计算机视听觉-人工智能之梦 Computer Seeing and Hearing-A Dream of AI

Post on 16-Mar-2016

196 views 10 download

description

计算机视听觉-人工智能之梦 Computer Seeing and Hearing-A Dream of AI. 张钹 清华大学信息科学与技术学院 清华大学计算机科学与技术系 清华信息科学与技术国家实验室 智能技术与系统国家重点实验室. Computer Vision /Hearing. Is it possible ? Yes No It is just a daydream !. The Characteristic of Auditory Information (Data). Ears, Earphones - PowerPoint PPT Presentation

Transcript of 计算机视听觉-人工智能之梦 Computer Seeing and Hearing-A Dream of AI

计算机视听觉-人工智能之梦Computer Seeing and Hearing-A

Dream of AI

张钹清华大学信息科学与技术学院清华大学计算机科学与技术系清华信息科学与技术国家实验室智能技术与系统国家重点实验室

Is it possible ?YesNo It is just a daydream !

Computer Vision /Hearing

The Characteristic of Auditory Information (Data)

Ears, Earphones A continuous waveDigital Data: 20K-100K bits/sSparseness (Redundant)Noisy

The Characteristics of Visual Information (Data)

Eyes, Digital Camera • Pixel-based (million, ten million bits) Sparseness (Redundancy) Noisy• Eyes: a sequence of images 109 bits/sec

The Sparseness of Auditory Signal

采样频率 位分辨率• 广播质量- 48kHz• CD 质量- 44kHz 16 位• 收音音质- 22kHZ 8 位• 可接受的音乐- 11kHz 4 位• 可接受的语音- 5kHz

The Sparseness of Visual Signal

分辨率与识别率的关系 (conceptual)

一个不适定问题An Ill-posed Problem

Sparse, redundant, noisy data(110000111100011100011000………… )

Microphone (Ears)(Camera (Eyes))

Speaker-invariant Vowel RepresentationVowel-invariant Speaker Representation( Object-invariant Representation )

Existence Uniqueness Stability

1. Segmentation & Recognition

Image Segmentation vs. Recognition

Which comes first, Chicken or Egg

Where is the object ?

What is the object ?

?

Speech Segmentation vs. Recognition

? What, Where

技术上的困难(Technology)

Sparse, redundant, noisy data

Speaker-invariant Vowel RepresentationVowel-invariant Speaker Representation

A Robust Detector

An Invariant Descriptor

Top-down feedback

Top-down feedback

Local connection

Data-driven From egg to chicken

High-levelApriori-knowledge

人类是如何解决的?

The Relation Between Activation Patterns and Early Stages of Sound Processing

Speech Encoding occurs not only in specialized high-level region but also in early stages of sound processing. The early sound processing may exhibit complex spectrotemporal receptive fields and may participate in high-level encoding of auditory objects, e.g., via local feedback

Multi-layer Neural Network with feedback connections

G. E. Hinton, The “wake-sleep” algorithms for unsupervised neural networks, SCIENCE vol.268, 26 May 1995, 1158-1161

RepresentationRBM:Restricted Boltzmann Machine

Experimental Results

G. E. Hinton, Learning multiple layers of representation, TRENDS inCognitive Sciences vol.11, no.10, 428-434, 2007

2 、 Feature Extraction

Computer Robustly Extractable Features

Sparse, redundant, noisy dataStatistical

Approaches

Speech-base Invariant Statistics (Features)

Speaker-invariant Vowel RepresentationVowel-invariant Speaker Representation

Statistical Method• 选择一个语音训练库• 提取语音特征• 无监督学习( Classification )• 分类准则- Generalization 提取何种特征 ?Computer robustly detectable

Representation at Different Granularities

Global Features-one vector The coarsest

The finest

Pixel Based-1280X800X3 vectors

An Image

Pixel-based Representation-the finest representation

• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •• • • • • • • • • • •• millionX3-dimensional vectors -all the details , ,

( , )

( , ) [ ( , )], 1 ,i j

k i j

X F f

X x y

F f g x y i j n

( , ) ,1 ,k kG g i j i j n

Global Features -the coarsest representation

N

jiji P

Nu

1

121

1

2 ))(1(

N

jiiji uP

N

Color moments

31

1

3 ))(1(

N

jiiji uP

Ns

N-the number of pixels, P-the value of each colorOne 9-dimensional vector

Coarse vs. Fine Representation

Representations

The Finest Representation

The Coarsest Representation

Expressiveness

Full Structural KnowledgeGood

No Structural KnowledgePoor

Robustness Poor Good (rotation, translation, scaling,…)

