Center for Interface Science: Solar Electric · PDF fileCenter for Interface Science: Solar...

Post on 16-Feb-2018

228 views 4 download

Transcript of Center for Interface Science: Solar Electric · PDF fileCenter for Interface Science: Solar...

Center   for   Interface  Science:Solar  Electr ic  Materials

Research supported as part of the Center for Interface Science: Solar Electric Materials (CISSEM), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE‐SC0001084

“The Interface Science of Emerging Thin Film Solar Energy Conversion Technologies: Learning to Understand, Deal With and (Occasionally) Love 

Recombination and All That It Implies”

Scialog 2012 – Biosphere IINeal Armstrong

Center for Interface Science: Solar Electric Materialswww.solarinterface.org

S o l a r i n t e r f a c e . o r g

2

“Generation III” PVs – What are they? Where are they headed?

New Thin Film PV Technologies

e.g. Solarmer, Polyera, Heliatek…..

Nearly 7% module efficiency

http://www2.imec.be

S o l a r i n t e r f a c e . o r g

S o l a r i n t e r f a c e . o r g

Roll‐to‐roll vacuum processing??

S o l a r i n t e r f a c e . o r g

Where are solar cell efficiencies going?

6

December 2011

Heliatek

S o l a r i n t e r f a c e . o r g

S o l a r i n t e r f a c e . o r g

DOE SunShot Forum, June 2012 

Can we make PV competitive without 

subsidy?

S o l a r i n t e r f a c e . o r g

nano‐laminate barrier layers/substrate

bottom contact

charge selective  interlayer

active layer

top contact

light management

nano‐laminate barrier layers

charge selective  interlayer

The motivation for interface science

9

contact

active layer

Interlayer ca. 10‐30 nm)

contact

contact

Interlayer

Ratcliff, Zacher et al. JPC Letters Perspective 2011

Images: Kai‐Lin Ou, Xerxes Steirer, Delvin Tadytin

S o l a r i n t e r f a c e . o r g

The motivation for interface science

10

Ratcliff, Zacher et al. JPC Letters Perspective 2011

Layer‐by‐layer assembly

SemiconductorNanocrystalActive Layers

NC‐polymer hybrids

Selective interlayer

ITO

What makes a good contact?Transparency, conductivity, low‐cost, earth abundant, scalable

Other issues: Heterogeneity in electrical propertiesInterfacial compatibility with organic or inorganic active layers

S o l a r i n t e r f a c e . o r g

S o l a r i n t e r f a c e . o r g

CISSEM Identity – Principal Investigators

13

http://www.nrel.gov/gis/solar.html

DavidGinger

JosephBerry

DanaOlson

DavidGinley

AssociateDirector

Neal ArmstrongDirector

Jeanne PembertonAssociateDirector

S. ScottSaavedraAssociateDirector

OliverMonti

DominicMcGrath

SethMarderAssociateDirector

Jean‐LucBrédas

SamuelGraham, Jr.

BernardKippelenAssociateDirector

AntoineKahn

Chemistry, Electrical & Mechanical Engineering, Materials Science, Optical Sciences, Physics

S o l a r i n t e r f a c e . o r g

(A)

PTH

VOC

JSC PMAX

(B)

J

phJ oJ n PR ASR A

V

+

-

(C)

exp 1S So ph

o B P

V JR V JRJ J Jn k T e R

1ln

o

phBoOC J

Je

TknV SC OC

SOLAR

J V FFP

**

(D)

(E) (F)

=FF = 

S o l a r i n t e r f a c e . o r g

16

Component Materials and Interfaces in OPVs and Thin Film PVs

• Contacts (oxides and metals)• Charge selective interlayers (both oxide 

and molecular materials)• Substrates and barrier layers (often 

materials which are complementary to the contacts and interlayers)

S o l a r i n t e r f a c e . o r g

17

Facile and selectivecharge harvesting

• Contacts (oxides and metals)• Charge selective interlayers (both oxide 

and molecular materials)• Substrates and barrier layers (often 

materials which are complementary to the contacts and interlayers)

Component Materials and Interfaces in OPVs and Thin Film PVs

S o l a r i n t e r f a c e . o r g

18

• Contacts (oxides and metals)• Charge selective interlayers (both oxide 

and molecular materials)• Substrates and barrier layers (often 

materials which are complementary to the contacts and interlayers)

