1 Storia degli Algoritmi Numerici UNIVERSITÀ DEGLI STUDI DI NAPOLI “Parthenope” Eseguito da:...

Post on 02-May-2015

217 views 0 download

Transcript of 1 Storia degli Algoritmi Numerici UNIVERSITÀ DEGLI STUDI DI NAPOLI “Parthenope” Eseguito da:...

1

Storia degli Algoritmi Numerici

UNIVERSITÀ DEGLI STUDI DI NAPOLI “Parthenope”

Eseguito da: Nicola De Pasquale

Matr. TEC/R003

Relatore: prof. Francesca Perla

Anno Accademico 2004/05

2

Esiste una procedura per trovare tutti i numeri primi?

• Al momento non si è trovato alcuna procedura

• Si sa solo che i numeri primi sono infiniti, siccome MCD(n; n+1)=1

3

Numeri primi

• Ogni numero N>1 o è primo, oppure è prodotto di fattori primi distinti, ciascuno preso col suo esponente;

• La scomposizione in fattori primi è unica, a meno dell’ordine dei fattori.

4

Come trovare il Massimo Comune Divisore tra due numeri

• MCD=?

• Mediante l’Algoritmo di Euclide,

• Eseguendo divisioni successive (tra numeri interi) del tipo:

• a=bq+r, ponendo (per comodità) a>b>0.

5

Algoritmo di Euclide

• a=bq+r

• Chiamando a=r-1, b=r0, r=r1 e q=q1, si ha:

• Al primo passo: r-1=r0q1+r1;

• Al secondo passo: r0=r1q2+r2;

• Al terzo passo: r1=r2q3+r3;

• Al penultimo passo: rn-2=rn-1qn+rn;

• All’ultimo passo: rn-1=rnqn+1,

• Perché rn+1=0, allora MCD(a;b)=rn.

6

Algoritmo di Euclide

• Riepilogando:

• MCD(a;b) è l’ultimo resto non nullo della divisione iterativa tra i numeri a e b.

• In generale, si ha: ri-1=riqi+1+ri+1;

• Per i=0,…,n e con rn+1=0.

7

Algoritmo di Euclide• Esempio:• Trovare MCD(30030; 1224);• Mediante l’Algoritmo di Euclide si opera al seguente modo:• 30030=1224.24+654;• 1224=654.1+570;• 654=570.1+84;• 570=84.6+66;• 84=66.1+18;• 66=18.3+12;• 18=12.1+6;• 12=6.2+0, o meglio 12=6.2.• L’ultimo resto non nullo è 6, quindi 6=MCD(30030; 1224).

8

Crivello di Eratostene

• Dato un numero N, per verificare che esso sia primo, basta che nessuno dei numeri primi minori o uguali della parte intera della sua radice quadrata divida N

• In simboli:

• N primo p primo N : p/N

9

Crivello di Eratostene

• Eratostene è stato molto geniale, perché mediante il suo algoritmo non è necessario ricercare tra tutti i numeri N se il numero N sia primo, ma solo in una parte più piccola, selezionando così la ricerca dei fattori che potrebbero scomporre il numero o i numeri da noi cercati.

10

Crivello di Eratostene

• Esempio:• Cercare tra i numeri 2 N100 quali sono primi:• 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

11

Crivello di Eratostene

• Dapprima si segnano i numeri divisibili per 2 (escluso il numero 2 stesso):

• 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

12

Crivello di Eratostene

• Successivamente si segnano i numeri divisibili per 3 (escluso il numero 3 stesso) che non abbiamo già tolto:

• 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

13

Crivello di Eratostene

• Dopodiché si segnano i numeri divisibili per 5 (escluso il numero 5 stesso) che non abbiamo già tolto:

• 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

14

Crivello di Eratostene

• Al passo successivo si segnano i numeri divisibili per 7 (escluso il numero 7 stesso) che non abbiamo già tolto:

• 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

15

Crivello di Eratostene

• Ora potremmo fare la stessa operazione, per il numero 11, ma non ha senso perché 100=10, e quindi 11>10=100, perché tutti i fattori multipli di 11 che avremmo dovuto eliminare (22, 33, 44, 55, 66, 77, 88, 99) sono già stati eliminati ai passi precedenti;

• La stessa cosa vale per i numeri 13, 17, ecc.

16

Crivello di Eratostene

• Depennando i numeri multipli di 2, 3, 5 e 7 (esclusi i numeri 2, 3, 5 e 7), si ottengono tutti i numeri primi 100

• Essi sono, quindi:

• 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 e 97.

17

Crivello di Eratostene

• Esempio:• Provare se il numero 127 è primo:127=11,269427…, e quindi 127=11• Occorre, perciò, cercare solo tra i numeri

primi 11, che sono: 2, 3, 5, 7 e 11;• Dividere 127 per ciascuno di tali numeri;• Se 127 non è multiplo di alcuno di questi

numeri, allora 127 è primo.

18

Crivello di Eratostene

• 127=63.2+1, quindi 127 non è divisibile per 2;• 127=42.3+1, quindi 127 non è divisibile per 3;• 127=25.5+2, quindi 127 non è divisibile per 5;• 127=18.7+1, quindi 127 non è divisibile per 7;• 127=11.11+6, quindi 127 non è divisibile per 11.• 127 è quindi un numero primo non essendo

multiplo di alcuno di questi numeri primi.

19

Crivello di Eratostene

• In teoria il Crivello di Eratostene ci permette di conoscere tutti i numeri primi, perché operando di quadrato in quadrato si trovano i numeri primi in quell’intervallo:

• Nel primo intervallo: 1<N2, si ha che 2 è numero primo;

• Nel secondo intervallo: 2<N4, si ha che 3 è numero primo;

20

Crivello di Eratostene

• Nel terzo intervallo: 4<N16, si ha che 5, 7, 11 e 13 sono numeri primi;

• Nel quarto intervallo: 16<N256, si ha che 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241 e 251 sono numeri primi;

21

Crivello di Eratostene

• Nel quinto intervallo ne troveremmo altri, così come nel sesto, e così via.

• Tuttavia ad un certo punto ci dobbiamo fermare da un lato perché i numeri primi sono infiniti, dall’altro perché i calcoli con un numero elevato di cifre sono difficili, se non umanamente impossibili e, talvolta, noiosi.

22

Distribuzione dei numeri primi

• Prima dell’avvento dei Computer le tavole dei numeri primi impiegavano parecchie pagine, oggi sono immagazzinate in forma compatta.

• Si codificano i numeri dispari al seguente modo:

• 0 se il numero è composto,• 1 se il numero è primo.

23

Distribuzione dei numeri primi

• Esempio:

• Scrivo nella riga di sopra la tavola dei numeri dispari da 1 a 50 e nella riga di sotto sotto indico a seconda dei casi la cifra 0 oppure 1:

• 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

• 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0

24

Distribuzione dei numeri primi

• A questo punto ottengo le sequenze: 01110, 11011, 01001, 10010 e 11010

• Per semplicità di rappresentazione posso eliminare da ciascuna delle sequenze ottenute il termine centrale (quello multiplo di 5)

• Ottengo così le sequenze: 0110, 1111, 0101, 1010 e 1110.

25

Distribuzione dei numeri primi

• Ciascuno dei numeri 0110, 1111, 0101, 1010 e 1110, può assumere un unico carattere in base 16, ossia 6, F, 5, A, E.

• In questo modo sono descritti in forma compatta i numeri primi.

26

Criteri di divisibilità

• Come si fa a sapere se un numero è divisibile per un altro, senza effettuare la divisione?

27

Criteri di divisibilità• I criteri di divisibilità (in base 10) per alcuni numeri particolari sono facilmente esprimibili, o

vedendone l’ultima cifra, o sommando le cifre del numero o contando alternativamente le cifre del numero, ne espongo alcuni semplici criteri.

• Criterio di divisibilità per 2:• un numero è divisibile per due, se è pari; ossia se l’ultima cifra è pari; ovvero se l’ultima cifra è 0, 2,

4, 6, 8.• Criterio di divisibilità per 3:• un numero è divisibile per tre, se la somma delle sue cifre è ancora divisibile per tre.• Criterio di divisibilità per 5:• un numero è divisibile per cinque, se l’ultima sua cifra è 0 o 5.• Criterio di divisibilità per 9:• un numero è divisibile per nove, se la somma delle cifre è ancora multiplo di nove.• Criterio di divisibilità per 10:• un numero è divisibile per dieci, se l’ultima cifra è 0.• Criterio di divisibilità per 11:• un numero è divisibile per undici, se la somma delle cifre pari (a partire da destra) coincide con la

somma delle cifre dispari, e se ciò non si verifica, se la differenza tra le cifre pari del numero e le cifre dispari è multiplo di undici.

