台灣師範大學機電科技學系 C. R. Yang, NTNU MT -1- Chapter 14 Random Vibration 14.

Post on 03-Jan-2016

237 views 0 download

Transcript of 台灣師範大學機電科技學系 C. R. Yang, NTNU MT -1- Chapter 14 Random Vibration 14.

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-1-

Chapter 14Random Vibration

14

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-2-

Chapter Outline

14.1 Introduction14.2 Random Variables and Random Processes14.3 Probability Distribution14.4 Mean Value and Standard Deviation14.5 Joint Probability Distribution of Several Random Variables14.6 Correlation Functions of a Random Process14.7 Stationary Random Process14.8 Gaussian Random Process14.9 Fourier Analysis14.10 Power Spectral Density14.11 Wide-Band and Narrow-Band Processes14.12 Response of a Single DOF system14.13 Response Due to Stationary Random Excitations14.14 Response of a Multi-DOF System

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-3-

14.1Introduction

14.1

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-4-

14.1 Introduction

• Random processes has parameters that cannot be precisely predicted.

• E.g. pressure fluctuation on the surface of a flying aircraft

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-5-

14.2Random Variables and Random Processes

14.2

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-6-

14.2 Random Variables and Random Processes

• Any quantity whose magnitude cannot be precisely predicted is known as a random variable (R.V)

• Experiments conducted to find the value of the random variable will give an outcome that is not a function of any parameter

• If n experiments are conducted, the n outcomes form the sample space of the random variable.

• Random processes produces outcomes that is a function of some parameters.

• If n experiments are conducted, the n sample functions form the ensemble of the random variable.

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-7-

14.3

14.3Probability Distribution

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-8-

14.3 Probability Distribution

• Consider a random variable x.

n

nxP

xxn

xxxxn

xn

nxx

n

i

n

~

~~

21

~

~

~

limfunction on distributiy Probabilit

toequalor smaller ofnumber theis

,, as available are of valuesalexperiment

valuespecified some is

Prob

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-9-

14.3 Probability Distribution

• Consider a random time function as shown:

1Prob

0Prob

1lim

1

Prob

i

i~

Ptx

Ptx

tt

xP

tt

xtx

in

i

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-10-

14.3 Probability Distribution

1

lim

xdxpP

xdxpxP

x

xPxxP

dx

xdPxp

n

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-11-

14.4Mean Value and Standard Deviation

14.4

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-12-

14.4 Mean Value and Standard Deviation

• Expected value of f(x) =μf

• The positive square root of σ(x) is the standard deviation of x.

2____

22__2__

2

2__

222

__

______

of Variance

, If

, If

2

xxdxxpxxxxE

x

dxxpxxxExxf

dxxxpxxExxf

dxxpxfxfxfE

x

x

x

f

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-13-

14.4 Mean Value and Standard Deviation

Example 14.1Probabilistic Characteristics of Eccentricity of a Rotor

The eccentricity of a rotor (x), due to manufacturing errors, is found to have the following distribution

where k is a constant. Find the mean, standard deviation and the mean square value of the eccentricity and the probability of realizing x less than or equal to 2mm.

elsewhere ,0

mm5x0 ,2kxxp

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-14-

14.4 Mean Value and Standard Deviation

Example 14.1Probabilistic Characteristics of Eccentricity of a RotorSolution

Normalize the probability density function:

Mean value of x:

Standard deviation of x:

125

3 i.e. 1

3 i.e. 1

5

0

35

0

2

k

xkdxkxdxxp

mm75.34

5

0

45

0

xkxdxxpx

mm9682.0

9375.075.35

3125

5

2

22

5

0

525

0

4

5

0

225

0

22

x

x

kxx

kxdxkx

dxxpxxxxdxxpxx

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-15-

14.4 Mean Value and Standard Deviation

Example 14.1Probabilistic Characteristics of Eccentricity of a RotorSolution

The mean square value of x is

064.0125

8

3

2Prob

mm155

3125

2

0

3

2

0

2

0

2

2___

2

x

k

dxxkdxxpx

kx

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-16-

14.5Joint Probability Distribution of Several RV

14.5

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-17-

14.5 Joint Probability Distribution of Several RV

• Joint behavior of 2 or more RV is determined by joint probability distribution function

• Joint pdf of single RV is called univariate distributions

• Joint pdf of 2 RVs is called bivariate distributions

• Joint pdf of more than one RV is called multivariate distributions

• Bivariate density function of RV x1 and x2:

