kkIkVkC

WLCCI

D

GSGS

oxGSD

GSGS

ττ

τ

==

≈=

/)/)(/(

3,

'

Power Consumption

' )/)(/( PkVkIP DD ==

5

2)/)(/(k

kVkIP DD

전자정보대학 김영석

MOSFET ReviewCross-section

Depletion

0 < VGS < VTH

S bth h ld tSubthreshold current

Inversion

VGS >= VTHVGS > VTH

6전자정보대학 김영석

MOSFET: ID @ InversionLinear Region

ID ~ VDS

Voltage controlled resistor (VGS)

Pi h ffPinch-off

VDS=VDSAT

Saturation RegionSaturation Region

VDS => Leff slowly

Vchannel=VDSAT=const

Pinch-off section absorbs (VDS-VDSAT), high-field region, electron velocity saturationvelocity saturation

Hot Carrier Injection

Large lateral electric field

Population of high-energy electrons

7전자정보대학 김영석

Scaling => 채널길이 감소Lateral E-field (drain) 증가 (>100kV/cm)=> Hot-Carrier 발생 (E>1.5eV)

Impact Ionization(I/I) or Avalanche Breakdown

Isub 증가 => 기판전압증가, Snapback 발생

I 증가 > O id T / VT 증가Ig 증가 => Oxide Trap/ VT 증가

Hot Carrier Effects(HCI)

8전자정보대학 김영석

Substrate Currents Mechanism

Electron Energy > 1.5eV

=> Impact Ionization

> El t H l i ti=> Electron-Hole pair generation

전자는 드레인 or 게이트로 이동

정공은 기판으로 이동 (Isub)정공은 기판으로 이동 (Isub)

Isub can be used to predict the device lifetime

9전자정보대학 김영석

Substrate Currents Difference between Electrons and Holes: pn μμ ⋅≈ 3

Electron-Hole pair generation by Electrons: Energy>1.5eV

Electron-Hole pair generation by Holes: Energy>2.4eV

p

10전자정보대학 김영석

Substrate Currents(Isub) 문제점Breakdown 발생: 정공 기판으로 이동 => 기판 전압 상승 => 소스-기판 순방향바이어스 => 소스에서 전자들이 기판으로 방출 (기생 npn BJT동작) => More I/I => Snapback Breakdown

CMOS Latch-Up 유발CMOS Latch Up 유발

Back Bias Generator 전압을 올림

드레인-기판 공핍영역에서 정공에 의한 Secondary Impact-Ionization 발생

A monitor to correate device degradation with lifetime

Device Degradation/Isub are driven by a common source: Emax

11전자정보대학 김영석

Hot-Carrier Injection into Gate Oxide 게이트 산화막으로 주입된 대부분의 전자들은 게이트 전극으로 이동 ( 약 fA - pA).

이중 1/1E6 정도의 전자들은 게이트 산화막에 trap됨

Negative Charge => VT 증가 => 전류감소

12전자정보대학 김영석

Nature of Gate Oxide DamageHCI increases with shrinking

L , xj , tox , Nsub => E(lateral), E(vertical) (significant)

HCI

2 D O id h t i I t f t ti2 Damages: Oxide charge trapping, Interface trap generation

Very localized

gm , VTH , IDgm , VTH , ID

2 Voltage Regions

VDS ~ 2VGS: Sat. region, Ech large, I/I, Max substrate current, Interface trap generation (no Oxide charge trapping)

VDS ~ VGS: Linear region, Ech small, no I/I, Hot electron injection into oxide, Oxide charge trapping (Less Interface trapinto oxide, Oxide charge trapping (Less Interface trap generation)

13전자정보대학 김영석

MOSFET Degradation 3단계(1) Impact Ionization

E>1.5eV

Substrate Current 증가

(2) O id b i 넘기(2) Oxide barrier 넘기

E>3.2eV

Lucky electron modelLucky electron model

Gate Current 증가

(3) Oxide Interface Trap 생성

E>3.7eV

gm 감소(VTH 증가)

14

(1) Impact IonizationChannel hot electron(CHE) injection

Impact Ionization(I/I) injection

(or Drain avalanche hot carrier(DAHC) injection)