28

Criteri di divisibilità

• Criteri di divisibilità (ricavabili dai criteri precedenti)• Criterio di divisibilità per 4:• un numero è divisibile per quattro, se le ultime due cifre (del numero) sono divisibili per

quattro, ossia se la penultima cifra è pari l’ultima cifra deve essere 0, 4 o 8, mentre se la penultima cifra è dispari l’ultima cifra deve essere 2 o 6.

• Criterio di divisibilità per 6:• un numero è divisibile per sei, se l’ultima sua cifra è pari e la somma delle sue cifre è

multiplo di tre.• Criterio di divisibilità per 8:• un numero è divisibile per otto, se le ultime tre cifre (del numero) sono divisibili per

otto.• Criterio di divisibilità per 12:• un numero è divisibile per dodici, se le ultime due sue cifre sono multiple di quattro e la

somma delle cifre del numero è multiplo di tre.• Criterio di divisibilità per 25:• un numero è divisibile per venticinque se le ultime due sue cifre sono 00, 25, 50 o 75.

29

Criteri di divisibilità

• Per le potenze di 2, 5 e 10 si hanno dei criteri di divisibilità che valgono in generale:

• Criterio di divisibilità per 2k (ossia di una potenza di 2):

• un numero è divisibile per 2k, se le ultime k cifre sono multiple di 2k.

• Criterio di divisibilità per 5h (ossia di una potenza di 5):

• un numero è divisibile per 5h, se le ultime h cifre sono multiple di 5h.

• Criterio di divisibilità per 10n (ossia di una potenza di 10):

• un numero è divisibile per 10n, se le ultime n cifre sono tutte 0.

30

Criteri di divisibilità

• Talmud affermò che:• Un numero della forma 100a+b è divisibile per 7

un numero della forma 2a+b è divisibile per 7.

• Esempio: • 112=100.1+12; • 14=2.1+12;• 14 è divisibile per 7, quindi anche 112 lo è.

31

Criteri di divisibilità

• Secondo la matematica indiana:

• Un numero è divisibile per 9, se la somma delle sue cifre è anch’essa divisibile per 9.

• Questo criterio di divisibilità è oggi detto “prova del 9”

32

Criteri di divisibilità

• Fibonacci (1202):

Criteri di divisibilità per 7 e per 11.

• Talkis di Ibn al Banna (circa 1250):

Criteri di divisibilità per 7 e per 9.

• Nel XV secolo sono trovati criteri di divisibilità per 7 e per 9 per la verifica di operazioni aritmetiche.

33

Criteri di divisibilità

• Pierre Forcadel di Béziers (1556) affermò che:• Scrivo il numero ed opero da sinistra verso destra.• Moltiplico la prima cifra per 3 e sottraggo ad esso

il più grande multiplo di 7 ( del prodotto ottenuto).

• Allora aggiungo al risultato la successiva cifra.• Moltiplico di nuovo per 3, e così via.• Se l’ultimo numero ottenuto è multiplo di 7, anche

il numero preso in considerazione lo è.

34

Criteri di divisibilità

• Esempio:• Proviamo per il numero 5845:• 5.3=15, 15-2.7=1, 1+8=9,

(a questo punto otteniamo il numero 945);• 9.3=27, 27-3.7=6, 6+4=10,

(a questo punto otteniamo il numero 105);• 10.3=30 30-4.7=2, 2+5=7.• 7 è multiplo di 7, e quindi anche 5845 lo è.

35

Criteri di divisibilità

• Blaise Pascal (1654) raccoglie tutti i Criteri di divisibilità, definendo una regola che vale in generale (ne parlerò in seguito nello specifico);

• Per sapere se un numero sia divisibile per p, abbiamo bisogno di conoscere il resto della divisioni delle varie potenze di 10 con p.

36

Criteri di divisibilità

• Fontanelle (1728) affermò che:• Moltiplicando la prima cifra per 3, si

aggiunge, poi, ad essa la seconda cifra;• Si sostituisce alle prime due cifre del

numero la loro somma;• Continuando in questo modo, se l’ultimo

numero ricercato è 7, allora il numero è divisibile per 7.

37

Criteri di divisibilità

• Esempio:

• Provo per il numero 16807, la sequenza dei numeri ottenuta dai calcoli è:

• 16807, 9807, 3507, 1407, 707, 217, 77, 28, 14, 7.

• Essendo l’ultimo numero trovato 7, anche il numero cercato: 16807 è divisibile per 7.

38

Criteri di divisibilità

• Tucker (1889) affermò che:• Separando il numero in due parti, nelle quali:• Nella prima parte c’è tutto il numero, salvo l’ultima cifra;• Nella seconda parte c’è l’ultima cifra del numero.• Sottraggo alla prima parte del numero l’ultima cifra

moltiplicata per 2.• Si prosegue nel calcolo, finché non restino solo le ultime

due cifre non siano multiple di 7.• Se le ultime due cifre (ottenute nell’ultimo passaggio) sono

multiple di 7, anche il numero lo è.

39

Criteri di divisibilità

• Esempio:

• Partendo dal numero 2401, si ha:

• 240-2.1=238;

• 23-2.8=7.

• 7 è divisibile per 7, e quindi anche 2401 lo è.

40

Criteri di divisibilità

• Blaise Pascal

• Criteri di divisibilità (in generale):

• Partendo dal criterio di divisibilità per 9, indica un criterio valido anche per gli altri numeri;

• Dandone anche una dimostrazione.

41

Criteri di divisibilità

• Dapprima sostituisce i numeri con le lettere e moltiplica la cifra numerica per la sua posizione, ossia per il resti di una potenza di 10 in quella base.

• Dopo aver operato questi prodotti basta sommare le sue cifre e si può verificare in tal modo la divisibilità.

42

Criteri di divisibilità

• Metodo di Pascal:

• Si scrive sulla stessa linea e in ordine decrescente la sequenza dei numeri naturali, in questo modo:

• 10 9 8 7 6 5 4 3 2 1

• K I H G F E D C B 1.

43

Criteri di divisibilità

• Dapprima scrivo la prima cifra e lo chiamo 1;• Moltiplico questo numero (il numero 1) per 10 e

sottraggo il massimo intero multiplo di A (la base della quale vorremmo conoscere la divisibilità) che lo contiene, scrivo il resto, lo chiamo B e lo metto sotto il numero 2;

• Moltiplico questo primo risultato (il numero B) per 10 e sottraggo il massimo intero multiplo di A che lo contiene, scrivo il resto, lo chiamo C e lo metto sotto il numero 3;

44

Criteri di divisibilità

• Moltiplico questo primo risultato (il numero C) per 10 e sottraggo il massimo intero multiplo di A che lo contiene, scrivo il resto, lo chiamo D e lo metto sotto il numero 4;

• E così via.

45

Criteri di divisibilità

• Esempio• Scrivendo il numero TVNM, si opera così:• M.1• N.B• V.C• T.D• TVNM è divisibile per AM+NB+VC+TD è

divisibile per A

46

Criteri di divisibilità

• Criterio di divisibilità per 7:

• Scrivo nella prima riga i primi 10 numeri in ordine decrescente e nella seconda riga i resti delle di 10 in base 7,

• 10 9 8 7 6 5 4 3 2 1

• 6 2 3 1 5 4 6 2 3 1.

47

Criteri di divisibilità

• Per maggior chiarezza si ha:• Ad 1=100 corrisponde 1;• A 10 corrisponde 3, perché 10=1.7+3;• A 102 corrisponde 2, perché 100=14.7+2, o anche

30=4.7+2;• Al numero 103 corrisponde 6, perché 20=2.7+6;• Al numero 104 corrisponde 4, perché 60=8.7+4;• Al numero 105 corrisponde 3, perché 40=5.7+5;• Al numero 106 corrisponde 1, perché 50=7.7+1;• E così via, ritornando ai resti 1 3 2 6 4 5.

48

Criteri di divisibilità

• Esempio:• Verifichiamo se il numero S=287542178 è

divisibile per 7.• Scrivo le varie moltiplicazioni:• 8.1=8; 7.3=21; 1.2=2; 2.6=12; 4.4=16;

5.5=25; 7.1=7; 8.3=14; 2.2=4.• In seguito effettuo la somma:• 8+21+2+12+16+25+7+24+4=119;• Essendo 119 multiplo di 7, lo è anche il numero S.

49

Criteri di divisibilità

• Esempio:• Verifichiamo se il numero Y=151996 è

divisibile per 37:• Scrivo le varie moltiplicazioni:• 6.1=6; 9.10=90; 9.26=234; 1.1=1;

5.10=50; 1.26=26.• In seguito effettuo la somma:• 6+90+234+1+50+26=407.