222211112121 ,Prob, dxxxxdxxxxdxdxxxp

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-18-

14.5 Joint Probability Distribution of Several RV

• Joint pdf of x1 and x2:

• Marginal density functions:

1, 2121 dxdxxxp

1 2

2121

221121

,

,Prob,x

-

xxdxdxxp

xxxxxxP

-dyyxpyp

dyyxpxp

,

,

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-19-

14.5 Joint Probability Distribution of Several RV

• Variances of x and y:

dyypyyE

dxxpxxE

yyy

xxx

222

222

yx

yxx

y

yxxy

yx

yxxy

xyE

dxdyyxpdxdyyxyp

dxdyyxxpdxdyyxxyp

dxdyyxpyxxy

dxdyyxpyx

yxE

,,

,,

,

,

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-20-

14.5 Joint Probability Distribution of Several RV

• Correlation coefficient between x and y:

11

xy

yx

xyxy

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-21-

14.6Correlation Functions of a Random Process

14.6

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-22-

14.6 Correlation Functions of a Random Process

• Form products of RV x1, x2, …

• Average the products over the set of all possibilities to obtain a sequence of functions:

• These functions are called correlation functions

on... so and

,,

,

321321321

212121

xxxEtxtxtxEtttK

xxEtxtxEttK

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-23-

14.6 Correlation Functions of a Random Process

• E[x1x2] is also known as the autocorrelation function, designated as

R(t1,t2)

• Experimentally we can find R(t1,t2) by multiplying x(i)(t1) and x(i)(t2)

and averaging over the ensemble:

21212121 ,, dxdxxxpxxttR

n

i

ii txtxn

ttR1

2121

1,

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-24-

14.6 Correlation Functions of a Random Process

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-25-

14.7Stationary Random Process

14.7

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-26-

14.7 Stationary Random Process

• Probability distribution remain invariant under shift of time scale

• Pdf p(x1) becomes universal density function p(x) independent of time

• Joint density function p(x1,x2) becomes p(t,t+τ)

• Expected value of stationary random processes

• Autocorrelation function depend only on the separation time τ where τ=t2-t1

tttxEtxE any for 11

tRtxtxExxEttR any for , 2121

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-27-

14.7 Stationary Random Process

• R(0)=E[x2]

• If the process has zero mean and is extremely irregular as shown, R(τ) will be small.

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-28-

14.7 Stationary Random Process

• If x(t)≈x(t+τ), R(τ) will be constant.

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-29-

14.7 Stationary Random Process

• If x(t) is stationary, its mean and standard deviations will be independent of t: txtxtxEtxE and

2222

22

2

2

2

2

2

,1 Since

i.e.

:tcoefficienn Correlatio

R

R

R

txEtxEtxtxE

txtxE

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-30-

14.7 Stationary Random Process

• R(τ) is an even function of τ.

• When τ∞, ρ0, R(τ∞)μ2

• A typical autocorrelation function is shown:

RtxtxEtxtxER

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-31-

14.7 Stationary Random Process

• Ergodic Process

We can obtain all the probability info from a single sample function and assume it applies to the entire ensemble.

x(i)(t) represents the temporal average of x(t)

2

2

2

2

222

2

2

1lim

1lim

1lim

T

T

ii

T

T

T

i

T

T

T

i

T

dttxtxT

txtxR

dttxT

txxE

dttxT

txxE

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-32-

14.8Gaussian Random Process

14.8

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-33-

14.8 Gaussian Random Process

• Most commonly used distribution for modeling physical random processes

• The forms of its probability distribution are invariant wrt linear operations

• Standard normal variable:

2

2

1

2

1

x

xx

x

exp

x

xxz

2

2

1

2

1 zexp

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-34-

14.8 Gaussian Random Process

• The graph of a Gaussian probability density function is as shown:

c

x

c

c

z

dxectx

dxectxc

2

2

2

2

1

2

1

2

2Prob

2

1Prob

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-35-

14.8 Gaussian Random Process

• Some typical values are shown below:

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-36-

14.9Fourier Analysis

14.9

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-37-

14.9 Fourier Analysis

• Fourier Series

Any periodic function x(t) of period τ can be express as a complex Fourier series

Multiply both side with e-imω0t and integrating:

2

where 00

n

tinnectx

-nn

-n

tmnin

tim

dttmnitmnc

dtecdtetx

2

2 00

2

2

2

2

sincos

00

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-38-

14.9 Fourier Analysis

• Fourier Series

x(t) can be expressed as a sum of infinite number of harmonics

Difference between any 2 consecutive frequencies:

