ハイパーノバとブラックホール Hypernovae and Black Holes

Post on 21-Mar-2016

38 views 3 download

description

ハイパーノバとブラックホール Hypernovae and Black Holes. 野本憲一 (Nomoto, Ken’ichi) 前田啓一 (Maeda, Keiichi) 東京大学大学院理学系研究科天文学専攻 University of Tokyo, School of Science, Department of Astronomy. E ~ 30×10 51 ergs. E ~ 1×10 51 ergs. SN 1998bw. SN 1987A. =. SN 1998bw. - PowerPoint PPT Presentation

Transcript of ハイパーノバとブラックホール Hypernovae and Black Holes

ハイパーノバとブラックホーハイパーノバとブラックホールル

Hypernovae and Black HolesHypernovae and Black Holes野本憲一 (Nomoto, Ken’ichi)前田啓一 (Maeda, Keiichi)

東京大学大学院理学系研究科天文学専攻University of Tokyo, School of Science, De

partment of Astronomy

SN 1998bw

=

SN 1987A

E ~ 30×1051ergs E ~ 1×1051ergs

SNe Ic SNe IInSN GRB SN GRB

1998bw 980425 1997cy 9705141997ef 971115 1999E 9809101999as 1988Z2002ap 1999eb 9910021997dq1998ey1992ar

Hypernova CandidatesEkinetic > (5-10)×1051ergs SN 1998bw

GRB 980425

• Observations: Spectra, Light Curves– Progenitors, Energetic, M(56Ni)

• The properties of Hypernova Explosions– Features unexpected by spherical models– Black Hole Formation

• Jet-Driven Explosion Model– Explains the above features?– Predictions

• Evolution of the central black hole. • Nucleosynthetic features (e.g., 56Ni)• Gravitational wave (?) - Optical Display - Abundances

Possible Gravitational Wave from Hypernovae?

• MBH ~4M

• Low Viscosity Case M (R<300km)– 0.0033 M

• High Viscosity Case – 2.21 M– j~1017 cm2s-1

• Self-Gravity• Large EROT/|EGRAV|

Macfadyen et al. 1998

Bar Mode Instability?

R ~100km at Bounce

M~1M

J Conserve

j~1016cm2s-1

R ~100kmMDISK~2M

J Conserve

j~1017cm2s-1

h~4×10-20 (1Mpc/D) (j/1017cm2s-1) (M/M) (f/1000Hz)

f~1000 (j/1017cm2s-1) (100km/R)2 e.g., Fryer et al.2002

SN at 10Mpc (1SN/year); f~100 Hz, h~4×10-

23

HN at 100Mpc (1HN/year); f~1000 Hz, h~8×10-22

Ia

Ic

Ib

94I

97ef98bw

HeCaO

SiII

Hyper  -novae

Spectra of Supernovae & Hypernovae

Hypernovae :   broad features     blended lines   “ Large mass at hi

gh velocities”

Ic: no H,

no strong He,

no strong Si

Light Curves of Supernovae & Hypernovae

Light Curve Broadness

SN1998bw >> SN1994I

Ejected Mass

SN1998bw >> SN1994I

Progenitor’s Mass

SN1998bw >> SN1994I

Parameters [Mej, E, M(56Ni)]

Si

C+O

HeH-rich

MC+O

Fe Collapse56Ni

56Co

56Fe

Mms/M MC+O/M

~ 40 13.8~ 35 11.0~ 22 5.0

Light Curve Spectra

~ [dyn • diffusion]1/2

~ • RV R c

Mej 1/2

½Mej¾E -¼

E Mej3

E Mej

CO Star Models for SNeIc   

56 Ni

Spectral Fitting: SN1997ef

Model

Normal SN

Small Mej

Too Narrow Features

Spectral Fitting: SN1997ef

Model

Hypernova

Large Mej

Broad Features

Progenitors’ Mass – E – M(56Ni)

Most Stars (>25M) explode as Hypernovae?

• The Contribution of Hypernovae is Large.– Hypernovae are Not so Rare Events.

Distribution of HNe

Distance – Absolute Magnitude of SNe Ib/c

10 100 Mpc

• 1 HN per 1 year in R<100Mpc.

• 1 SN per 1 year in R<10Mpc.

Hypernova Rate

• Large Fraction of Massive O (or He) Star with M>20M Explodes as Hypernovae. Depending on Binary Evolution?

Local SN Rate (SN/100yr/1010L) h=H0/100

Ia Ib/c II All0.36±.11h2 0.14±.07h2 0.71±.34h2 1.21±.36h2

Corrected1)

Observed2) 111 18 54 1831)Cappellaro et al. 99, 2)Richardson et al. 01

HNIb/c

SNIb/c= 3(+1+2)/18

~ 0.15 – 0.3

N(20M-50M)

N(8M-20M)~ 0.3 (Salpeter IMF)

Properties of Hypernova Explosions

(1) Deviation from spherical explosion models(2) Black hole formation

1) Asphericity in Core-collapse SNe (in general)

HST Image of SN1987A

Wang et al. 2002Optical Spectropolarimetry of

SNe 1993J, 1996cb, Wang et al. 1999

SN1987A: Asymmetrical, but not spherical, ejecta

Optical Polarization in core-collapse SNe > 0.5 %(in SNe Ia < 0.2 - 0.3%)

1998bw

1997ef

2002ap

1998bw

1997ef

2002ap

High Density

Spherical Hydro Model

Low Density

(Vacuum)

2) Light Curves of Hypernovae

Maeda et al. 2003, ApJ, submitted

ObserverExpansion

Fe

O

Spherical

FeII] 5200A

[OI] 6300A

Observation

FWHM

3) Late time spectra of SN1998bwLine Width Inversion between Fe and O

Broader Fe lines than O lines in the observations.