50

Criteri di divisibilità

• Il numero 407 è multiplo di 37, essendo 407=11.37.

• Quindi anche il numero Y è multiplo di 37.

51

Criteri di divisibilità

Un numero è divisibile per:• 2, se l’ultima cifra è 0, 2, 4, 6 o 8;• 3 (oppure 9), se la somma delle cifre è un

multiplo di 3 (oppure 9);• 5, se l’ultima cifra è 0 o 5;• 11, se la somma delle cifre pari meno la

somma delle cifre dispari del numero è multiplo di 11

52

Criteri di divisibilità

• I resti delle potenze di 10 in base

• (scrivo in parentesi gli elementi periodici):

• 2 sono 1 (0);

• 3 sono (1);

• 4 sono 1 2 (0);

• 5 sono 1 (0);

• 6 sono 1 (4);

• 7 sono (1 3 2 6 4 5);

• 8 sono 1 2 4 (0);

• 9 sono (1);

• 10 sono 1 (0);

53

Criteri di divisibilità

• I resti delle potenze di 10 in base

• 11 sono (1 10);

• 12 sono 1 10 (4);

• 13 sono (1 10 9 12 3 4);

• 14 sono 1 (10 2 6 4 12 8);

• 15 sono 1 (10);

• 16 sono 1 10 4 8 (0);

• 17 sono (1 10 15 14 4 6 9 5 16 7 2 3 13 11 8 12);

• 18 sono 1 (10);

• 19 sono (1 10 5 12 6 3 11 15 17 18 9 14 7 13 16 8 4 2);

• 20 sono 1 10 (0);

54

Criteri di divisibilità

• I resti delle potenze di 10 in base• 21 sono (1 10 16 13 4 19);• 22 sono 1 (10 12);• 23 sono (1 10 8 11 18 19 6 14 2 20 16 22 13 15 12

5 4 17 9 21 3 7);• 24 sono 1 10 4 (16);• 25 sono 1 10 (0);• E così via.

55

Criteri di divisibilità

• Posso anche considerare le cifre corrispondenti agli inversi dei numeri,

• Al fine di confrontare e collegare la periodicità dei resti, la periodicità degli inversi e i criteri di divisibilità;

• (scrivo in parentesi gli elementi periodici).

56

Criteri di divisibilità

• Gli inversi dei numeri sono:

• 1/2=0,5;

• 1/3=0,(3);

• 1/4=0,25;

• 1/5=0,2;

• 1/6=0,1(6);

• 1/7=0,(142857);

• 1/8=0,125;

• 1/9=0,(1);

• 1/10=0,1;

• 1/11=0,(09);

57

Criteri di divisibilità

• 1/12=0,08(3);

• 1/13=0,(076923);

• 1/14=0,0(714285);

• 1/15=0,0(6);

• 1/16=0,0625;

• 1/17=0,(0588235294117647);

• 1/18=0,0(5);

• 1/19=0,(052631578947368421);

• 1/20=0,05;

• 1/21=0,(047619);

• 1/22=0,0(45);

58

Criteri di divisibilità

• 1/23=0,(0434782608695652173913);

• 1/24=0,041(6);

• 1/25=0,04;

• 1/26=0,0(384615);

• 1/27=0,(037);

• 1/28=0,03(571428);

• 1/29=0,(0344827586206896551724137931);

• 1/30=0,0(3);

• E così via.

59

La teoria della congruenza

• Una diretta conseguenza del metodo di Pascal è la teoria della congruenza:

• Sia A>1, esistono due interi a e b, con a>b0, sono congrui modulo A, quando la loro differenza a-b è un multiplo di A.

• E si scrive:

• ab(mod.A).

60

Confronto

• Come si può vedere, il numero degli elementi periodici (ed aperiodici) coincidono in entrambe le rappresentazioni, quindi le due rappresentazioni sono equivalenti per tutti i numeri, fissato una dato sistema di numerazione.

61

La teoria della congruenza

• Se a=Aq+b è la divisione euclidea di a per A, allora si ha:

• ab(mod.A).

62

La teoria della congruenza

• Proprietà usuali:

• 1) Se ab(mod.A) e bc(mod.A), allora ac(mod.A).

• 2) Se ab(mod.A) e cd(mod.A), allora a+cd+d(mod.A) acbd(mod.A).

63

La teoria della congruenza

• Tabella del resto ri in 10i=Aq+ri,

• Scrivendo sulla prima riga i numeri e nella prima colonna i resti:

• 10 9 8 7 6 5 4 3 2 1

• r10 r9 r8 r7 r6 r5 r4 r3 r2 r1

64

La teoria della congruenza

• Essendo 10iri(mod.A), si ottengono i resti per ricorrenza,

• Moltiplicando ambo i membri per 10, si ha: 10i+110ri(mod.A),

• Ossia ri+110ri(mod.A),

• N=an10n+ an-110n-1+…+ a110+ a0+ anrn+ an-

1ri-1+…+ a1r1+ a0(mod.A).

65

La teoria della congruenza

• Piccolo teorema di Fermat:

• Se p è un numero primo ed a è un intero che non divide p, allora è vera l’equazione:

• ap-11(mod.p).

66

La teoria della congruenza

• La funzione φ(x) è tale che:

• Se x è un numero primo p, allora φ(p) = p-1

• Se x è potenza di numeri primi, ossia del tipo pn, con n>1 e intero, allora φ(x) = (p-1) . pn-1

• Se x è prodotto di due numeri primi distinti, ossia del tipo p . q, allora φ(x) = (p-1) . (q-1)

67

La teoria della congruenza

• La funzione φ(x) è tale che, in generale:• Se x = p1

n1.p2

n2.….pk

nk ,

• Allora φ(x) = φ(p1n

1.p2

n2.….pk

nk ) = φ(p1

n1). φ(p2

n2).

….φ(pkn

k ) = (p1-1).pn1-1.(p2-1).pn

2-1 .….(pk-1).pn

k-1

• O anche φ(x)= φ(p1n

1.p2

n2.….pk

nk ) = (p1-1).(p2-1).….

(pk-1) . (p1n

1.p2

n2.….pk

nk ) / (p1

.p2.….pk

),• Che si può esprimere così:• φ(x ) = Π (pi

ni ) = (pi-1 ) . φ(pi

ni ) / (pi), con i=1,…,k.

68

La teoria della congruenza

• Equazione di Eulero (generalizzazione del Piccolo teorema di Fermat):

• Se x è un numero intero>1 ed a è un altro intero tale che MCD(x;a)=1, allora è vera l’equazione:

• aφ(x)1(mod.x).• Ovviamente per x=p siamo nelle ipotesi del

piccolo teorema di Fermat.

69

Residui quadratici

• Eulero (1754-55) definisce i residui quadratici.• Calcolare se un numero x è o meno un residuo

quadratico modulo p è come risolvere l’equazione• a2 x (mod. p).

• Ad esempio:• 1, 2 e 4 sono residui quadratici modulo 7, mentre

3, 5 e 6 sono non-residui quadratici modulo 7.• 1 e 4 sono residui quadratici modulo 5, mentre 2 e

3 sono non-residui quadratici modulo 5.

70

Residui quadratici

• Eulero (1783), ma senza dimostrazione e Legendre (1785), ma con una dimostrazione incompleta definiscono la legge di reciprocità quadratica.

• Gauss (1810) dimostra la legge di reciprocità quadratica, definendola il gioiello dell’aritmetica.

71

Residui quadratici

• Se p non divide a, allora a(p-1)/21(mod.p).

• a è residuo quadraticoa(p-1)/21(mod.p);

• a è non residuo quadraticoa(p-1)/2p-1(mod.p).

72

Simbolo di Legendre

• Legendre impone a/p per il resto della divisione di a(p-1)/2 per p.

• Si ha che(a/p)=1 se a è un residuo quadratico modulo p;

• Mentre (a/p)=p-1 altrimenti.

73

Legge di reciprocità quadratica

• Siano p e q due numeri dispari,

• Se p e q sono entrambi della forma 4n+3, si ha (p/q)=-(q/p);

• Se p e q non sono entrambi della forma 4n+3, si ha (p/q)=(q/p).

• In generale si ha: (p/q)(q/p)=(-1)(p-1)(q-1)/4.

74

I tre casi del simbolo di Legendre

• Se a è più grande di c, allora al posto di a, si scrive il resto della divisione di a con c;

• Se il numero a, così ridotto, l’espressione (a/c) cambierà (a seconda del resto di a e c mod.4) in (c/a) o in –(c/a),

• si può ridurre (c/a) con (c’/a), dove c’ è il resto della divisione di c con a;

• Se a non è primo, si può decomporre a nei suoi singoli fattori primi: a=αβγ…, allora (a/c)=(α/c)(β/c)(γ/c)…,

• in generale (α2/c)=(α/c)(α/c).