If x(t) is real, the integrand of cn is the complex conjugate of that of

c-n

2

2

01

dtetxc tin

n

0001

21

nnnn

*nn cc

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-39-

14.9 Fourier Analysis

• Fourier Series

Mean square value of x(t):

nn

nn

nnn

n

tinn

tinn

n

tinn

n

tinn

n

tinn

ccc

dtccc

dtececc

dteccec

dtecdttxtx

2

1

220

2

21

*20

2

2

2

1

*0

2

2

2

10

1

2

2

22

2

2_______

2

2

21

1

1

11

00

00

0

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-40-

14.9 Fourier Analysis

Example 14.2Complex Fourier Series Expansion

Find the complex Fourier series expansion of the functions shown below:

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-41-

14.9 Fourier Analysis

Example 14.2Complex Fourier Series ExpansionSolution

2

0

0

2

2

2

0

00

0

111

1

tscoefficienFourier

2 and 2 where

20 ,1

02

,1

dtea

tAdte

a

tA

dtetxc

aa

ta

tA

ta

tA

tx

tintin

tinn

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-42-

14.9 Fourier Analysis

Example 14.2Complex Fourier Series ExpansionSolution

2

0

020

2

00

0

2

020

0

20

2

1

11

1

0

0

0

0

inin

e

a

Ae

in

A

inin

e

a

Ae

in

Ac

ktk

edtte

tintin

tintin

n

ktkt

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-43-

14.9 Fourier Analysis

Example 14.2Complex Fourier Series ExpansionSolution

The equation can be reduced to

inin

inin

ininn

einna

Aein

na

A

ena

Ae

na

A

ein

A

na

Ae

in

Ac

20

220

2

20

220

2

020

20

11

11

121

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-44-

14.9 Fourier Analysis

Example 14.2Complex Fourier Series ExpansionSolution

Note that

,6,4,2 ,0

,5,3,1 ,24

0 ,2

,6,4,2 ,1

,5,3,1 ,1

0 ,1

or

2220

2

n

nn

A

na

A

nA

c

n

n

n

ee

n

inin

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-45-

14.9 Fourier Analysis

Example 14.2Complex Fourier Series ExpansionSolution

Frequency spectrum is as shown:

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-46-

14.9 Fourier Analysis

• Fourier Integral

A non periodic function as shown can be treated as a periodic function with τ∞

2

where 00

n

tinnectx

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-47-

14.9 Fourier Analysis

• Fourier Integral

As τ∞,

deX

ec

ectx

dtetxcX

dtetxdtetxc

ti

n

tin

n

tin

tin

titin

2

1

2

12lim

2

2lim

lim Define

limlim2

2

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-48-

14.9 Fourier Analysis

• Fourier Integral

Integral Fourier Transform pair

Mean square value of x(t):

dtetxX

deXtx

ti

ti

2

1

nnn

nnn

nnn

nn

cccc

cccdttx

2

12

1

0*0*

0

0*22

2

2

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-49-

14.9 Fourier Analysis

• Fourier Integral

This is known as Parseval’s formula for nonperiodic functions.

d

Xdttxtx

dXcXc nn

2

1lim

as and ,2

2

2

2_______

2

0**

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-50-

14.9 Fourier Analysis

Example 14.3Fourier Transform of a Triangular Pulse

Find the Fourier transform of the triangular pulse shown below.

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-51-

14.9 Fourier Analysis

Example 14.3Fourier Transform of a Triangular PulseSolution

0

011

1

otherwise ,0

,1

dtea

tAdte

a

tA

dtea

tAX

ata

tA

tx

titi

ti

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-52-

14.9 Fourier Analysis

Example 14.3Fourier Transform of a Triangular PulseSolution

222

0

20

0

0

2

1

11

a

Ae

a

Ae

a

A

tii

e

a

Ae

i

A

dtea

tAdte

a

tAX

titi

atia

ti

titi

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-53-

14.9 Fourier Analysis

Example 14.3Fourier Transform of a Triangular PulseSolution

2sin

4cos1

2

sincos

sincos2

222

2

22

a

a

Aa

a

A

aiaa

A

aiaa

A

a

AX

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-54-

14.10Power Spectral Density

14.10

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-55-

14.10 Power Spectral Density

• Power spectral density S(ω) is the Fourier transform of R(τ)/2π

• If the mean is zero,

• R(0) is the average energy

dSxER

deSR

deRS

i

i

20

2

1

dSRx 02

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-56-

14.10 Power Spectral Density

• S(-ω)=S(ω)