Representation with Middle Grain-Size

• • • • • • • • • • • • • • • •

• • • • • •

Region-based Representation

1 2

([ ] ,[ ] ,[ ] )

[ ] , 1, 2,...,

[ ] ( ), ( ),..., ( )k

i i i

i i k

i k k k n

X F f

X x i n

f f x f x f x

Local (Spatial) Feature Region-01 Region-11 Region-12

Foreground vs. Background

Vector Representation

1 2 1

[ ] :

( ), ( ),..., ( ) , 1,2,...,k

i

k k k n

f

f x f x f x k l

A set of vectors (tens) (with different length)Similarity MeasureWeighted

Region-adaptive Grid Partition

Jinhui Yuan (2005…)

Hierarchical (粒度)结构(X, F, f )-the finest space([X], [F], [f] )-coarse space[X] the quotient space of X[F] the quotient structure of F an equivalence class[f]-the quotient attributes of f

• • •

• • • • • • • • • • • • •

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•Semantics (text, image)

Primitive (words, pixels)

Semantic Gap

PM: Pyramid Match (feature space-quantization level) SPM: Spatial Pyramid Match (physical space-grid)FESCO: Feature Spatial Covariant Kernel

Concept Detection from Video Shots

ExperimentsTRECVID 2005, 10 concepts 170 hours news (MSNBC, NBC Nightly News, CNN, LBC, CCTV, NTDTV)TRECVID 2006, 20 concepts 170+150 hours newsKeypoint descriptor: 64-dimensional SURF feature (Speeded Up Robust Features)AP: Non-interpolated Average PrecisionMAP: Mean Average Precision (7 concepts)

TRECVID Data

Name hours no. shots no. frames dateTRECVID05d 80 44,000 75,000 2004 10-11TRECVID05t 80 46,000 78,000 2004 11-12TRECVID06t 150 80,000 144,000 2005 11-12TRECVID07d 50 18,000 18,000TRECVID07t 50 22,000 63,000

d: training data, t: testing data

Coarse vs. Fine Granulation

MAP: 7 concepts: car, explosion-fire, flag-US, maps, mountain, sports, waterscape-waterfront Test Set TRECV05t TRECV06tVocabulary Size

18 72 288 18 72 288

Grid 11 Grid 2 2 Grid 4 4

0.073 0.210 0.2440.223 0.260 0.2510.271 0.254 0.275

0.025 0.074 0.109 0.078 0.117 0.119 0.116 0.123 0.128

Multi-granulation

Combination

TRECV05t

TRECV06t

Whole Comb.

9 combinations 0.307 0.166

FESCO Fine SpaceFine FeatureFine Comb.Coarse Comb.

PiQj=288 Qj=G44; Pi=288, 72, 18 Pi=288; Qj=G11, G22, G44

PiQj>288 PiQj<288

0.306 0.300 0.294 0.293 0.250

0.166 0.158 0.155 0.151 0.106

MAP: 7 concepts: car, explosion-fire, flag-US, maps, mountain, sports, waterscape-waterfront

Multi-granulation (2)MAP: 7 concepts: car, explosion-fire, flag-US, maps, mountain, sports, waterscape-waterfront

Test Set TRECV05t TRECV06t Fusion Method

pre-fusion post-fusion

pre-fusion post-fusion

FESCO SPM PM

0.297 0.306 0.274 0.285 0.254 0.269

0.154 0.166 0.140 0.146 0.124 0.125

Multi-Granular & Multi-modalTRECVID2005 (Video Retrieval Evaluation Conference)86.6 hours of news videos (45766 shots in 140 video clips)Features: A: auto-speech recognition text T: visual texture R: color of segmented image regions

PMSRA

Probabilistic Model Supported Rank Aggregation

The Comparison between Uni-modal and Multi-granular, modal

Uni-Modal Multi-Granular, Modal

ASR Texture Region A+T A+R T+R A+T+R

US-flag 0.0335 0.0155 0.0375 0.0359 0.0506 0.0372 0.0521

Water 0.0034 0.1143 0.0814 0.1022 0.0735 0.1333 0.1211

Mountain 0.0033 0.0693 0.1104 0.0668 0.1066 0.1176 0.1154

Sports 0.0723 0.0769 0.2156 0.1465 0.2678 0.2802 0.3050

Average 0.0281 0.0690 0.1112 0.0879 0.1246 0.1421 0.1484

TRECVID Text Retrieval Conference Video Retrieval Evaluation

声波、声谱图( Spectrograms )

语音信息Global Features-one vector The coarsest

The Finest-sampling

不同粒度的语音特征• 语音单元(粒度)选择: 音素、音节、词… .• 语音参数选择 MFCC: Mel 频率倒谱参数 (Mel Frequency Cepstral Coefficients) LSP :线谱对 (Line Spectrum Pair) ICA (Independent Component Analysis)

