EMLAB 1 Chapter 4. Operational amplifiers 2014. 9. 24.

Post on 05-Jan-2016

220 views 3 download

Transcript of EMLAB 1 Chapter 4. Operational amplifiers 2014. 9. 24.

EMLAB

1

Chapter 4. Operational amplifiers

2014. 9. 24.

EMLAB

2Contents

1. Introduction

2. Op-Amp Models

3. Fundamental Op-Amp Circuits

4. Comparators

5. Application Examples

6. Design Examples

EMLAB

3Why operational amplifiers ?

1. Originally, the op-amp was designed to perform mathematical operations such as addition, subtraction, differentiation, and integration.

2. By adding simple networks to the op-amp, we can create these “building blocks” as well as voltage scaling, current-to-voltage conversion, and myriad more complex applications.

EMLAB

42. Op-amp model

0,0, ARR OiIdeal op-amp :

ini

0,0 inini

EMLAB

5Example

001

ARR

RA

RR

R

V

V

LO

L

Thi

i

S

O

EMLAB

6Example : unity gain buffer

inOiSS VARRRIV 0)(

inOO VAIRV 0

iin IRV

1)()( 0

0

0

0

iOiS

iO

inOiS

inO

S

O

IRARRRI

IRAIR

VARRRI

VAIR

V

V

SO VV

EMLAB

7Example 4.2Let us determine the gain of the basic inverting op-amp configuration shown in the figure using both the non-ideal and ideal op-amp models

0

0

2

10

2

11

1

1

o

eo

o

i

S

R

A

R

RRR

1

2

22221

120

11111111

/

R

R

RA

RRRRRRR

RR

ooi

S

EMLAB

8

Ideal model

1

221, R

RIRIR

S

ooS

Virtual short

][0 V

I

I

• Step 1. Use the ideal op-amp model: Ao = ∞, Ri = ∞, Ro = 0.i+= i-=0, v+= v-

• Step 2. Apply nodal analysis to the resulting circuit.• Step 3. Solve nodal equations to express the output voltage in terms of the

op-amp input signals.

EMLAB

9

Let us now determine the gain of the basic non-inverting op-amp configuration shown in the figure.

Example 4.3

EMLAB

10

Consider the op-amp circuit shown in the figure. Let us determine an expression for the output voltage.

Example 4.5

EMLAB

11Example 4.6

The circuit shown in the figure is a precision differential voltage-gain device. It is used to provide a single-ended input for an analog-to-digital converter. We wish to derive an expression for the output of the circuit in terms of the two inputs.

0

0

2

212

1

2

21

1

1

2

1

RRR

RRR

G

a

G

ao

Go R

R

R

R 2

1

221

21)(

EMLAB

12Example 4.7

xV

43010

10 oox

VVkk

kV

1V

04

2

01010

021121

121

VVVVVVV

k

VV

k

VV

x

x

21 48 VVVo

EMLAB

134.4 Comparators

(a) A zero-crossing detector and (b) the corresponding input/output waveforms.

(a) An ideal comparator and (b) its transfer curve.

EMLAB

14Application example 4.11An instrumentation amplifier of the form shown in Fig. 4.26 has been suggested. Thisamplifier should have high-input resistance, achieve a voltage gain Vo/(V1-V2) of 10, em-ploy the MAX4240 op-amp listed in Table 4.1, and operate from two 1.5 V AA cell batter-ies in series. Let us analyze this circuit, select the resistor values, and explore the validity of this configuration.

2xV

1V

2V

yxoA

ox

A

xy

VVVR

VV

R

VV

22R

VV

R

VV

R

VV yx 21

2

2

1

1

EMLAB

15

)(),( 212

2211

1 VVR

RVVVV

R

RVV yx

)(1 2121 VV

R

RRVVVV xyxo

22

12

21

11 1,1 V

R

RV

R

RVV

R

RV

R

RV yx

)(102

1 211

21

RRR

R

VV

Vo

RR 5.41

kRkRex 450,100) 1

EMLAB

16