Инновации Cisco для операторов связи

Post on 06-Jan-2017

181 views 12 download

Transcript of Инновации Cisco для операторов связи

Операторы связи

Cisco Club’16

Инновации Cisco для операторов

связи

Денис Коденцев

Инженер-консультант, CCIE

14.12.2016

О чем пойдет речь?

• Развитие BNG на ASR 9000

• Развитие EVPN технологий

• Развитие Segment Routing технологии

• Другие новости

ASR 9000 – 6.0.1+

Развитие BNG

AvgSpeed

YoY Peek Speed

India 3.4Mbps 55% 21Mbps

Global 6.5Mbps 8% 104Mbps

Exhibit 1 : Akamai Report’16

Exhibit 2 : Huffington Post

0

5

10

15

20

25

30

6Mbps 10Mbps 25Mbps

Scale vs Per-Chassis Throughput

128K 256K 512K

Chas

sis

BW T

bps

à

Основные тренды ШПД

CISCO BNG CHASSIS

CAPACITY

ALUBNG

CHASSIS CAPACITY

• The niche market segment of subscribers with > 15Mbps

is growing at a very high rate driving average subscriber

throughput requirements

• Cisco BNG solution leads the industry in providing highest

subscriber density per chassis

• Cisco solution is truly positioned to meet multi-year growth

demands

• Versatility to support on

10G/40G/100G Breakout

options

• Two Traffic Managers

• UIDB’s increased from 16-

bit to 18-bit

• Higher Throughput

• Faster Lookups

• More Memory

Поддержка BNG на картах 3-ого поколения

Without LAG support (Session hosted on LC)

With LAG Support (Session hosted on RP)

Session Type 6.1.1 (2017)

IPv4 Only sessions (PPPoE + IPoE) 256k 512k

IPv6 Only sessions (PPPoE + IPoE) 128k 512k

Dual Stack sessions (PPPoE + IPoE) 128k 384k

Sessions/LC ( Min 2 x NPU) 64k 128k

Sessions/NPU/Port / 1 NPU Linecard 32k 64k

CPS (N: Number of LC) N x 200 600

DHCP 256k 512k

Session Type 6.1.1 (2016-2017)

IPv4 Only sessions (PPPoE + IPoE) 128k 192k

IPv6 Only sessions (PPPoE + IPoE) 96k** 128k

Dual Stack sessions (PPPoE + IPoE) 96k** 128k

Sessions/LC (Min 2 x NPU) 64k 128k

Sessions/NPU/Port / 1 NPU Linecard 32k 64k

CPS 150 300

DHCP 128k 128k

Target for Dense SP Agg(10G/100G)

Skywarp (NCS 5001/5002)

NCS 5000 как сателит

MC-LAG on the Host

NCS5k

CE

NCS5k

ICCP

ASR9K BNG

ASR9K BNG

nV Dual Head for BNG

Access

NCS5kCE ICCP

ASR9K BNG

ASR9K BNG

• High Availability

• Huge 10GE/100GE Fan-out toward

DSLAM

• Single-Chassis-like look&feel and

Management of Cluster Members

and Satellite

• Satellites appear like ASR 9000

Linecards

• Simplified topology, No Spanning

tree/MC-LAG or other L2

redundancy protocols needed

Advanced SW Licenses

“Consumption Model” для BNG

Commons:

Fans, Power, Chassis,

Fabric, RP, IOS-XR RTU

Linecards:

Reduced

Price

Same

Price as

Today

Foundation Software

Metered Per

10G/100G Port

Hardware1 Foundation SW2 Advanced SW Licenses3

BNG License

Optional

Advanced SW

(also per port)

Smart Software Licensing

Smart Call Home

Transport Gateway

Or Smart Licensing

Satellite

Netw

ork

Depl

oym

ent

Cisco Commerce

Workspace

Cisco

Smart

Software

Manager

Place Order

Manage Licenses

Usage ReportingCisco Smart

SoftwareManager

Cisco.com Portal

ASR 9K

Routers

How it works…

1

3

Activate and Use

Software

2

Cisco Software UsageLicense

Name

Usage

L2VPN

L3VPN

nV Satellite

Optical

BNG

How many I am using?

How many do I own?

Exceeded number of

L3VPN licenses owned!