Oxide and metal contacts, and oxide interlayers

Component Materials and Interfaces in OPVs and Thin Film PVs

S o l a r i n t e r f a c e . o r g

19

• Contacts (oxides and metals)• Charge selective interlayers (both oxide 

and molecular materials)• Substrates and barrier layers (often 

materials which are complementary to the contacts and interlayers)

Dipolar and redox‐active interface modifiers

Component Materials and Interfaces in OPVs and Thin Film PVs

S o l a r i n t e r f a c e . o r g

20

• Contacts (oxides and metals)• Charge selective interlayers (both oxide 

and molecular materials)• Substrates and barrier layers (often 

materials which are complementary to the contacts and interlayers)

Unique approaches to interface characterization

Component Materials and Interfaces in OPVs and Thin Film PVs

S o l a r i n t e r f a c e . o r g

The Tools of CISSEM – Waveguide Spectroscopy

21

Potential modulated ATR Waveguide SpectroscopyW.M. Keck Center, University of ArizonaSaavedra Laboratory, University of Arizona

Transient Waveguide Absorbance SpectroscopySaavedra Laboratory, University of Arizona

New tools have been developed in CISSEM to characterize electron transfer at interfaces on multiple time and length scales in solution (and are being developed for condensed phase environments).

S o l a r i n t e r f a c e . o r g

The Tools of CISSEM – trEFM

22

trEFMGinger Laboratory, University of Washington

New implementations of Atomic Force Microscopy (AFM) to characterize heterogeneous, nano‐scale electrical properties at interfaces:  Time Resolved Electrostatic Force Microscopy (trEFM). Non‐contact trEFM can recover sub‐microsecond transients to characterize formation and migration of photo‐generated charges.

S o l a r i n t e r f a c e . o r g

The Tools of CISSEM – IPES and TPPE

23

fs Angle‐Resolved Two‐Photon Photoemission (TPPE) SpectroscopyMonti Laboratory, University of Arizona

IPESKahn Laboratory, Princeton University

CISSEM uniquely combines ultrasensitive, high‐resolution photoemission and inverse‐photoemission spectroscopies to map electronic structure of excited state levels of interfacial regions of contact and interlayer materials.

TPPE spectroscopy characterizes electronic structure of excited state levels of interfaces, and with fsec time resolution, can provide direct insight into electron transfer at interfaces.

S o l a r i n t e r f a c e . o r g

The Tools of CISSEM – UHV Surface Raman

24

Surface Raman SpectroscopyPemberton Laboratory, University of Arizona

CISSEM uses unique combinations of ultra‐sensitive optical and x‐ray surface spectroscopies to probe molecular composition and orientation at oxide/organic and metal/organic interfaces: vibrational spectroscopies, NEXAFS, and X‐ray reflectivity

S o l a r i n t e r f a c e . o r g

S o l a r i n t e r f a c e . o r g

REALLY BAD SOLAR CELLS!!Albery, Archer – Nature 1977Albery, Accounts of Chemical Research 1982

S o l a r i n t e r f a c e . o r g

Example redox couples: Ru(bipy)3+2 and Fe+2/Fe+3 IF all electrochemical processes 

completely optimized:   η ≈ 18%

S o l a r i n t e r f a c e . o r g

Albery, Archer – Nature 1977Albery, Accounts of Chemical Research 1982

Albery, Archer – Nature 1977Albery, Accounts of Chemical Research 1982Need for “kinetically selective contacts!”

S o l a r i n t e r f a c e . o r g

Grätzel, M., Recent Advances in Sensitized Mesoscopic Solar Cells. Accounts of Chemical Research 2009, 42 (11), 1788‐1798. 

see also Science Nov. 2011

Real compositional and energetic asymmetry

S o l a r i n t e r f a c e . o r g

ee‐‐hh++

Energy

 (eV)