• 多(粒度)特征融合

3 、 Structural Model• Temporal Model (HMM)• Spatial Model

语音的时间结构 (Temporal Structure)

多粒度结构

Image Region Annotation -horse, sky, mountain, grass, tree

Region-adaptive Grid Partition (2)

Experiments• 4002 Corel images (384256 or 256384)• 11 basic (region) concepts• Features: color moment + wavelet• 5 models: 2 without structural knowledge (GMM, SVM) 3 with structural knowledge (HMM*, RMF*, CRF*)

Image Region Annotation

Image Region Annotation

Spatial Structural Representation

n images, each image has mi=HV grids

( , ) ( , ), 1,2...,

( , ) ( , ), 1,2,...,i i

j ji i i i i

x y x y i n

x y x y j m

(a) i.i.d generative model(b) i.i.d. discriminative model(c) 2-dimensional hidden Markov (2D HMM)(d) Markov Random Field (MRF)(e) Conditional Random Field (CRF)

Different Models

Label Configuration ( , ), 1,2,...,i ix y i N

Given a training data, MAP (maximal a posterior) : label configuration

1: 1:* argmax ( )m my P y x

For 2D HMM, MRF, CRF using path limited Viterbi algorithm

Probabilistic distribution P Cs: labeling clique, C0: labeling and feature cliquey* the optimal label configuration

0

1: 1:

( , ) ( , )

1( , ) ( , ) ( , )i j s k k

m m i j k k

y y C y x C

P x y y y y xZ

1:0( , ) ( , )

* argmax ( , ) ( , )m

i j s k k

i j k k

yy y C y x C

y y y y x

Markov Random Field Model - MRF model

Comparison Among Different Models

GMM: Gaussian Mixture Model (30 components)SVM: Support Vector Machine Gaussian kennel, one-against-oneHMM: Hidden Markov ModelRMF: Random Markov FieldCRF: Conditional Random Field Limited Path Viterbi Algorithm

Experimental Results

The Spatial Relation Among Region Labels

The probability that some things are above the “sky”, “flower” or “building”

Future Direction4. Data Driven Approach

数据驱动法( Data-driven )数据驱动法的本质: 针对特定数据(语音、图像)库 高维空间的划分问题今后的发展方向:• Large scale annotated database• Sparseness in high dimensional space

*******

Data Space

HorsePrecision: 25/30 pictures

Global ColorFeatureHorse-Green

EaglePrecision:13/25 pictures

Global Color FeatureEagle-Blue

 

Local Features 17/36 picturesRegion-based Color Features Foreground Color pink

The Bless of Dimensionality

Sparse RepresentationSample Space(Data Space)Extended Yale B2414 frontal-facewith different lighting38 individuals192168 image

J. Wright, et al. Robust face recognition via sparse representation, IEEE PAMI 08

Anti-Noise

30%

50%

70%

Anti-Occluded

5. Brain Science (Structural Model)

From eye to primary visual cortex

Li Zhaoping, Theoretical understanding of the early visual processes by data compression and data selection, Network: Computation in Neural Systems, December 2006; 17: 301-334

Two Basic Problems• Description: What is the object-invariant descriptor in human brain?• Detection: How to obtain the descriptor from a huge amount of data?There is some answer but is not a full answer.

Vision: 2D image- 3D scene

This is a hard problem even for human being

eyes + brain• Billions years evolution• 1/3 of brain resource• Several years learningMany problems are still unsolved for human

being

基于人类认知的图像处理数据空间 感知空间(语义)

数据空间 原空间 语义空间2,000 bytes-50% (6464) 维特征 几十 bytes

Cognition (Perception) SpacePerception spaceSemantically meaningful features• 多层次 (hierarchy)• 自底向上的数据驱动 + 自顶向下的反馈(上下文,先验, 标注知识)

Object Recognitionwith sparse, localizedfeatures

MIT-CSAIL-TR-2006-028 T. Serre

HMAX-sum + max

Computational Model

Experimental Results• Caltech 101 The number of categories: 101 Training samples: 30/per class Average recognition rate: 51%• Vista (car, passerby, bicycle) AUC>90% • AUC: the area under the ROC (Receiver Operating Characteristics) curve

人脑听觉皮层的试验研究Three Dutch vowels (a, i, u)Three speakers (1 female, 2 males)Features: F1-F2 F0

Elia Formisano “Who” Is Saying “What”? Brain-based Decoding of Human Voice and SpeechScience vol 322, 7 Nov. 2008

谢谢 !