Low velocity O-rich Matter: SNe1998bw, 1997ef

56Fe

16O

Spherical

Aspherical

15 deg

FeII] 5200A

[OI] 6300A

Maeda et al. 2002

Observation

Interpretation as an Aspherical explosion

• Enhancement of O,Mg,Si,S,Ti by a factor of 6-10. Israelian et al. 1999

Abundances in Nova Sco

-0.5

0

0.5

1

1.5

N O Mg Si S Ti Fe

[X/H

]

SN matter

BH

[X/H]=log10(X/H)-log10(X/H)

4) BH Formation

Hypernova model for the formation of the BH in Nova Sco

Abundance in Nova Sco

00.20.40.60.8

1

He C O Ne Mg Si S Ca Ti Fe

[X/H

]

E51=30BH mass in the model

4.8M at the explosion

5.4M now (Post SN)

SN

BH

MMS=40M, MHe=16M, E51=30

MBH at the explosion ~ 5M

Black hole formation with a Hypernova explosion.Podsiadlowski et al. 2002

The properties of hypernova explosions

• High velocity material (Fe)• Low velocity & high density material (O)

– Contrary to conventional spherical models. • forms a black hole, but explodes with large

E51 (= E/1051ergs > 10).– Black hole formation does not always leads to

a failed supernova.

Do jet-induced explosions satisfy these conditions?

16MHe (MMS=40), 8M

He (MMS=25), (Nomoto&Hashimoto 1988)

MRem0 1.0 – 3.0M

Ejet = Mc2 , 0.01

Model: Jet-induced Explosion

Newtonian  Gravity

Radiation+ Pairs 15o

Postprocessing

222 isotopes (Tielemann et al.)K. Maeda, in preparation

Hydrodynamics

Collimated jets (Z) + Bow shock (All direction)

M Lateral expansion

Radial Velocity/cLog (Density[g cm-3])

R/1010cm

Hydrodynamics (Center)

Accretion from the side

Continue to accrete, MBH

Radial VelocityDensity

R/1010cm

0.7 s

1.5 s

E51=11, MBH(final)=5.9M, M(56Ni)=0.11MOutflow

Inflow

R/1010cm

Density Distribution

Jet (z) (E51=11)

Jet (R)

Sph (E51=10)

Sph (E51=1)

High density core at the central region

High velocity material along z

Growth of a central remnant

Time (sec)

MBH

20 400

4

8 Inefficient Jet

efficient Jet

MREM can be ~ 5 – 10M, starting from 1.5 – 3M.

Still a strong explosion follows (E51>10).

A hypernova with a stellar mass black hole (X-ray Novasco; Large Si,S with black hole formation).

Final Remnants’ masses and Kinetic Energies

• A more massive star makes a more energetic explosion         (As seen in ‘Hypernova Branch’).

11 6.9

1.95.9

E51=E/1051ergs MBH(M)

Peak Temperature & Density

• High T + Low Material are preferentially ejected.

R

Z

R

ZEjected

Accreted

T/109K

0

4

8

Log(Density[g cm-3])864

Spherical

Ejected Accreted

High Velocity Fe Low Velocity O

6

4

2

02 4 6

Vz (/109cm s-1)

0.50.10.01

E51(=E/1051ergs)=10, MREM=6M, M(56Ni)=0.1M

16O56Ni(56Fe)

Fe, O Distribution

Vr

Relation in MREM and M(56Ni)

(M)

(M)

L Opt

ical

Efficient

e.g., rotation

inefficient

40M

20M

GW: GW:

Fe

MnO

Zn

Velocity Inversion of isotopes

V(Fe) > V(O), V(Zn) > V(Mn)

Spherical; Zn Fe Mn O

T , Inner (smaller V)

Ejection of heavier isotopes with higher V

Prediction

Jet (Z) Jet (R)

Spherical Jet (all direction)

O Fe and heavier

Spherical, 1052ergs, 0.1M Ni

Jet-Driven, 1052ergs, 0.1M Ni

O, MgMn

Co, Zn

Abundances in the whole ejecta

Possible Contribution to the early Galactic Chemical Evolution

Jet model: [Zn/Fe] ,[Mn/Fe]

Agrees with the abundances in old stars.

Past

[X/Y] = log(X/Y) – log(X/Y)

More Massive Star

-1

-0

.5

0

-1

-0

.5

0

[S/Si]

-0.6

-0

.4

-0.2

0

-0.6

-0

.4

-0.2

0

[Si/O]

40M25M

MBH/M

0 1 2 30 5 10

56Ni

S Si O

Accretion

Sph

Jet

Accretion

[S/Si],[Si/O]

0 5 10 0 1 2 3MBH/M-0

.2

0

0.2

0

.4

-0.2

0

0

.2

0.4

-1.4

-1

.2

-1

-0

.8

-1.4

-1

.2

-1

-0

.8

40M25M

[Mg/O]

[C/O]

O,Mg C

Accretion

Sph

Jet

Accretion

[Mg/O] ,[C/O]

Summary• The studies on hypernovae indicate;

– Velocity inversion of Fe and O – Dense core– Black hole formation

• Jet-induced explosions satisfy the above condition!– Blow up heavy isotopes (e.g., Fe, Zn) to the surface.– A black hole grows, with an energetic explosion.

• Possible site of gravitational wave emission?• Depending on angular momentum, HNe may be able to be detect

ed more easily than normal SNe.

– MBH efficiency of the jets (e.g., rotation?)

– MBH ( inefficient Jets) LOpt

– MBH Abundances (e.g., MBH [S/Si], [O/C] )