ASR9K BNG cегодня

Topology independent

Geo-Redundancy

Residential, Enterprise,

FMC, MLLLowest TCO

nV Support

LC Based Subscribers

9001 to 9922

A Solution for every need

XR BNG

Highest Density

BNG on Tomahawk, Powerglide LC’s

Skywarp as Satellite

M:N Geo-Red Active/Active Solution

Geo-Red for LC subscribers

Geo-Red Warm Standby

BNG Most Resilient

True PAYG

Network-Wide Licenses

Hardware Consumption Model

Programmable

Data Modelling Support

Telemetry driven analytics

Network-wide manageability

PCRF

PMIPv6

RADIUS

NASREQ

250+ Customers, 70 Million+ Subscribers

Публичные анонсы о BNG на базе ASR9000

(1) MTS Belarus

http://www.telegeography.com/products/commsupdate/articles/2013/10/10/mts-belarus-kicks-

off-implementation-of-ipv6-in-its-ethernet-network/

(2) Antel Uruguay

• http://newsroom.cisco.com/press-release-

content?type=webcontent&articleId=1438313&utm_source=Email

ASR 9000 - 6.0.0+

Aggregated Bundle QoS

Cisco Confidential 12© 2013 Cisco and/or its affiliates. All rights reserved.

• In pre-6.0 IOS-XR releases, when a QoS policy-map is applied to a bundle interface,

the policy is replicated to all active and non-active members of that bundle.

• Any percentage based configuration is resolved to nominal values by using the

bundle-member bandwidth as the reference rate.

• Above example policy will be applied to each member of the bundle, therefore traffic

will be shaped to 135 mpbs instead of the desired 45 mbps.

• A solution would be to configure 45/3=15 mbps in the policy-map. But this would lead

to a too low shaping rate in case a bundle member fails. So this is also not an option.

Aggregated Bundle QoSОграничения предудыщей модели QoS на LAG интерфейсах

policy-map example interface GigabitEthernet0/0/0/0class class-default bundle id 1shape average 45 mbps interface GigabitEthernet0/0/0/1

! bundle id 1interface Bundle-Ether1 interface GigabitEthernet0/0/0/2service-policy output example bundle id 1

Cisco Confidential 13© 2013 Cisco and/or its affiliates. All rights reserved.

• With IOS-XR 6.0, we introduce an Aggregated Bundle-QOS mode.

• In this mode, the following parameters are divided by the weighted number of active

bundle-members before they get applied to each bundle-member:

• shape rate

• bandwidth value

• police rate

• burst size (no change if value is in time units)

• WRED/queue-limit threshold (no change if value is in time units)

• In case the number of active bundle-members is changing (link up/down or manual

addition/removal of bundle-member), those values will be immediately adjusted.

• As a result, well load-balanced traffic is always shaped/ratelimited to the intended

rate, irrespective of the number of active bundle-members at that time.

• In case of unequal bandwidth members, the link bandwidth ratio will be incorporated.

Aggregated Bundle QoSПреимущества новой модели QoS

Cisco Confidential 14© 2013 Cisco and/or its affiliates. All rights reserved.

• Enable Aggregated Bundle-QoS mode:

• Disable Aggregated Bundle-QoS mode:

• These commands take effect chassis-wide.

• When Aggregated Bundle-QoS mode is enabled or disabled, the QoS policies on

all bundle-members are modified automatically.

• No linecard reload required!

Aggregated Bundle QoSКонфигурация

hw-module all qos-mode bundle-qos-aggregate-mode

no hw-module all qos-mode bundle-qos-aggregate-mode

Cisco Confidential 15© 2013 Cisco and/or its affiliates. All rights reserved.

• Supported hardware

• Trident linecards

• Typhoon linecards

• Tomahawk linecards

• Not supported on SIP-700

• Supported interface types

• Bundle Main interface

• Bundle Sub-interface

• Not supported on SVLAN

• Not supported on subscriber interfaces

Aggregated Bundle QoSПоддержка

ASR 9000 - 6.0.0+CGN - VSM static source NAT

Обзор• Static source NAT is mapping (1:1) between a given private source IP, port number to a given

public source IP, port number.

• I2O or O2I should work for static source 1:1 NAT irrespective of who triggered the traffic first.