‐4.0

‐3.0

‐5.0

‐6.0

EF,TCO

EHOMOD

ELUMOA

ELUMOD

EF,M

TCO 

Metal

eVAC = 0

Don

or

Acceptor

VOC = f(Vbi)≈ EHOMO

D – ELUMOA

load

EHOMOA

JSC = f(ELUMOD – ELUMO

A

Tang, et al. Appl. Phys. Lett 1986, 1987  Two‐layer OLED and OPVs

Type II Organic Heterojunction Devices

S o l a r i n t e r f a c e . o r g

Factors controlling OPV 

efficiency

S o l a r i n t e r f a c e . o r g

“Interlayer films” are needed to provide both kinetic and thermodynamic selectivity for charge harvesting

32

S o l a r i n t e r f a c e . o r g

E vs. (NHE

) (volts)

(+)

(‐)

Energy (e

V)

evac

Transparen

t con

tact

“hole‐selective”interlayer

+ Top contact

+

X

‐X

“electron‐selective”interlayer

Active layer(s)

EF,e

EF,h

IP EA

S o l a r i n t e r f a c e . o r g

Energetics (ECB, EVB of organic & oxide interlayers

35

•Active layer materials

•“Electron selective interlayers” 

•“Hole‐selecitveinterlayers”

•“Dopants” and  high Φinterlayers

•“Tunable “interlayers

•Notable absences: interface dipole effects!!Brabec et al. J. Mater. Chem 2010

Erin Ratcliff, Brian Zacher J. Phys. Chem. Lett. Perspective (2011) 

e‐C60‐.

C60

HOMOD

LUMOA

Energy

+

e‐

1

2

+

3

)()()()(

2

TkEEq

CBsnTk

EEq

VBsp

isspnsr

B

TCB

B

VBT

eNnSeNpS

npnSqSJ

Photocurrent (extraction)limited by Surface Recombination – a comparable event occurs for hole extraction at the opposite electrode

S o l a r i n t e r f a c e . o r g

10-5

10-4

10-3

10-2

10-1

100

101

102

Cur

rent

den

sity

(mA

/cm

2 )

-2 -1 0 1 2

Voltage (V)

10% O2 Dark10% O2 Light 0% O2 Dark 0% O2 Light

20

15

10

5

0

-5

-10Cur

rent

den

sity

(mA

/cm

2 )

0.80.40.0-0.4Voltage (V)

10% O2 Dark 10% O2 Light 0% O2 Dark 0% O2 Light

0, 10% O2 sp ZnO interlayers in BHJ devices(TFD ITO/sp ZnO/BHJ/MoOx/Ag)

ETL VOC (V) Jsc  (mA/cm2) F.F. PCE (%)

0% O2 ZnO 0.51±0.01 9.2±0.6 0.50±0.01 2.3±0.210% O2 ZnO 0.49±0.01 5.6±0.7 0.20±0.02 0.6±0.1

S o l a r i n t e r f a c e . o r g

These same issues are relevant in describing the photoelectrochemical conversion of sunlight to fuels, using 

planar or nanowire array electrodes

39

Intrinsic defects in Würtzite ZnO

O Zn

Zinc vacancy

Oxygen vacancy

Zinc interstitialZinc antisite

A. Janotti, C.G. Van de Walle , PHYSICAL REVIEW B 76, 165202 2007

Ideal würtzite ZnO

Oxygen antisite

10%

‐partially filled band gap states due to broken bonds of O atoms  ‐acceptor (V0

Zn, V‐1Zn ,V‐2

Zn)

Oxygen interstitial‐ O‐Oi  bond (Oi split)‐ Oi

‐2(octahedral)

‐ acceptor

12% 23%

‐ most probable donor for n‐ZnO

‐ donor‐ very unstable 

‐ Zn in the position of O

‐ ZnO‐ O distances  8% loner vs. quilibrium bonds

‐ O in the position of Zn

‐ O ‐OZn bond

De

e-

e-

e-

e-primary e-

secondary e-

e-

incident radiation

e-

e-

e-

primary e-

secondary e-

(a) (b)

10 15 20 25 30

0

50000

100000

150000

Inte

nsity

Kinetic Energy (eV)

AuAu with C16 thiolsource energy, 21.2 eV

EF

Au spectrum width (w)

Evac

Determination of:

Ionization potentials (IP), EVB

Local shifts in vacuum level (interface dipoles)

Frontier orbital energy offsets

Organic/organic’ heterojunctions:Macromol. Rapid Commun. 2009, 30, 717–731Appl. Phys. A., 95, 209‐218 (2009)

Self‐assembled monolayers:Journal of Physical Chemistry C, 113, 20328‐20334 (2009

Tethered monolayers of SC‐NCsACS Applied Materials and Interfaces, 2, 863‐869, (2010)

S o l a r i n t e r f a c e . o r g

UPS/XPS ++ layer‐by‐layer deposition (vacuum and glove box) of organic semiconductors, semiconductor nanocrystals, interlayers, etc.