15전자정보대학 김영석

Impact Ionization by Hot-ElectronsElectrons are accelerated by the E-field

Get sufficient energy to break the covalent bond

Impact-Ionization=Avalanche Breakdown

I b li bl d i t it f th t f h tIsub: a reliable and convenient monitor of the amount of hot-carrier degradation

16전자정보대학 김영석

Impact Ionization by Hot-Electrons

Isub ~ IDS * Pi

Pi = the probability of an electron travelling a sufficient distance to gain the kinetic energy or more without suffering a collision

E/Φ λiΦ

eVeP

i

Eqi

mi

5.1~energy ionizationimpact : where

/

Φ= Φ− λ

Substrate current

mi EqDSsub eICI λ/

1Φ−= DSsub 1

17전자정보대학 김영석

Fowler-Nordheim (FN) TunnelingPrimarily by Eox

Localized at the source (maximum Eox at the Source)

⎟⎟⎞

⎜⎜⎛ −

= CEJ βexp2

Nonsignificant (But Significant for very thin oxide)

⎟⎟⎠

⎜⎜⎝

=ox

oxT ECEJ exp

Nonsignificant (But Significant for very thin oxide)

18전자정보대학 김영석

Direct TunnelingDirect Tunneling occurs in thin oxide at low voltages

For tox<3nm, Direct Tunneling Current>Thermal generation Current

No Inversion layer in MOS-C

2 5 i th Li it?2.5nm is the Limit?

Also Shown are Interface-Trap Assisted Leakage Paths

19전자정보대학 김영석

(2) Ig: Lucky Electron ModelP1(A to B): Channel Electrons gain kinetic energy from the lateral channel electric field

P2(B): The Momentum of the hot electron must be redirected toward the interface by a Quasi-Elastic Collisiontoward the interface by a Quasi Elastic Collision

No energy-robbing collision

Retain the kinetic energy

Ped(B to C): Travel without suffering further collisions

Poc(C): Oxide scattering factor

20전자정보대학 김영석

Lucky Electron ModelLucky Electron Model

eVeIIII

i

chsubchGi

5.1~energy thresholdionization:/~/ /

Φ

ΦΦ−

V2.3~energybarrier injection :Φ

21전자정보대학 김영석

(3) Oxide DegradationOxide Degradation

Oxide Charge Trapping

Interface Charge Trapping => 치명적

Ch f D i h t i ti d t id dChange of Device characteristics due to oxide damage

gm decrease

VTH increaseVTH increase

Oxide trapped charge / Interface trapped charge : Important role in the device degradation due to HCI

22전자정보대학 김영석

Si/SiO2 Interface Charges① Mobile Ions

윈인: Na+, K+ ions

성질: 이동성이 좋음. 특히 BT(Bias-Temperature) Stressing시 Na+ 이온이 산화막에서 이동하여 VFB가 변화함이온이 산화막에서 이동하여 VFB가 변화함.

제거방법:

i) Phosphorus(PSG등) Stabilization => Na+가 PSG층으로 이동하여 Trap됨.p 등 가 층으로 이동하여 p됨

ii) Chlorine Neutralization => Na+가 Cl(HCl,Cl2)과 결합하여 NaCl 형성

=>Neutral

② Fixed Charge

윈인: 산화과정시 생기는 Excess Ionic Silicon으로 추정됨.

성질: Positive Si/SiO2 interface에 위치 Metal성질: Positive, Si/SiO2 interface에 위치,

(111)Wafer는 (100)보다 3:1정도로 QF 많음.

제거방법: Ar, N2 Annealing으로 2E11cm-2 정도로

Metal

Trapped Charge+++ K+, Na+

Mobile Ions

제거방법 으로 정도로

줄일 수 있음.SiO2----

Interface Traps

X X X X

Fixed Charge+ + + +

23

Si

전자정보대학 김영석

Si/SiO2 Interface Charges③ Interface Traps(Surface States)

윈인: Si/SiO2 Interface에서 Dangling Bond에 의해 Forbidden Band에생기는 Energy State

성질: Donorlike/Acceptor Trap 두종류 있음성질: Donorlike/Acceptor Trap 두종류 있음,

Si/SiO2 interface에 위치, VG의 함수

제거방법: PostMetallization or Hodrogen Ambient Annealing => 제거방법 g g

Hydrogen이 Dangling Bond와 결합하여 QIT 제거.