• This Enhancement is for ASR9K – VSM only.

• ALG FTP is not supported with static source NAT.

Обзорпродолжение…….

Two variations to be supported:

a) naptstatic-mapping i2o-src 192.168.1.100,100.0.1.1,80,88

This would nat source ip address (192.168.1.100: source port number 80) of the

in-to-out packet to ip address 100.0.1.1: source port number 88

b) natstatic-mapping i2o-src 192.168.1.200 100.0.1.10

This would nat source ip address (192.168.1.200: source port number x) of the

in-to-out packet to ip address 100.0.1.10: source port number x

In this case complete public ip address 100.0.1.10 gets reserved for

192.168.1.200.

Настройка

RP/0/RSP1/CPU0:DEEPA#sh run service cgn cgn1

service cgn cgn1

service-location preferred-active 0/3/CPU0

service-type nat44 nat11

port limit 65535

dynamic-port-range start 65534

inside-vrf red

map outside-vrf blue address-pool 100.1.1.0/24

static-mapping-file direction i2o-src /disk0:/trans10.csv

Обзорпродолжение…….

• Sample format for CSV MAP file:

1)<gsr-india02-lnx:/auto/tftp-blr-users2/gudhayak:>cat trans5.csv

20.1.1.2,100.1.1.2

20.1.1.3,100.1.1.3

20.1.1.3,100.1.1.3,5000,8000

2)<gsr-india02-lnx:/auto/tftp-blr-users2/gudhayak:>cat trans1.csv

20.1.1.2,100.1.1.2

20.1.1.3,100.1.1.3

Проверка работы

RP/0/RSP1/CPU0:DEEPA#show cgn nat44 nat11 static-map i2o-src inside-vrf red forward staticnat-

address 20.1.1.3

-----------------------------------------------------------------------------------------------

NAT44 instance : nat11

VRF name : red

------------------------------------------------------------------------------------------------

Address: Port Mapped Address: Port I2O Packet Count O2I Packet Count

------------------------------------------------------------------------------------------------

20.1.1.3:17767 100.1.1.3:9158 0 0

20.1.1.3:34299 100.1.1.3:42281 0 0

EVPNновое поколение технологий для L2VPN

Обзор L2VPN

802.1ah

PBB802.1ad

qinq

802.1ad

qinq

802.1Q

802.1Q802.3

802.3

.1ad/qinq:

High VLAN scale

.1ah: High VLAN

and MAC scale

L2 over MPLS

EoMPLS, VPLS

L2 over IP

L2TPv3

L2 over MPLS

E-VPN/PBB-EVPN

L2 over IP

OTV

L2VPN: MAC RoutingL2VPN: P2P or MP

MAC Bridging

L2VPN Technologies

Native L2 Bridging Technologies

VXLAN

Overlay

NV-GRE STT

DC Overlay

VPLS – принципы и ограничения

24

VPLS full mesh

PEPEPE1

PE2

VFI

VFI

VFI

VFI

PE4

PE3

MAC:

A

MAC:

BNot Scale

Full mesh PWs

Non-optimized forwardingPer-VLAN vs. Per-flow LB

Single path vs. Multiple paths

CE multi-homingPer-VLAN vs. Per-flow LB

Complex provisioning

Build L2 tunnel (PW) over MPLS, follow the same

forwarding rules as native L2 bridging

• Initial Flooding and Learn MAC in Data Plane

• Packet Forwarding based on L2 MAC Table

• MAC Aging and Withdrawal

• Loop Prevention

• Split Horizon to avoid loop

• Require full mesh of PWs (or use H-VPLS)

Data Center Interconnect requirements not fully addressed by current L2VPN technologies