New Capabilities Layer‐by‐Layer OPV and interlayer formation (vacuum deposited small 

molecules)

S o l a r i n t e r f a c e . o r g

Inverse photoemission spectroscopy (IPES)

S o l a r i n t e r f a c e . o r g

S o l a r i n t e r f a c e . o r g

e‐selective oxide interlayers: sol‐gel (printed) versus CVD or ALD (nanometer control of

thickness and electrical properties

Kai‐Lin Ou/Delvin Tadytin/Xerxes SteirerACS Applied Materials & Interfaces

S o l a r i n t e r f a c e . o r g

Energetics (ECB, EVB of organic & oxide interlayers

45

•Active layer materials

•“Electron selective interlayers” 

•“Hole‐selecitveinterlayers”

•“Dopants” and  high Φinterlayers

•“Tunable “interlayers

•Notable absences: interface dipole effects!!Brabec et al. J. Mater. Chem 2010

Erin Ratcliff, Brian Zacher J. Phys. Chem. Lett. Perspective (2011) 

S o l a r i n t e r f a c e . o r g

New forms of solution‐processed NiOx interlayers:

K. Xerxes Steirer, Paul Ndione, N. Edwin Widjonarko, Matthew T. Lloyd,  Jens Meyer, Erin L. Ratcliff, Antoine Kahn, Neal R. Armstrong, Calvin J. Curtis, David S. Ginley, Joseph J. Berry, and Dana C. Olson

S o l a r i n t e r f a c e . o r g

S o l a r i n t e r f a c e . o r g

S o l a r i n t e r f a c e . o r g

K. Xerxes Steirer, et al., Advanced Energy Materials (2011)

Performance, scalability and lifetimes are enhanced!

S o l a r i n t e r f a c e . o r g

S o l a r i n t e r f a c e . o r g

Brian Zacher et al. JPC C 2011

S o l a r i n t e r f a c e . o r g

Trajectories of some of the charges 

emanating from the D/A interface:

500 successful transits from one 

D/A site

“Fast pathways”

d

1 2

-1 -0.5 0 0.5 1-10

-5

0

5

10

Bias (V)

Cur

rent

(nA

)

AmplifierV

CuPc

ITO/glass

MacDonald, Veneman, et al. in preparation

Conducting tip AFM: Mapping of electrical properties for contacts and interlayers

-2 -1 0 1 2

-4

-2

0

2

4

Bias (V)

Cur

rent

(nA

)

Gold OP-ITO HCL+FeCl3 ODPA-ITO Increasing φ

Less ohmic

Current through CuPc thin filmsdominated by V2 dependence ifcontact is Ohmic (Mott‐Guerny)

Conducting tip AFM: Mapping of electrical properties for contacts 

and interlayers

MacDonald, Veneman, ACS Nano – this week!

060

120

060

120

060

1200

60120

2 4 6

0 500nm

Gold

DetergentSolvent CleanedITO

O2‐Plasma Cleaned ITO

10-5

10-4

10-3

10-2

10-1

100

101

102

103

Cur

rent

Den

sity

(m

A c

m-2

)

2.01.00.0-1.0

Bias (V)

10

8

6

4

2

0

-2

-4Cur

rent

Den

sity

(m

A c

m-2

)

2.01.51.00.50.0-0.5-1.0

Bias (V)

C6 C8 C14 C18 DSC

a) b)

S o l a r i n t e r f a c e . o r g

S o l a r i n t e r f a c e . o r g

57

“Generation III” PVs – What are they? Where are they headed?

S o l a r i n t e r f a c e . o r g

http://energysciencegroup.ning.com/ 

CISSEM Interface‐to‐Face Research Conference, 2010

Energy Science Group

http://energysciencegroup.ning.com/