75

Test di primalità

• Sono vari i test per provare se un numero sia primo o meno.

• I test sono basati su risultati elementari della teoria della congruenza e della teoria dei residui quadratici.

• Ne descrivo 3 di essi, data la loro importanza storica.

• I primi due test richiedono la fattorizzazione di N+1 o di N-1.

76

Test di primalità

• I test sulla primalità sono stati usati per scomporre i numeri del tipo 2n±1, 10n1, e in generale an±1.

• In particolare i numeri di Fermat del tipo 2n+1, con n=2k (col test di Pépin) e i numeri di Mersenne del tipo 2n-1, con n=p (primo).

• Il “più grande numero primo conosciuto”, aggiornando la ricerca al 1998, è un numero di Mersenne, ossia 23021377-1, il quale possiede 909526 cifre.

77

L’inverso del Teorema di Fermat

• Richiamo del piccolo teorema di Fermat:

• Se a e p sono interi primi tra loro, allora quando p è primo ap-11(mod.p).

• Ai cinesi era noto (500 a.C.) che se a=2, allora 2p-2 era divisibile col primo p.

78

Fattorizzazione di an-1

• Ogni numero primo è sempre un fattore del precedente di una delle potenze di qualche progressione, se l’esponente di questa potenza è un divisore del precedente del numero primo.

79

Fattorizzazione di an-1

• Esempi - Sia data la seguente progressione:• 1 2 3 4 5 6• 3 9 27 81 243 729 ecc.,• Con il suo esponente scritto sopra.• Prendo in considerazione il numero 13.• 13 è un fattore di 26 = 33-1,• 3 è uno dei fattori di 12, dove 12 = 13-1.• Siccome 6 (l’esponente di 729) è multiplo di 3,• Si ha che 13 è anche fattore di 728 = 36-1.• Questa proprietà è vera in generale per tutte le progressioni e

per tutti i numeri primi.

80

Numeri di Mersenne/Fermat

• Si può rappresentare (genericamente) un numero in forma polinomiale, ossia:

• an-1.• Se n=1, allora an-1=a-1;• Se n=p (primo), allora an-1, ossia ap-1, e si può

scomporre in: ap-1=(a-1).(ap-1+ap-2+…+a+1);• Se n=b.c (con b e c interi), allora an-1=abc-1 = (ab-

1).(ac-1+ac-2+…+a+1), o anche in:• an-1=abc-1 = (ac-1).(ab-1+ab-2+…+a+1);

81

Numeri di Mersenne/Fermat

• In particolare se n è un numero pari, ossia n=2k, allora:

• an-1=a2k-1=(a2k/2-1).(a2k/2+1)=(ak-1).(ak+1).• In particolare, se a=2 ed n potenza di 2, si può

ottenere dalla scomposizione di un numero del tipo di Mersenne, un numero del tipo di Fermat.

• Un numero del tipo ak+1 è sempre un caso particolare di un numero del tipo an-1.

82

Scomposizioni polinomiali

• Dato un numero intero a>1, allora:

• an-1 = (a-1).(an-1+an-2+…+ a2+a+1), se n è un intero positivo qualsiasi.

• an-1 = ap-1 = (a-1).(ap-1+ap-2+…+ a2+a+1), con p numero primo, in tal caso il secondo fattore non è ulteriormente scomponibile in Z[x].

• an+1 = (a+1).(an-1-an-2+…+ a2-a+1), se n è un intero positivo dispari.

• an+1 = ap+1 = (a+1).(ap-1-ap-2+…+ a2-a+1), con p numero primo dispari, in tal caso il secondo fattore non è ulteriormente scomponibile in Z[x].

• an-1 = (an/2-1).(an/2+1), se n è un numero intero positivo pari.

• an-1 = (abc-1) = (ab-1).(ac-1+ac-2+…+ a2+a+1), se n=bc.

• an+1 = (abc+1) = (ab+1).(ac-1-ac-2+…+ a2-a+1), se n è dispari ed n=bc.

83

Scomposizioni polinomiali

• a1-1=a-1;• a2-1=(a-1).(a+1);• a3-1=(a-1).(a2+a+1);• a4-1=(a-1).(a+1).(a2+1);• a5-1=(a-1).(a4+a3+a2+a+1);• a6-1=(a-1).(a+1).(a2-a+1).(a2+a+1);• a7-1=(a-1).(a6+a5+a4+a3+a2+a+1);• a8-1=(a-1).(a+1).(a2+1).(a4+1);• a9-1=(a-1).(a2+a+1).(a6+a3+1);• a10-1=(a-1).(a+1).(a4-a3+a2-a+1).(a4+a3+a2+a+1);

84

Scomposizioni polinomiali

• a11-1=(a-1).(a10+a9+a8+a7+a6+a5+a4+a3+a2+a+1);• a12-1=(a-1).(a+1).(a2+1).(a2-a+1).(a2+a+1).(a4+a2+1);• a13-1=(a-1).(a12+a11+a10+a9+a8+a7+a6+a5+a4+a3+a2+a+1);• a14-1=(a-1).(a+1).(a6-a5+a4-a3+a2-a+1).(a6+a5+a4+a3+a2+a+1);• a15-1=(a-1).(a2+a+1).(a4+a3+a2+a+1).(a8-a7+a5-a4+a3-a+1);• a16-1=(a-1).(a+1).(a2+1).(a4+1).(a8+1);• a17-1=(a-1).(a16+a15+a14+a13+a12+a11+a10+a9+a8+a7+a6+a5+a4+a3+a2+a+

+1);• a18-1=(a-1).(a+1).(a2-a+1).(a2+a+1).(a6-a3+1).(a6+a3+1);• a19-1=(a-1).(a18+a17+a16+a15+a14+a13+a12+a11+a10+a9+a8+ +a7+a6 +a5+

+a4+a3+a2+a+1);• a20-1=(a-1).(a+1).(a2+1).(a4-a3+a2-a+1).(a4+a3+a2+a+1) ).(a8+a7+a6+ a5+

+a4+a3+a2+a+1);

85

Scomposizioni polinomiali

• a21-1=(a-1).(a2+a+1).(a6+a5+a4+a3+a2+a+1).(a12-a11+a9-a8+a6-a4+a3-a+ +1);• a22-1=(a-1).(a+1).(a10+a9+a8+a7+a6+a5+a4+a3+a2+a+1).(a10-a9+a8-a7+a6-a5+a4-a3+a2-

a+ +1);• a23-1=(a-1).(a22+a21+a20+a19+a18+a17+a16+a15+a14+a13+a12+a11+a10+a9+

+a8+a7+a6+a5+a4+a3+a2+a+1);• a24-1=(a-1).(a+1).(a2+1).(a2-a+1).(a2+a+1).(a4+1).(a4+a2+1).(a8+a4+1);• a25-1=(a-1).(a4+a3+a2+a+1).(a20+a15+a10+a5+1);• a26-1=(a-1).(a+1) .(a12-a11+a10-a9+a8-a7+a6-a5+a4-a3+a2-a+1).(a12+a11+

+a10+a9+a8+a7+a6+a5+a4+a3+a2+a+1);• a27-1=(a-1).(a2+a+1).(a6+a3+1).(a18+a9+1);• a28-1=(a-1).(a+1).(a2+1).(a6-a5+a4-a3+a2-a+1).(a6+a5+a4+a3+a2+a+1). .

(a12+a10+a8+a6+a4+ +a2+1);• a29-1=(a-1).(a28+a27+a26+a25+a24+a23+a22+a21+a20+a19

a18+a17+a16+a15+a14+a13+a12+a11+ +a10+a9+a8+ +a7+a6 +a5+ +a4+a3+a2+a+1);• E così via.

86

Scomposizioni polinomiali

• Come detto prima, se p è primo, allora:• (ap-1)/(a-1) = (ap-1+ap-2+…+a2+a+1)• Non è ulteriormente scomponibile in forma

polinomiale, quindi:• (an-1)/(a-1) è scomponibile in forma polinomiale

solo se n non è primo,• Quindi (an-1)/(a-1) può essere un numero primo,

solo se n è primo, [ma non sempre risulta essere un numero primo].

87

Numeri di Mersenne

• Calcolo di (2n-1)/(2-1):

• Se n=1,

• Si ha: (2-1)/(2-1) =1/1 = 1;

• Ma 1 è un numero invertibile.

• N.B.: d’ora in poi, essendo il denominatore pari ad 1, verrà omesso nel calcolo.