Требования к современному L2VPN

Ethernet Virtual Private Network (E-VPN) and Provider Backbone Bridging EVPN (PBB-EVPN) designed to address these

requirements

§ All-active Redundancy and Load Balancing

§ Simplified Provisioning and Operation

§ Optimal Forwarding

§ Fast Convergence

§ High Scalability: MAC, VLAN, PW

Network and Services Evolution with Cisco EVPN

EVPN L3

IPVPN

Services

Ethernet

L2VPN

Services

VPLS, EoMPLS for L2 Services over MPLS

IPVPN

Services

Ethernet

L2VPN

Services

L2VPN L3VPN

EVPN

BGP VPN

VPLS

L2 and L3 Services

One Control Plane à EVPN

Common policies Operation à BGP

Control Plane: LDP, BGP

Service Plane: VPLS, EoMPLS

Data Plane Learning

Control Plane: BGP

Service Plane: MP-BGP

Separate Operation, Control plane

• Next generation solution for Ethernet

multipoint connectivity services

• Learning on PE Access Circuits via

data-plane transparent learning

• PEs run Multi-Protocol BGP to advertise & learn MAC addresses over Core

• No pseudowires• Unicast: use MP2P tunnels

• Multicast: use ingress replication over MP2Ptunnels or use LSM

• Under standardization at IETF – draft-ietf-l2vpn-evpn

Ethernet VPNОбзор

MPLS

PE1

CE1

PE2

PE3

CE3

PE4

VID 100SMAC: M1DMAC: F.F.F

BGP MAC adv. RouteE-VPN NLRIMAC M1 via PE1

Data-plane address learning from Access

Control-plane address advertisement / learning over Core

• Combines Ethernet Provider Backbone

Bridging (PBB - IEEE 802.1ah) with Ethernet

VPN

• PEs perform as PBB Backbone Edge Bridge (BEB)

• Reduces number of BGP MAC advertisements

routes by aggregating Customer MACs (C-

MAC) via Provider Backbone MAC (B-MAC)

• Addresses virtualized data centers with C-MAC count

into the millions

• PEs advertise local Backbone MAC (B-MAC)

addresses in BGP

• C-MAC and C-MAC to B-MAC mapping learned in

data-plane

• Under standardization at IETF – draft-ietf-l2vpn-pbb-evpn

PBB Ethernet VPNОбзор

MPLS

PE1

CE1

PE2

PE3

CE3

PE4

B-MAC:B-M1 B-M2

B-M2

BGP MAC adv. RouteE-VPN NLRIMAC B-M1 via PE2

B-MAC:B-M1

Control-plane address advertisement / learning over Core (B-MAC)

Data-plane address learning from Access• Local C-MAC to local B-

MAC binding

Data-plane address learning from Core• Remote C-MAC to remote

B-MAC binding

Сравнение реализаций L2VPN

29

Requirement VPLS PBB-VPLS E-VPN PBB-EVPN

Multi-Homing with All-Active ForwardingVLAN Based Load-balancing CE-to-PE � � � �

Flow Based Load-balancing CE-to-PE x x � �

Flow Based Load-balancing PE-to-PE x x � �

Flow Based Multi-Pathing in the Core � � � �

MAC ScalabilityScale to Millions of C-MAC Addresses x � x �

Confinement of C-MAC entries to PE with active flows � � x �

MAC Summarization x x � �

MAC Summarization co-existence with C-MAC Mobility x x x �

Flexible VPN PoliciesPer C-MAC Forwarding Control Policies x x � x

Per-Segment Forwarding Control Policies x x � �

ASR 9000 – 6.0.1+

EVPN VPWS

EVPN VPWS• xEVPN is next generation solution for Ethernet services

• Relies on BGP control-plane for Segment / MAC

learning reachability among PEs

• Same principles as L3VPNs

• Benefits of xEVPN solutions

• No signaling of PWs. Instead signals MP2P LSPs

instead (ala L3VPN)

• All-active CE multi-homing (per-flow LB)

• Solution for P2P services uses a subset of EVPN

routes

• i.e. Per-EVI Ethernet Auto-Discovery route

• Handles double-sided provisioning with remote PE

auto-discovery

• draft-boutros-l2vpn-evpn-vpws

31

xEVPN

EVPN PBB-EVPNEVPN-VPWS

E-LINE E-LAN

EVPN VPWS

• Introduced on ASR 9000 with IOS XR release 6.0.1

• Supported on ASR9000 Typhoon and Tomahawk line cards

• Support for Single Home (SH) only.

• Multi-Home support planned for later release. Consult the roadmap for

more information.

