Assimilative Capacity Trading: An Integrated Solution to Problems Related to Freshwater Use

Post on 27-Jul-2016

216 views 0 download

description

Perspective, Volume 6, Issue 5

Transcript of Assimilative Capacity Trading: An Integrated Solution to Problems Related to Freshwater Use

www.thesolutionsjournal.org  |  September-October 2015  |  Solutions  |  33

Perspectives

Less than three percent of the planet’s       available water is suitable for 

most human uses.1 This fraction could, nonetheless, meet global demand. The problem is its uneven distribution and mismanagement, which leads to pollution and severe shortages that harm human and planetary well-being. In 2013, 1.2 billion people experienced water scarcity. Another 1.6 million were deprived of access because of limited financial resources.2 In 2000, approximately 66 percent of the world’s major river basins were polluted.3 Continued population growth, climate change,4 and existing development gaps, such as inadequate sanitation,5 will likely exacerbate these problems in the future.

Traditional solutions to meeting the water scarcity and pollution challenge have failed because they rarely tackle issues of water depletion, degradation, and uneven distribution with the sort of market-based, hybrid approach that offers the most sensitive and flexible of solutions.

Water usage can be difficult to monitor. Corporations and private interests have traditionally found it easy to externalize environmental and social costs, leaving the costly business of remediating damaged aquifers and water sources to the public pocket.

Most policies addressing water usage separate the issue of water short-age from that of quality. Large-scale infrastructure, such as dams, is often constructed to meet shortages,2 but this fails to address factors that drive demand, such as inefficiencies in water use and unequal distribution (to say nothing of the social and environ-mental impact). For quality, effluent standards that limit the concentration 

of pollutants in wastewater are often imposed.6 While effective in the short-run, these standards often don’t respond quickly enough to changes in pollution sources. In the United States, for instance, the Clean Water Act only succeeded in meeting water quality objectives in the first two decades. From the 1990s, however, increases in pollution and shifts in its composition from being predominantly industrial to agricultural—an activity that is not covered by the regulation—limited its effectiveness.7

Market-based approaches for allocating water to users, along with rights to pollute, are one solution that governments are experimenting with. But despite the promise of allocative efficiency, such markets risk unequal outcomes as water use tends be equated with the ability to pay. Moreover, noncommercial uses such as maintaining flows for an eco-system’s health are likely undervalued because financial returns are limited.8

Creating a market based around a cap-and-trade scheme on the amount of pollution any user can generate can offer a more accurate system. Yet any pollutant cap is still a somewhat artificial measure that fails to take into account changes in water levels due to consumption and natural processes 

like changes in seasons that in turn affect the ability of a water body to absorb waste.9

What the current market mecha-nisms lack is the ability to harmonize environmental effectiveness, eco-nomic efficiency, and feasibility.

The idea of a dynamic permit-trad-ing scheme that tackles a broad range of issues is not novel. Several schemes that issue withdrawal permits or pollution caps are in operation in the United States, the European Union, Canada, Australia, and Singapore.10 However, withdrawal permits and pollution caps are defined and operated separately. The ideal set-up is to continuously account for changes in environmental conditions, demand, and pollutant load 

patterns to ensure that water quality goals are always reached.11 This would involve defining a target based on assimilative capacity that can integrate both concerns. Assimilative capacity (AC), which refers to water’s ability to absorb waste, is sensitive to both flows and quality of the resource stock.12 For example, AC is diminished during low water flows or when large volumes of pollutants are deposited. This, in turn, limits the ability of the body of water to provide services, making the AC trading ratio a vital measure in weighing up the relative impacts of withdrawals and pol-lution loading to ecosystem integrity.

Creating an AC market would then provide users with the flexibility to meet targets and could stimulate inno-vation and reduce compliance costs in 

Assimilative Capacity Trading: An Integrated Solution to Problems Related to Freshwater Useby Jairus Josol

What the current market mechanisms lack is the ability to harmonize environmental effectiveness, economic efficiency, and feasibility.

Josol, J. (2015). Assimilative Capacity Trading: An Integrated Solution to Problems Related to Freshwater Use. Solutions 6(5): 33–36.https://thesolutionsjournal.com/2015/5/assimilative-capacity-trading-an-integrated-solution-to-problems-related-to-freshwater-use

34  |  Solutions  |  September-October 2015  |  www.thesolutionsjournal.org

Perspectives

the long run.13 An AC market would also promote efficient practices, such as water conservation measures and nutrient management, because a price on AC sends an economy-wide signal to internalize externalities.

An AC market is not without its downsides. The cost of operational-izing a trading scheme, which involves establishing baselines, monitoring, and enforcement, is not negligible. In existing pollution markets, transac-tion costs account for five to 25 percent of the permit price, although this can be offset by aggregating per-mits from other pollution sources and allowing centralized auctions instead of bilateral trades.10,14 Transparent 

schemes can also help with manage-ment of the scheme by allowing users to self-monitor and enforce rules.