88

Numeri di Mersenne

• Calcolo di (2n-1)/(2-1):

• Se n=2,

• Si ha: (22-1)/(2-1) = 4-1 = 3;

• Ma 3 è un numero primo.

89

Numeri di Mersenne

• Calcolo di (2n-1)/(2-1):

• Se n=3,

• Si ha: (23-1)/(2-1) = 8-1 = 7:

• Ma 7 è un numero primo.

90

Numeri di Mersenne

• Calcolo di (2n-1)/(2-1):• Se n=4,• Si ha: (24-1)/(2-1) = 16-1 = 15:• Ma 15 = 3 . 5, quindi è un numero composto.• Perché (24-1) è multiplo di (22-1) = 3.• N.B.: d’ora in poi, siccome è generale la situazione

che 2bc-1 sia multiplo di 2b-1, l’ultima considerazione verrà omessa.

• Perché n numero composto => 2n-1 numero composto.

91

Numeri di Mersenne

• Calcolo di (2n-1)/(2-1):

• Se n=5,

• Si ha: (25-1)/(2-1) = 32-1 = 31:

• Ma 31 è numero primo.

92

Numeri di Mersenne

• Calcolo di (2n-1)/(2-1):

• Se n=6,

• Si ha: (26-1)/(2-1) = 64-1 = 63:

• Ma 63 = 32 . 7, quindi è un numero composto.

93

Numeri di Mersenne

• Calcolo di (2n-1)/(2-1):

• Se n=7,

• Si ha: (27-1)/(2-1) = 127:

• Ma 127 è un numero primo.

94

Numeri di Mersenne

• Calcolo di (2n-1)/(2-1):

• Se n=8,

• Si ha: (28-1)/(2-1) = 255:

• Ma 255 = 3 . 5 . 17, quindi è un numero composto.

95

Numeri di Mersenne

• Calcolo di (2n-1)/(2-1):

• Se n=9,

• Si ha: (29-1)/(2-1) = 511:

• Ma 511 = 7 . 73, quindi è un numero composto.

96

Numeri di Mersenne

• Calcolo di (2n-1)/(2-1):

• Se n=10,

• Si ha: (210-1)/(2-1) = 1023:

• Ma 1023 = 3 . 11 . 31, quindi è un numero composto.

97

Numeri di Mersenne

• Calcolo di (2n-1)/(2-1):• Se n=11,• Calcolo di (211-1)/(2-1) = 2047:• Il numero suddetto, a quanto sembra, dovrebbe

essere primo, perché 11, ossia n è primo, tuttavia occorre provarlo.

• 22nn-1 primo => n primo,-1 primo => n primo,• Ma non vale il viceversa, come si può vedere nella

diapositiva successiva.

98

Numeri di Mersenne

• I numeri che possono dividere 211-1 sono solo quelli del tipo 1+2.11k, con k numero intero positivo.

• I numeri di questo tipo sono i seguenti: 23, 45, 67, 89, …, 22k+1, …;

• Di essi solo 23 e 45 possono essere presi in considerazione, perché sono gli unici numeri [2047]=45.

• 23 è un numero primo e 2047 : 23 = 89,• Quindi 23 è un numero primo che divide 2047.• Perciò 2047 non è primo, perché 2047 = 23 . 89.

99

Numeri di Mersenne

• In generale, alcuni numeri della forma:

• (2n-1)/(2-1)

• O meglio, siccome 2-1=1, della forma:

• 2n-1

• Sono descritti nella prossima diapositiva.

100

Scomposizione di 2n-1, al variare di n1 1

2 3

3 7

4 3 . 5

5 31

6 32 . 7

7 127

8 3 . 5 . 17

9 7 . 73

10 3 . 11 . 31

11 23 . 89

12 32 . 5 . 7 . 13

13 8191

14 3 . 43 . 127

15 7 . 31 . 151

16 3 . 5 . 17 . 257

17 131071

18 33 . 7 . 19 . 73

19 524287

20 3 . 52 . 11 . 31 . 41

21 72 . 127 . 337

22 3 . 23 . 89 . 683

23 47 . 178481

24 32 . 5 . 7 . 13 . 17 . 241

25 31 . 601 . 1801

101

Scomposizione di 2n-1, al variare di n26 3 . 2731 . 8191

27 7 . 73 . 262657

28 3 . 5 . 29 . 43 . 113 . 127

29 233 . 1103 . 2089

30 32 . 7 . 11 . 31 . 151 . 331

31 2147483647

32 3 . 5 . 17 . 257 . 65537

33 7 . 23 . 89 . 599479

34 3 . 43691 . 131071

35 31 . 71 . 127 . 122921

36 33 . 5 . 7 . 13 . 19 . 37 . 73 . 109

37 223 . 616318177

38 3 . 174763 . 524287

39 7 . 79 . 8191 . 121369

40 3 . 52 . 11. 17 . 31 . 41 . 61681

41 13367 . 164511353

42 32 . 72 . 43 . 127 . 337 . 5419

43 431 . 9719 . 2099863

44 3 . 5 . 23 . 89 . 397 . 683 . 2113

45 7 . 31 . 73 . 151 . 631 . 23311

46 3 . 47 . 178481 . 2796203

47 2351 . 4513 . 13264529

48 32 . 5 . 7 . 13 . 17 . 97 . 241 . 257 . 673

49 127 . 4432676798593

50 3 . 11 . 31 . 251 . 601. 1801 . 4051

102

Scomposizione di 2n-1, al variare di n51 7 . 103 . 2143 . 11119 . 131071

52 3 . 5 . 53 . 157 . 1613 . 2731 . 8191

53 6361 . 1416003655831

54 34 . 7 . 19 . 73 . 87211 . 262657

55 23 . 31 . 89 . 881 . 3191 . 201961

56 3 . 5 . 17 . 29 . 43 . 113 . 127 . 15790321

57 7 . 524287 . 39268347319

58 3 . 59 . 233 . 1103 . 2089 . 3033169

59 179951 . 320343178337

60 32 . 52 . 7 . 11 . 13 . 31 . 41 . 61 . 151 . 331 . 1321

61 2305843009213693951

62 3 . 715827883 . 2147483647

63 72 . 73 . 127 . 337 . 92737 . 649657

64 3 . 5 . 17 . 257 . 641 . 65537 . 6700417

65 31 . 8191 . 145295143558111

66 32 . 7 . 23 . 67 . 89 . 683 . 20857 . 599479

67 193707721 . 761838257287

68 3 . 5 . 137 . 953 . 26137 . 43691 . 131071

69 7 . 47 . 178481 . 10052678938039

70 3 . 11 . 31 . 43 . 71 . 127 . 281 . 86171 . 122921

71 2361183241434822606847

72 33 . 5 . 7 . 13 . 17 . 19 . 37 . 73 . 109 . 241 . 433 . 38737

73 439 . 2298041 . 9361973132609

74 3 . 223 . 1777 . 21781083 . 616318177

75 7 . 31 . 151 . 601 . 1801 . 1065184428001

103

Scomposizione di 2n-1, al variare di n76 3 . 5 . 229 . 457 . 174763 . 524287 . 525313