• Reference: See IETF draft at http://www.ietf.org/id/draft-ietf-bess-evpn-

vpws-03.txt

EVPN VPWS – сценарий single-homed

33

MPLS

PE1CE1

PE2CE2

PE 1 Eth A-D Route

RD = RD-1aESI = ES1

Eth.Tag ID = AC1 Label (e.g. X)

RT ext. community

RT-a

PE 2 Eth A-D Route

RD = RD-2aESI = ES2

Eth.Tag ID = AC2Label (e.g. Y)

RT ext. community

RT-a

PE1 RIB

VPN MAC ESI Eth.TAG

RT-a - ES2 AC2

Path List

NHPE2

ES1 ES2

RT – RT associated with a given EVI

RD – RD unique per adv. PE per EVI

MPLS Label – (downstream assigned) used by remote PEs to reach segment

ESI – 10 bytes ESI as specify by EVPN Ethernet segment IETF draft

VPWS Service Config:EVI = 100Local AC ID = AC1Remote AC ID = AC2

VPWS Service Config:EVI = 100Local AC ID = AC2Remote AC ID = AC1

1

ES2 – Since CE2 is single homed to PE2, ES2 = 0

Eth.Tag ID – 4-bytes local AC-ID

PE2 RIB

VPN MAC ESI Eth.TAG

RT-a - ES1 AC1

Path List

NHPE1

2

3

4

5 6

EVPN VPWS настройка (SHD)

PE1

interface Bundle-Ether1.777 l2transportencapsulation dot1q 777rewrite ingress tag pop 1 symmetric

l2vpnxconnect group XG-POD1p2p XC-POD1-EVPN-VPWS-777interface Bundle-Ether1.777neighbor evpn evi 1000 target 100 source 200

router bgp 64bgp router-id 1.100.100.100address-family l2vpn evpn!neighbor 2.100.100.100remote-as 64update-source Loopback0address-family l2vpn evpn

PE1

CE1MPLSCore

Bundle-Eth1.777XC neighbor command

with local and remote AC-IDs

BGP configuration with new EVPN AF

MINIMAL

Configuration

Auto RT for EVIAuto RD for EVI

Note: MPLS / LDP configuration required on core-facing interfaces (not shown)

EVPN-VPWS – детали энкапсуляции на PE

DASA

E-type (802.1q 0x8100)C-VID

Payload E-Type

Payload

EVPN MPLS label

Control Word

Customer Frame

P2P

EVI aaa

EVPN Forwarder

DA (NH router)SA

E-type (MPLS 0x8847)PSN MPLS label

EVPN MPLS labelControl Word

Customer Frame

4B

4B

4B

MPLSEthernetAccess

Traffic Direction

35

Pseudowire Head End (PW-HE) with EVPN VPWSIOS XR 6.1.1+

VLAN

VLAN

VLAN

VPLSInternet

VRF

H-QOS

BFD

ACL

Netflow

MAC Sec

Storm CTL

VLAN rewrite

uRPF

EVPN VPWS PWPWHE virtual interface

Time To MarketOPEX CAPEX

Less Touch-points Single Service

Management Point

Converged Transport PE and ESERSimplified

Access/Aggregation

Virtual Service

Interface

Access Edge

L2VPN

L3VPN

Services

Развитие EVPN DCI в IOS XR 6.1.1

• EVPN VxLAN L2 GW (L2 fabric integration)

• EVPN control plane for VXLAN Fabric

• EVPN MPLS (L2 DCI support)

• Layer 2 gateway forwards intra subnet traffic towards DC

• EVPN ESI Multi-Path

• All Active Ethernet segment

• Anycast gateway for VXLAN

• OPFLEX support for GOLF (Giant Overlay Fabric)

• Framework to distribute DCI policy model from ACI Spines to the ASR9000 DCI

gateway

Cisco EVPN Одна технология для всех типов VPN

Network efficiencyEasier Provisioning Opex SavingCommon policiesCommon Operation

EVPN L3

One VPN for L2 and L3 Services

Ethernet Services

IP Services

IPVPN

Services

Ethernet

L2VPN

Services

EVPN a common Services Platform

Unified L2 and IP VPN Services

Single Control Plane

Common EVPN operation,

troubleshooting and provisioning

E-Line and E-LAN Services

EVPN L2

IPVPN Services

EVPN L3

One VPN

EVPN L2

Обзор Segment Routing

Основы Segment Routing§ Информация о сегментах пересылки (forwarding state) формируется и распространяется

IGP

•Протоколы LDP и RSVP-TE не нужны!