(DIT= 1010 states/cm2-eV)

④ Radiation Effects: x-rays, Energetic Electrons, Protons,Heavy Ionized Particles에 의해 QF/QIT 증가시킴

Metal

제일큼영향/

)(

ox

SIT

ox

MM

ox

FMSFB

CQC

QC

QCQV

Φ

−−−Φ=φγ

SiO2

Trapped Charge+++----

K+, Na+Mobile Ions

제일큼영향 /, oxFMS CQΦ

Si

Interface Traps

X X X X

Fixed Charge+ + + +

24전자정보대학 김영석

Fixed oxide chargeSi-SiO2 atomic model

Si dangling bond

Oxygen dangling bond

B th d li b d l t /h l TRAPBoth dangling bond : electron/hole TRAP

SiN : nitrogen dangling bond

25전자정보대학 김영석

Threshold Voltage Shift

0@FGpp VVQCVV + 0@

FGTHiTH

DSoxpp

FG

oxpp

ppCGFG

QVV

VVCC

QCC

VV

−=

==+

++

=

)22(2 0 FFSBTHdep

FFBTHi

oxppTHiTH

VVCQ

VV

CCVV

φφγφ −++=−+=

+

)(0 FFSBTHox

FFBTHi Cφφγφ

26전자정보대학 김영석

CharacterizationVFG 영향

A region: Electrons(Ich) 증가 => I/I 증가

B region: Emax 감소 => I/I 감소

VD 영향VD 영향

VD 증가 => Emax 증가 => I/I 증가

Leff 영향Leff 영향

Leff 감소 Emax 증가 => I/I 증가

27전자정보대학 김영석

CharacterizationISUB vs VD

VTH vs time

Lifetime vs ISUB

28전자정보대학 김영석

Device DegradationHCI

=> VTH 감소, 전류 IDS 감소, gm 감소

=> Circuit Speed 감소

> Ci it F il=> Circuit Failure

29전자정보대학 김영석

Device LifetimeIn General, Device Lifetime is defined by

%3

10

D

T

II

mVV

%3=Δ m

D

gg

I

mg

30전자정보대학 김영석

Techniques to Reduce HCIReduce Maximum Electric Field (Emax)

Reduce VDD

Gate Oxide Engineering for higher reliability (e.g., oxynitrides)

St t t t th t th f EStructure to separate the current path from Emax

31전자정보대학 김영석

LDD(Lightly Doped Drain)Hot Carrier Effect 방지를 위한 소자 구조

LDD(Lightly Doped Drain)

32전자정보대학 김영석

SummarySubstrate Current by Impact Ionization

G t C t b L k El t

(1) /1

mi EqDSUB eICI λϕ−=

Gate Current by Lucky Electrons

(2) /2

mb EqDG eICI λϕ−=

(1)+(2)

(3))( / ibSUBG II ϕϕ∝ (3) )( ib

D

SUB

D

G

IIϕϕ∝

oxide barrier toenergy :2.3IonizationImpact create energy to :3.1

eVeV

b

i

==

ϕϕ

33전자정보대학 김영석

SummaryDevice Lifetime by Interface Traps (IG, ISUB)

eIWC Eq

D

mit /5

(4)(1)

(4) =τ λϕ

II

IW SUB iit / (5) )(

(4)(1)

+

−τ ϕϕ

WII

II

SUB

D

DD

9.2

9.1

∝∴τSUB

TI t ftt73 V

34

TrapsInterfacecreateenergy to :7.3 eVit =ϕ

전자정보대학 김영석

SummaryLifetime: Ex

AI

mWAIAI

SUB

SUBD

/103

60,10,10

129.2

64 ===

−− μ

years

mAWID

SUB

31sec101

/103

9

129.1

=×≈∴

×≈

τ

μ

Note that Li-Ion battery: 2 years, 400회

35전자정보대학 김영석

ReferencesHot Carrier Design Considerations for MOS Devices and Circuits, C. T. Wang, Van Nostrand Reinhold, 1992

Hot-Carrier Reliability of MOS VLSI Circuits, Y. Leblebici and S. M. Kang, Kluwer Academic Publishers, 1993Kang, Kluwer Academic Publishers, 1993

36전자정보대학 김영석