77 23 . 89 . 127 . 581283643249112959

78 32 . 7 . 79 . 2731 . 8191 . 121369 . 22366891

79 2687 . 224958284260258499201

80 3 . 52 . 11. 17 . 31 . 41 . 257 . 61681 . 4278255361

81 7 . 73 . 2593 . 262657 . 6947319183841

82 3 . 83 . 13367 . 164511353 . 8831418697

83 167 . 57912614113275649087721

84 32 . 5 . 72 . 13 . 29 . 43 . 113 . 127 . 337 . 1429 . 5419 . 14449

85 31 . 131071 . 9520972806333758431

86 3 . 431 . 9719 . 2099863 . 2932031007403

87 7 . 233 . 1103 . 2089 . 4177 . 9857737155463

88 3 . 5 . 17 . 23 . 89 . 353 . 397 . 683 . 2113 . 2931542417

89 61890019642690137449562111

90 33 . 7 . 11 . 19 . 31 . 73 . 151 . 331 . 631 . 23311 . 18837001

91 127 . 911 . 8191 . 2612585917490982161

92 3 . 5 . 47 . 277 . 1013 . 1657 . 30269 . 178481 . 2796203

93 7 . 2147483647 . 658812288653553079

94 3 . 283 . 2351 . 4513 . 13264529 . 165768537521

95 31 . 191 . 524287 . 12761021422289693921

96 32 . 5 . 7 . 13 . 17 . 97 . 193 . 241 . 257 . 673 . 65537 . 22253377

97 11447 . 13842607235828485645766393

98 3 . 43 . 127 . 4363953127297 . 4432676798593

99 7 . 23 . 73 . 89 . 199 . 599479 . 5079298981443391

100 3 . 53 . 11 . 31 . 41 . 101 . 251 . 601 . 1801 . 4051 . 8101 . 268501

104

Scomposizione di 2n-1, al variare di n101 2535301200456458802993406410751

102 32 . 7 . 103 . 307 . 2143 . 2857 . 6529 . 11119 . 43691 . 131071

103 10141204801825835211973625643007

104 3 . 5 . 17 . 53 . 157 . 1613 . 2731 . 8191 . 264917625139441

105 72 . 31 . 71 . 127 . 151 . 337 . 122921 . 473474689919911

106 3 . 107 . 6361 . 1416003655831 . 28059810762433

107 162259276829213363391578010288127

108 34 . 5 . 7 . 13 . 19 . 37 . 73 . 109 . 87211 . 262657 . 68719214593

109 649037107316853453566312041152511

110 3 . 11 . 23 . 31 . 89 . 683 . 881 . 2971 . 3191 . 201961 . 538037401

111 7 . 223 . 616318177 . 2698495133088002829751

112 3 . 5 . 17 . 29 . 43 . 113 . 127 . 257 . 5153 . 15790321 . 54410972897

113 3391 . 23279 . 65993 . 1868569 . 1066818132868207

114 32 . 7 . 571 . 174763 . 524287 . 160465489 . 39268347319

115 31 . 47 . 14951 . 178481 . 10683848415441845139401

116 3 . 5 . 59 . 233 . 1103 . 2089 . 3033169 . 57646075230342349

117 7 . 73 . 79 . 937 . 6553 . 8191 . 121369 . 674274976909561

118 3 . 2833 . 179951 . 320343178337 . 67826891670011

119 127 . 239 . 131071 . 167056681047484447373134449

120 32 . 52 . 7 . 11 . 13 . 17 . 31 . 41 . 61 . 151 . 241 . 331 . 1321 . 61681 . 4562284561

121 23 . 89 . 727 . 178639878363164227858270210279

122 3 . 768614336404564651 . 2305843009213693951

123 7 . 13367 . 164511353 . 690814754065816531725751

124 3 . 5 . 5581 . 8681 . 715827883 . 2147483647 . 19037413721

125 31 . 601 . 1801 . 1267650638007162390353805312001

105

Scomposizione di 2n-1, al variare di n

126 33 . 72 . 19 . 43 . 73 . 127 . 337 . 5419 . 92737 . 649657 . 77158673929

127 170141183460469231731687303715884105727

128 3 . 5 . 17 . 257 . 641 . 65537 . 274177 . 6700417 . 67280421310721

… …

156 32 . 7 . 5 . 132 . 79 . 157 . 313 . 1249 . 1613 . 2731 . 8191 . 21841 . 121369 . 22366891

… …

193 13821503 . 61654440233248340616559 . 14732265321145317351353282383

… …

204 32 . 5 . 7 . 13 . 103 . 137 . 307 . 409 . 953 . 2143 . 2857 . 3061 . 6529 . 11119 . 13669 . 26317 . 43691 . 131071 . 1326700741

… …

256 3 . 5 . 17 . 257 . 641 . 65537 . 274177 . 6700417 . 67280421310721 . 59649589127497217 . 5704689200685129054721

257 535006138814359 . 1155685395246619182673033 . 374550598501810936581776630096313181393

… …

512 3 . 5 . 17 . 257 . 641 . 65537 . 274177 . 6700417 . 67280421310721 . 59649589127497217 . 5704689200685129054721 . 1238926361552897 . 93461639715357277769163558199606896584051237541638188580280321

… …

521 13729595320261219429963801598162786434538870600286610818788926918371086366795312104245119281322909109954592622782961716074243975999433287625148056582230114303