•Работает с любым протоколом: IPv4, IPv6 or MPLS

§ В сетях MPLS внедрение SR не требует никаких изменений

•push, swap и pop: все что нам нужно

•segment = label

§ Source Routing

•Первый узел “программирует” путь как метку или стек сегментов

•Два типа сегментов: node и adjacency (узел и сегмент/соединение)

40

Что изменяется?

IPv4 IPv6 IPv4 VPN

IPv6 VPN VPWS VPLS Ничего не меняем

MPLS-сервисы (Control Plane и Forwarding)

MPLS – forwarding plane

LDP

MPLS ForwardingLabel / Label Stack + Push/Pop/Swap

RSVP BGP Static IS-IS OSPF

Ничего не меняем

Все изменения здесь

MPLS – control plane

Segment Routing – Базируется на ISIS/OSPF

• ISIS автоматически строит и обслуживает сегменты

• Nodal: кратчайший путь до узла (shortest path)

• Adjacency: конкретное соединение (one-hop)

42

A B C

M N O

Z

D

P

Nodal segment to C

Nodal segment to Z

Adj Segment

Nodal segment to C

Комбинирование сегментов

§ Source Routing:

•Высокая гибкость при комбинировании меток

•Маршрут ABCOPZ можно закодировать стеком из 3-х SR меток

A B C

M N O

Z

D

P

Pop 9003

Packet to Z

65

9003

Packet to Z

65

Packet to Z

Packet to Z

65

Packet to Z

65

9003

72

Packet to Z

65

9003

72

7272

65

65

43

Масштабируемость SR-TE

• Размер forwarding-таблиц зависит только от

• Nodes + Adj и не зависит от количества

• TE-тоннелей

• N+A vs N^2 N: # количество узловA: # количество интерфейсов

Centralized Traffic Engineering

FULL66

6568

Нет per-tunnel state на mid-point à можно перейти к tunnel per-application

ECMP + Explicit routing à позволяет уменьшить количество TE tunnels

Не нужно программировать mid-point à проще контролировать сеть

Tunnel AZ onto {66, 68, 65}

Cisco WAVE

App App App

API

BGP-LS, Netconf, SNMP

Критика Segment Routing

Проблема: HW ограничения глубины стекаВ большинстве случаев для TE достаточно 2-3 сегментаДля NG NPU глубина стека >10 меток

Проблема: Segment routing TE не учитывает ресурсыЭто так, но для этого есть контроллер

Cisco Confidential 47© 2013 Cisco and/or its affiliates. All rights reserved.

Зачем вообще нужен IPv6SR?

• MPLS SR do allow to express explicit path (express policy), native IPv4 don’t.

• MPLS SR doesn’t allow summarization (scale issue), native IPv4 does.

• Running out of IPv4 addresses

• IPv6SR fix all J• - Does allow to express policy, does summarization, does ECMP LB, and plenty of unreserved IPv6 addresses

• Why summarization is important ?

- Network growing on average 100% every 18 months, meaning will be 16 times bigger in next 6 years.

- MPLS can’t scale for tomorrow networks, will hit scale limit in next 5 years.

Текущий статус Segment Routing

Cisco Confidential 49© 2013 Cisco and/or its affiliates. All rights reserved.

Поддержка SR на платформах

ASR1000 / ISR400 / cBR8

ASR9000NCS6000 CRS-3 / CRS-X

ASR900

NCS5000

NCS5500

NEXUS 9000

FD.io

CSR1000v

IOS classic

IOS XR NexOS

Linux

XRV-9000

Cisco Confidential 50© 2013 Cisco and/or its affiliates. All rights reserved.

Фаза 1 Фаза 2

• MPLS SR baseline

• MPLS Control Plane plane simplification

• Automated 50ms convergence

• SR-TE policies

- Distributed & Centralized

- Low Latency path

- Disjoint path

- Avoiding specific path

- Capacity optimization

• Basic operation tooling (OAM+BFD)

• SR-TE for dynamic / automatic WAN/CE/DC

policies

- Bandwidth auto-measurement

- Delay/Drop performance management

- On demand LSP for L3VPN & L2VPN

• Operation excellence

- Advance OAM, MP tree discovery

- Error detection (example: consistency check)

- YANG

• IPv6 SR

- Initial development to address well defined use-cases

(Comcast & Conduit).