Another problem that AC markets don’t tackle, but which policy makers need to address for the scheme to be effective, is perverse incentives such as fertilizer subsidies. In most developed countries, inefficient fertil-izer application is the major cause of eutrophication, or excess nutrients that cause algal blooms. A fifth of total nitrogen and phosphorus inputs can be reduced without impacting global yields.15 An AC market would need to work together with a public informa-tion campaign to help farmers develop more efficient practices. Tax breaks 

may still be needed to assist poorer families cope with any price increases.

Taken together, these approaches combine regulation and market instruments to ensure that the triple bottom line of sustainability is met. As opposed to conventional approaches that measure either water quantity or quality, a trading scheme based on assimilative capacity offers a common metric with which tradeoffs in appropriating the different and often-conflicting water uses can be assessed. However, despite the promise of assimilative capacity, success is not inherent in theory. Several design mea-sures need to be in place to overcome practical, institutional, and political 

UN Photo/Albert González Farran Uneven distribution and mismanagement of the world’s clean water resources result in widespread water scarcity. Severe water shortages in North Darfur limited access to clean water to only two hours each day in January of 2014.

www.thesolutionsjournal.org  |  September-October 2015  |  Solutions  |  35

Perspectives

barriers. These include instituting safety mechanisms that account for the heterogeneity of AC and water pol-lution sources, correcting policies that distort the price signal, and addressing potential distributional concerns. 

References1.  Gleick, P. and M. Palaniappan. Peak water limits to 

freshwater withdrawal and use. Proceedings of the

National Academy of Sciences 107, 11155–11162 (2011).

2.  Cooley, H et al. in The World’s Water Vol. 8 (ed. 

Gleick, P) 1–15 (Island Press, Washington DC, 2014).

3.  Liu, C., C. Kroeze, A. Hoekstra, and W. Gerbens-

Leenes. Past and future trends in grey water 

footprints of anthropogenic nitrogen and 

phosphorus inputs to major world rivers. Ecological

Indicators 18, 42–49 (2012).

4.  Srinivasan, V., E. Lambin, S. Gorelick, B. Thomson, 

and S. Rozelle. The nature and causes of global water 

USDA NRCS A water sample taken from a wetland in Iowa by the US Department of agriculture. Assimilative capacity refers to water’s ability to absorb waste.

crisis: syndromes from a meta-analysis of coupled 

human–water studies. Water Resources Research 48, 

1–16 (2012).

5.  Evans, A., M. Hanjra, Y. Jiang, M. Qadir, and P. 

Drechsel. Water quality: assessment of the current 

situation in Asia. International Journal of Water

Resources Development 28, 195–216 (2012).

6.  Howe, C. Taxes versus tradable discharge permits: a 

review in light of the U.S. and European experience. 

Environmental and Resource Economics 4, 151–169 

(1994).

7.  Mariola, M. The commodification of pollution and 

a pre-emptive double movement in environmental 

governance: the case of water quality trading. 

Organization and Environment 24, 1–18 (2011).

8.  Hudspith, E. Freshwater management in New 

Zealand: a challenge for ecology, equity, and 

economic efficiency. New Zealand Journal of

Environmental Law 1, 277–317 (2012).

9.  Ingram, H. and C. Oggins. The public trust doctrine 

and community values in water. Natural Resources

Journal 32, 515–537 (1992).

10. Zhang, Y., Y. Wu, H. Yu, Z.Dong, and B. Zhang. Trade-

offs in designing water pollution trading policy 

with multiple objectives: a case study in the Tai 

Lake Basin, China. Environmental Science & Policy 33, 

295–307 (2013).

11. Ning, S.K. and N.B. Chang. Watershed-based 

point sources permitting strategy and dynamic 

permit-trading analysis. Journal of Environmental

Management 84, 427–446 (2007).

12. Gleick, P. and M. Palaniappan. Peak water limits to 

freshwater withdrawal and use. Proceedings of the

National Academy of Sciences 107, 11155–11162 (2010).

13. Horan, R. and J. Shortle. Economic and ecological 

rules for water quality trading. Journal of the

American Water Resources Association 47, 59–69 

(2011).

14. Sovacool, B. The political economy of pollution 

markets: historical lessons for modern energy and 

climate planners. Renewable and Sustainable Energy

Reviews 49, 943–953 (2015).

15. Mueller, N. et al. Closing yield gaps through nutrient 

and water management. Nature 490, 254–257 (2012).

36  |  Solutions  |  September-October 2015  |  www.thesolutionsjournal.org

Perspectives

Stephen Melkisethian Climate activists in Washington, DC protest the expansion of a natural gas transfer and storage facility at Cove Point on the western shore of the Chesapeake Bay in Maryland in the summer of 2014.