E così via

106

Scomposizione di 3n-1, al variare di n1 2

2 23

3 2 . 13

4 24 . 5

5 2 . 112

6 23 . 7 . 13

7 2 . 1093

8 25 . 5 . 41

9 2 . 13 . 757

10 23 . 112 . 61

11 2 . 23 . 3851

12 24 . 5 . 7 . 13 . 73

13 2 . 797161

14 23 . 547 . 1093

15 2 . 112 . 13 . 4561

16 26 . 5 . 17 . 41 . 193

17 2 . 1871 . 34511

18 23 . 7 . 13 . 19 . 37 . 757

19 2 . 581130733

20 24 . 52 . 112 . 61 . 1181

21 2 . 13 . 1093 . 368089

22 23 . 23 . 67 . 661 . 3851

23 2 . 47 . 1001523179

24 25 . 5 . 7 . 13 . 41 . 73 . 6481

25 2 . 112 . 3501192601

107

Scomposizione di 3n-1, al variare di n26 23 . 797161 . 398581

27 2 . 13 . 109 . 433 . 757 . 8209

28 24 . 5 . 29 . 547 . 1093 . 16493

29 2 . 59 . 581613367499

30 23 . 7 . 112 . 13 . 31 . 61 . 271 . 4561

31 2 . 308836698141973

32 27 . 5 . 17 . 41 . 193 . 21523661

33 2 . 13 . 23 . 3851 . 2413941289

34 23 . 103 . 307 . 1021 . 64570081

35 2 . 112 . 1093 . 189150889201

36 24 . 5 . 7 . 13 . 19 . 37 . 73 . 757 . 530713

37 2 . 225141952945498681

38 23 . 581130733 . 290565367

39 2 . 132 . 797161 . 15040635637

40 25 . 52 . 112 . 41 . 61 . 1181 . 42521761

41 2 . 18236498188585393201

42 23 . 72 . 13 . 43 . 547 . 1093 . 2269 . 368089

43 2 . 164128483697268538813

44 24 . 5 . 23 . 67 . 661 . 3851 . 3138105961

45 2 . 112 . 13 . 757 . 4561 . 271983020401

46 23 . 47 . 1001523179 . 23535794707

47 2 . 13294407179478751643893

48 26 . 5 . 7 . 13 . 41 . 73 . 193 . 6481 . 731682737

49 2 . 1093 . 109469043563868952237

50 23 . 112 . 61 . 3501192601 . 3472494301

108

Scomposizione di 4n-1, al variare di n1 3

2 3 . 5

3 32 . 7

4 3 . 5 . 17

5 3 . 11 . 31

6 32 . 5 . 7 . 13

7 3 . 43 . 127

8 3 . 5 . 17 . 257

9 33 . 7 . 19 . 73

10 3 . 52 . 11 . 31 . 41

11 3 . 23 . 89 . 683

12 32 . 5 . 7 . 13 . 17 . 241

13 3 . 2731 . 8191

14 3 . 5 . 29 . 43 . 113 . 127

15 32 . 7 . 11 . 31 . 151 . 331

16 3 . 5 . 17 . 257 . 65537

17 3 . 43691 . 131071

18 33 . 5 . 7 . 13 . 19 . 37 . 73 . 109

19 3 . 174763 . 524287

20 3 . 52 . 11. 17 . 31 . 41 . 61681

21 32 . 72 . 43 . 127 . 337 . 5419

22 3 . 5 . 23 . 89 . 397 . 683 . 2113

23 3 . 47 . 178481 . 2796203

24 32 . 5 . 7 . 13 . 17 . 97 . 241 . 257 . 673

25 3 . 11 . 31 . 251 . 601 . 1801 . 4051

109

Scomposizione di 4n-1, al variare di n26 3 . 5 . 53 . 157 . 1613 . 2731 . 8191

27 34 . 7 . 19 . 73 . 87211 . 262657

28 3 . 5 . 17 . 29 . 43 . 113 . 127 . 15790321

29 3 . 59 . 233 . 1103 . 2089 . 3033169

30 32 . 52 . 7 . 11 . 13 . 31 . 41 . 61 . 151 . 331 . 1321

31 3 . 715827883 . 2147483647

32 3 . 5 . 17 . 257 . 641 . 65537 . 6700417

33 32 . 7 . 23 . 67 . 89 . 683 . 20857 . 599479

34 3 . 5 . 137 . 953 . 26137 . 43691 . 131071

35 3 . 11 . 31 . 43 . 71 . 127 . 281 . 86171 . 122921

36 33 . 5 . 7 . 13 . 17 . 19 . 37 . 73 . 109 . 241 . 433 . 38737

37 3 . 223 . 1777 . 21781083 . 616318177

38 3 . 5 . 229 . 457 . 174763 . 524287 . 525313

39 32 . 7 . 79 . 2731 . 8191 . 121369 . 22366891

40 3 . 52 . 11. 17 . 31 . 41 . 257 . 61681 . 4278255361

41 3 . 83 . 13367 . 164511353 . 8831418697

42 32 . 5 . 72 . 13 . 29 . 43 . 113 . 127 . 337 . 1429 . 5419 . 14449

43 3 . 431 . 9719 . 2099863 . 2932031007403

44 3 . 5 . 17 . 23 . 89 . 353 . 397 . 683 . 2113 . 2931542417

45 33 . 7 . 11 . 19 . 31 . 73 . 151 . 331 . 631 . 23311 . 18837001

46 3 . 5 . 47 . 277 . 1013 . 1657 . 30269 . 178481 . 2796203

47 3 . 283 . 2351 . 4513 . 13264529 . 165768537521

48 32 . 5 . 7 . 13 . 17 . 97 . 193 . 241 . 257 . 673 . 65537 . 22253377

49 3 . 43 . 127 . 4363953127297 . 4432676798593

50 3 . 53 . 11 . 31 . 41 . 101 . 251 . 601 . 1801 . 4051 . 8101 . 268501

110

Scomposizione di 5n-1, al variare di n1 22

2 23 . 3

3 22 . 31

4 24 . 3 . 13

5 22 . 11 . 71

6 23 . 32 . 7 . 13

7 22 . 19531

8 25 . 3 . 13 . 313

9 22 . 19 . 31 . 829

10 23 . 3 . 11 . 71 . 521

11 22 . 12207031

12 24 . 32 . 7 . 13 . 31 . 601

13 22 . 305175781

14 23 . 5 . 29 . 449 . 19531

15 22 . 11 . 31 . 71 . 181 . 1741

16 26 . 3 . 13 . 17 . 313 . 11489

17 22 . 190734863281

18 23 . 33 . 7 . 19 . 31 . 829 . 5167

19 22 . 4788371582031

20 24 . 3 . 11. 13 . 41 . 71 . 521 . 9161

21 22 . 31 . 19531 . 196890121

22 23 . 3 . 23 . 67 . 5281 . 12207031

23 22 . 2980232238769531

24 25 . 32 . 7 . 13 . 31 . 313 . 601 . 390001

25 22 . 11 . 71 . 101 . 251 . 401 . 9384251

111

Scomposizione di 6n-1, al variare di n1 5

2 5 . 7

3 5 . 43

4 5 . 7 . 37

5 52 . 311

6 5 . 7 . 31 . 43

7 5 . 55987

8 5 . 7 . 37 . 1297

9 5 . 19 . 43 . 2467

10 52 . 7 . 11 . 101 . 311

11 5 . 72559411

12 5 . 7 . 13 . 31 . 37 . 43 . 97

13 5 . 2612138803

14 5 . 7 . 29 . 1379 . 55987

15 52 . 43 . 311 . 1406371

16 5 . 7 . 37 . 1297 . 1679617

17 5 . 3385331888947

18 5 . 7 . 19 . 31 . 43 . 2467 . 46441

19 5 . 121871948002099

20 52 . 7 . 11. 37 . 101 . 311 . 1634221

21 5 . 43 . 55987 . 1822428931

22 5 . 7 . 51828151 . 72559411

23 5 . 157946044610720563

24 5 . 7 . 13 . 31 . 37 . 43 . 97 . 1297 . 1678321

25 53 . 311 . 731325737104301

112

Scomposizione di 7n-1, al variare di n

1 2 . 3

2 24 . 3

3 2 . 32 . 19

4 25 . 3 . 52

5 2 . 3 . 2801

6 24 . 32 . 19 . 43

7 2 . 3 . 29 . 4733

8 26 . 3 . 52 . 1201

9 2 . 33 . 19 . 37 . 1063

10 2 . 3 . 11 . 191 . 2801

11 2 . 3 . 1123 . 293459

12 25 . 32 . 52 . 13 . 19 . 43 . 181

113

Scomposizione di 8n-1, al variare di n1 7

2 32 . 7

3 7 . 73

4 32 . 5 . 7 . 13

5 7 . 31 . 151

6 33 . 7 . 19 . 73

7 72 . 127 . 337

8 32 . 5 . 7 . 13 . 17 . 241

9 7 . 73 . 262657

10 32 . 7 . 11 . 31 . 151 . 331

11 7 . 23 . 89 . 599479

12 33 . 5 . 7 . 13 . 19 . 37 . 73 . 109

13 7 . 79 . 8191 . 121369

14 32 . 72 . 43 . 127 . 337 . 5419

15 7 . 31 . 73 . 151 . 631 . 23311

16 32 . 5 . 7 . 13 . 17 . 97 . 241 . 257 . 673

17 7 . 103 . 2143 . 11119 . 131071

18 34 . 7 . 19 . 73 . 87211 . 262657

19 7 . 524287 . 39268347319

20 32 . 52 . 7 . 11 . 13 . 31 . 41 . 61 . 151 . 331 . 1321

21 72 . 73 . 127 . 337 . 92737 . 649657

22 32 . 7 . 23 . 67 . 89 . 683 . 20857 . 599479

23 7 . 47 . 178481 . 10052678938039

24 33 . 5 . 7 . 13 . 17 . 19 . 37 . 73 . 109 . 241 . 433 . 38737

25 7 . 31 . 151 . 601 . 1801 . 1065184428001

114

Scomposizione di 9n-1, al variare di n1 23

2 24 . 5

3 23 . 7 . 13

4 25 . 5 . 41

5 23 . 112 . 61

6 24 . 5 . 7 . 13 . 73

7 23 . 547 . 1093

8 26 . 5 . 17 . 41 . 193

9 23 . 7 . 13 . 19 . 37 . 757

10 24 . 52 . 112 . 61 . 1181

11 23 . 23 . 67 . 661 . 3851

12 25 . 5 . 7 . 13 . 41 . 73 . 6481

13 23 . 398581 . 797161

14 24 . 5 . 29 . 547 . 1093 . 16493

15 23 . 7 . 112 . 13 . 31 . 61 . 271 . 4561

16 27 . 5 . 17 . 41 . 193 . 21523661

17 23 . 103 . 307 . 1021 . 64570081

18 24 . 5 . 7 . 13 . 19 . 37 . 73 . 757 . 530713

19 23 . 581130733 . 290565367

20 25 . 52 . 112 . 41 . 61 . 1181 . 42521761

21 23 . 72 . 13 . 43 . 547 . 1093 . 2269 . 368089

22 24 . 5 . 23 . 67 . 661 . 3851 . 3138105961

23 23 . 47 . 1001523179 . 23535794707

24 26 . 5 . 7 . 13 . 41 . 73 . 193 . 6481 . 731682737

25 23 . 112 . 61 . 3501192601 . 3472494301

115

Scomposizione di 10n-1, al variare di n1 32

2 32 . 11

3 33 . 37

4 32 . 11 . 101

5 32 . 41 . 271

6 33 . 7 . 11 . 13 . 37

7 32 . 239 . 4649

8 32 . 11 . 73 . 101 . 137

9 34 . 37 . 333667

10 32 . 11 . 41 . 271 . 9091

11 32 . 11111111111

12 33 . 7 . 11 . 13 . 37 . 101 . 9901

13 32 . 53 . 79 . 265371653

14 32 . 11 . 239 . 4649 . 909091

15 33 . 37 . 41 . 271 . 90090991

16 32 . 11 . 17 . 73 . 101 . 137 . 5882353

17 32 . 11111111111111111

18 34 . 7 . 11 . 13 . 19 . 37 . 52579 . 333667

19 32 . 1111111111111111111

20 32 . 11 . 41. 101 . 271 . 9091 . 99009901

21 33 . 37 . 43 . 239 . 4649 . 20951185837

22 32 . 112 . 23 . 35932447 . 11111111111

23 32 . 11111111111111111111111

24 32 . 7 . 11 . 13 . 37 . 73 . 101 . 137 . 9901 . 99990001

25 32 . 41 . 271 . 100001000010000100001

116

Inverso del Teorema di Fermat

• Il Teorema di Fermat ci permette di stabilire se un numero è composto.

• Il Teorema di Fermat non serve per stabilire se un numero è primo.

• Quindi, l’Inverso del Teorema di Fermat è falso, come mostro in un controesempio nella prossima diapositiva.

117

Inverso del Teorema di Fermat• Esempio:• Per a=2 e N=341, si ha 23401(mod.341),• 341 non è primo, ma è il prodotto di 11 per 31.• Dimostrazione:• Siccome le successive potenze di 2 in base 11 sono:• {2, 4, 8, 5, 10, 9, 7, 3, 6, 1}, si ha:

2101(mod.11),• E, in particolare, essendo 340 multiplo di 10, si ha anche:

• 23401(mod.11),• perché le successive potenze di 2 in base 31 sono:• {2, 4, 8, 16, 1}, si ha:

• 251(mod.31),• E, in particolare, essendo 340 multiplo di 5, si ha anche:

• 23401(mod.31);• Quindi, si ha alla fine che: 23401(mod.[11.31]), o per meglio dire:

• 23401(mod.341).