Архитектура Agile Carrier Ethernet (ACE)

SR PCE

• Multi-domain topology

•Realtime reactive feed via BGP-LS/ISIS/OSPF from multiple domains

•Including ip address and SID

• Multi-domain path compute with TE optimization and constraint

•SRTE algorithms (see later)

vPE120001

ToR20002

Spine20003

DCI117001

LSR17002

AGG116001

LSR16002

AGG216003

vPE220001

ToR20002

Spine20003

DCI218001

LSR18002

DC A1 METRO A METRO BWAN DCB2

BGP-LS - Multi-Domain Topology

SR PCESTATEFUL PATH COMPUTE with TE optimization

and constraint

NSO

Seamless MPLS vs. Agile Carrier Ethernet

Seamless / Unified MPLS Agile Carrier Ethernet

Separation into IGP Domains Yes Yes

Transport Path E2E Yes Yes

Intra-Area Path Provisioning IGP/LDP IGP with Segment Routing

Inter-Area Path Provisioning BGP-3107 (only best effort) Dynamic (ODN) PCE + Attributes/SLA

Service Provisioning BGP & T-LDP Programmed - Netconf/YANG & BGP

Redundancy LFA/R-LFA TI-LFA

Traffic Engineering RSVP TE (5% adoption, mostly FRR) SR TE (simple, stateless, scalable)

Application Engineered Routing N/A Yes (through SDN Controller)

https://tools.ietf.org/html/draft-filsfils-spring-large-scale-interconnect-01

ACE

Core

Metro1

Metro2

A B

GW21 1002

GW221002

GW11 1001

GW121001

NSO

A1

CE1 CE2

GUI/CLI/RESTService (L2/L3VPN) + SLA

NSO:

1. Creates L2/L3 VPN2. Creates SR Tunnel InterfaceDestination = B

SLA „tag“ (e.g. 1)

PCE IP

3. Creates static route to Tunnel

ACE – PCE with static SR-TE Tunnels

ACE

192.168.0.1

Sid 16010

192.168.0.4

Sid 16040

PCE

BGP-LS

L2/L3VPN

Развитие Segment Routing

Static SR-TE – ASR9K (6.0.0+) ACE Architecture

2

CPE2

Anycast GW1SID: 1001

1.1.1.1/32, SID: 101 2.2.2.1/32, SID: 201

Anycast GW2SID: 2002

ip route 2.2.2.1 sid-list {1001, 201} ip route 1.1.1.1 sid-list {2002, 101}

ACE1

ACE2

Agg/PE

1

Agg/PE

1

101

3

PE

PEbackbone

Metro area 1 Metro area 2

PE

PE

Agg/PE

2

Agg/PE

2

201CPE1

BGP-RR

BGP-LU

Tail-f NCS

• Agg/PE redistribute local metro prefixes into BGP

• All Agg/PE and L3 PE learn all metro prefixes via BGP-LU

• Access nodes only learn prefixes in the same metro area: single IGP process, shortest path forwarding

• For inter-metro LSP, NCS provisioning SID-list: {local anycast GW, remote node}

SR label stack {1001, 201} 3107 {LDP to PE2, BGP label: 201} SR {201}

SR Label stack as Static Route

• Simple and direct configuration

ip route 2.2.2.1 sid-list {1001, 201}

• If SID list contains large number of labels or if same list is to be used for considerable number of static routes, define an explicit path with labels and associate the path with routes.

On System Configuration Example

explicit-path name fooindex 1 next-label 17001index 2 next-label 18001index 3 next-label 18005

……….

router static

address-family ipv4 unicast

1.1.1.1/32 32 segment-routing mpls path name foo

Подводя итог

• BNG для ASR 9000 – продолжает успешно развиваться!

• EVPN – новая универсальная VPN технология уже доступная

для использования на большинстве моделей Cisco!

• Segment Routing – MPLS нового поколения доступная уже

сегодня!

Клуб Cisco

Есть вопросы по приобретению оборудования Cisco?

8 800 700 05 22

Благодарим за участие

Cisco CiscoRu CiscoRussia CiscoRu