118

Inverso del Teorema di Fermat• Esempio:• Per a=3 e N=341, allora 334056(mod.341).• Dimostrazione:• Le successive potenze di 3 in base 341 fino ad arrivare ad 1 sono: {3, 9, 27, 81, 243, 47,

141, 82, 246, 56, 168, 163, 148, 103, 309, 245, 53, 159, 136, 67, 201, 262, 104, 312, 254, 80, 240, 38, 114, 1},

• Quindi il periodo di 3 in base 340 è 30, ma dividendo 340 con 30, si ha: 340=11 .30+10, e quindi: 3340=311x30+10=(330)11.310,

• Ma 3301(mod.341), e quindi anche (330)11111 =1(mod.341), inoltre, essendo e 31056(mod.341), anche 3340=(330 )11.31056(mod.341).

• Da ciò, 341 non è primo.• Quando si verifica che un numero n è del tipo:

• 2n-11(mod.n),• ed esiste un numero a, con a 2 per cui:

• an-1x(mod.n), x1;• Si dice che il numero è pseudo-primo in base 2.

119

Pseudo-primi

• Si ha, quindi, che 341 è pseudo-primo alla base 2.• I numeri pseudo-primi sono rari, solo 1770 numeri

più piccoli di 25.109 sono pseudo-primi alle basi 2, 3, 5 e 7.

• L’Inverso del Teorema di Fermat serve per escludere dal test di primalità tutti quei numeri che non verificano la condizione dell’Inverso del Teorema di Fermat, poiché essi non possono essere in nessun caso primi.

120

Inverso del Teorema di Fermat

• Lucas (1876)

• Se ax-1:

• È divisibile per n, per x coincidente con n-1

• Non è divisibile per n, per x uguale ad una parte aliquota di n-1,

• Allora, il numero n è primo.

121

Inverso del Teorema di Fermat

• Esempio:• Sia a=3, n=65537=216+1;• I divisori di n-1 sono: {1, 2, 22, 23, 24, 25, 26, 27, 28, 29, 210, 211,

212, 213, 214, 215, 216}.• Se scrivo il resto delle divisioni tra le potenze di 3 con

esponenti le successive potenze di 2, ottengo la sequenza, nella quale ciascun termine è il quadrato del precedente:

• {3, 9, 81, 6561, 54449, 61869, 19139, 15028, 282, 13987, 8224, 65529, 64, 4096, 65281, 65536, 1}.

• Dal fatto che 3 non ha il resto uguale a 1 prima dell’ultimo termine della sequenza ed ha resto pari ad uno nell’ultimo termine, si ha che n=65537=216+1 è un numero primo.

122

Test di Lucas

• Il Test di Lucas presenta l’inconveniente che richiede la fattorizzazione del numero n-1 ed una verifica per ciascuno dei fattori.

• La difficoltà è ridotta se il test è applicato ai numeri della forma n=pk+1, con p primo.

• Tuttavia, se il numero da considerare è grande, si richiedono noiosi calcoli.

123

Test di Lehmer

• Teorema 1. Se ax1(mod.N) per x=N-1, ma non per un divisore proprio di N-1, allora N è primo.

• Questo metodo richiede:• La completa fattorizzazione di N-1;• Il numero dei valori di x può essere esageratamente

elevato;• La condizione di primalità è sufficiente, ma non

necessaria.

• Tali inconvenienti sono limitati, se N-1 è una potenza di 2.

124

Test di Lehmer

• Teorema 2. Se ax1(mod.N) per x=N-1, ma non per x, tale che x è quoziente di N-1 sulla divisione di alcuni suoi fattori primi, allora N è primo.

• Teorema 3. Se ax1(mod.N) per x=N-1 e se axr>1, per x=(N-1)/p, e se r-1 è primo con N, allora tutti i fattori primi di N sono della forma npα-1, dove α è la più alta potenza al quale i primi p occorrono come divisori di N-1.

125

Test di Lehmer

• Esempio: sia N=9999999900000001,

• Questo numero è dato da (1024-1)/(108-1).

• Si ha, allora:

• N-1 = [(1024-1)/(108-1)]-1 = 108(1016-1)/(108+1) = 108(108-1) = 28.58.32.11.73. 101.137.

• I divisori di 28 e 58 (essendo 8 la potenza più elevata relativamente ai numeri primi) sono stati scelti come valori di pα e per testare l’operazione seguente:

• 7(N-1)/107128121476353673=r(mod.N),

• Allora r2=7(N-1)/5428233546143224(mod.N)

• E, finalmente, r59999999900000000=N-1(mod.N) e r101(mod.N),

• Essendo r2-1 primo con N, segue che ogni fattore di N è della forma: n28+1, ed anche della forma: n58+1, o meglio della forma:

• n108+1.

• Ma N1/2<108, così N è primo, così si ha la completa fattorizzazione del numero 1024+1 è:

• 1024+1=17.5882353.9999999900000001.

126

Test di Lehmer

• John Selfridge (1975) semplifica il Teorema 2, il quale permette di cambiare il valore di a per qualche divisore di N-1.

• Egli stabilisce che se per qualche divisore primo p di N-1, esiste un a tale che:

• a(N-1)/p≡r(mod.N), con r>1, ma a(N-

1)≡1(mod.N), allora N è primo.

127

Sequenza di Fibonacci

• Sequenza di Fibonacci (1282): 1, 2, 3, 5, 8, 13, …, (i-1)+i, … .• Simon Stevin (1634), osserva tale sequenza e la collega al

problema circa il numero di conigli prodotti da una coppia di conigli.

• Robert Simson nota che tale sequenza e nota che è data da: (1+5)/2, radice dell’equazione quadratica X2-X-1=0.

• Tale successione ha suscitato interesse da parte di altri matematici a partire dal 1750.

• Lucas (1876) a partire dall’equazione X2-X-1=0, stabilisce le due sequenze definite da:

• Un=(an-bn)/(a-b) e Vn=an-bn=Un-1+Un+1.

128

Test di Lucas

• L’uso delle successioni:• Un=(an-bn)/(a-b) e Vn=an-bn=Un-1+Un+1,• È utile per provare se un numero di

Mersenne della forma 2m-1 sia primo, e Lucas stesso stabilì che 2127-1 fosse primo.

• Con questo metodo fu trovato nel 1988 il numero primo di Mersenne: 2110503-1.

129

Test di Lucas

• La “sequenza di Lucas” generalizza la sequenza all’equazione quadratica al caso: x2-Px+Q=0, dove P e Q sono interi e coprimi, tramite le formule:

• U2n=UnVn, V2n=(Vn)2-2Qn, U2n+1=Un+1Vn-Qn e V2n+1=Vn+1Vn-PQn.

• Teorema (fondamentale) di Lucas. Se in una delle successioni ricorsive Un determina che Up-1 è divisibile per p, ad esclusione di ciascuno degli altri termini della serie, il cui rango è divisore di p-1 iniziando così, il numero p è primo; proseguendo allo stesso modo, se Up+1 è divisibile per p, ad esclusione di ciascuno degli altri termini della serie il cui rango è un divisore di p+1 iniziato così, allora il numero p è primo.

130

Test di Lucas

• Teorema 2. Sia p=24q+3-1 nel caso in cui 4q+3 è primo e 8q+7 è composto; noi produciamo la serie rn: 3, 7 , 47, 2207, … dal significato della relazione, per n>1,

• rn+1=rn2-2,

• Il numero p è primo, mentre il rango del primo termine divisibile per p occupa un rango tra 2q+1 e 4q+2; il numero p è composto se alcuno dei 4q+2 primi termini della serie è divisibile per p.

131

Test di Pépin

• Dal teorema di Pépin si trova un algoritmo per testare la primalità dei numeri di Fermat.

• Un numero di Fermat della forma Fn=2k+1, dove k=2n.

• Fermat asserì (erroneamente) che tutti i numeri di tale forma fossero primi.

132

Scomposizione dei numeri di Fermat Fn

• Goldbach (1729) provò che F5=232+1 sia composto, dal fatto che F5=641.6700417.

• Verso la fine del 19° si cerca di trovare se F6 sia primo o composto.

• Il più grande numero di Fermat esplorato col test di Pépin è F22, che contiene 1262612 cifre, esso è composto.

• Il più grande numero conosciuto essere composto è F23471.

• Il primo numero di Fermat sconosciuto è F24.

133

Test di Pépin

• Teorema.

• La condizione necessaria e sufficiente affinchè il numero an=2k+1, con k=2n sia primo, per n>1, è: che il numero 5(an-1)/2+1 sia divisibile per an.