• Only positive frequencies are counted in an equivalent one-sided spectrum Wx(f)

0

2 dffWdSxE x

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-57-

14.10 Power Spectral Density

xxxx

xx

Sd

dS

df

dSfW

dffWdS

42

22

2

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-58-

14.11Wide-Band and Narrow-Band Processes

14.11

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-59-

14.11 Wide-Band and Narrow-Band Processes

• Wide-band random process:

• E.g. pressure fluctuations on surface of rocket

• Narrow-band random process:

• A process whose power spectral density is constant over a frequency range is called white noise.

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-60-

14.11 Wide-Band and Narrow-Band Processes

• Ideal white noise – band of frequencies is infinitely wide

• Band-limited white noise – band of frequencies has finite cut off frequencies.

• Mean square value is the total area under the spectrum: 2S0(ω2 –

ω1)

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-61-

14.11 Wide-Band and Narrow-Band Processes

Example 14.4Autocorrelation and Mean Square Value of a Stationary Process

The power spectral density of a stationary random process x(t) is shown below. Find its autocorrelation function and the mean square value.

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-62-

14.11 Wide-Band and Narrow-Band Processes

Example 14.4Autocorrelation and Mean Square Value of a Stationary ProcessSolution

We have

2sin

2cos

4

sinsin2

sin1

2

cos2cos2

21210

120

0

00

2

1

2

1

S

SS

dSdSR xx

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-63-

14.11 Wide-Band and Narrow-Band Processes

Example 14.4Autocorrelation and Mean Square Value of a Stationary ProcessSolution

Mean Square Value 12002 22

SdSdSxE x

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-64-

14.12Response of a Single DOF System

14.12

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-65-

14.12 Response of a Single DOF System

mkc

c

c

m

k

m

tFtx

txyyy

cc

n

nn

2,,, where

2 2

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-66-

14.12 Response of a Single DOF System

• Impulse Response Approach

Let the forcing function be a series of impulses of varying magnitude as shown:

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-67-

14.12 Response of a Single DOF System

• Impulse Response Approach

y(t)=h(t-τ) is the impulse response function

Total response can be found by superposing the responses.

Response to total excitation:

tdthxty

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-68-

14.12 Response of a Single DOF System

• Frequency Response Approach

Transient function:

, H(ω) is the complex frequency response function.

Total response of the system:

titi eHtyetx ~~

, If

deXtx ti

2

1

XHY

deY

deXH

deXHtxHty

ti

ti

ti

2

1

2

1

2

1

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-69-

14.12 Response of a Single DOF System

• Frequency Response Approach

Since h(t- )=0 when t< or >t,

Change the variable from to θ=t- ,

Both the superposition integral and the Fourier integral can be used to find system response

dthxty

dhtxty

dtethHdeHth

dtetdtetxX

deHXthty

titi

titi

ti

,2

1

1

2

1

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-70-

14.13Response Due to Stationary Random Excitations

14.13

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-71-

14.13 Response Due to Stationary Random Excitations

• When excitation is a stationary random process, the response is also a stationary random process

dtthH

dhtxE

dhtxE

dhtxEtyE

dhtxty

0

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-72-

14.13 Response Due to Stationary Random Excitations

• Impulse Response Approach

Autocorrelation

212121

212121

212121

222111

ddhhR

ddhhtxtxE

tytyER

ddhhtxtx

dhtxdhtxtyty

x

y

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-73-

14.13 Response Due to Stationary Random Excitations

• Frequency Response Approach

Power Spectral Density

1

2

1

2

1

2121

212121

iii

x

i

iyy

eee

ddhhR

de

deRS

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-74-

14.13 Response Due to Stationary Random Excitations

• Frequency Response Approach

xi

x

ix

ix

iiy

SdeR

deR

deR

dehdehS

2

12

1

2

1

21

21

21

21

21

21

2211

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-75-

14.13 Response Due to Stationary Random Excitations

• Frequency Response Approach

H(-ω) is the complex conjugate of H(ω).

Mean Square Response:

xy SHS2

dSHdS

ddhhRRyE

xy

xy

2

2111212

0

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-76-

14.13 Response Due to Stationary Random Excitations

Example 14.5Mean Square Value of Response

A single DOF system is subjected to a force whose spectral density is a white noise Sx(ω)=S0. Find the following:

a)Complex frequency response function of the systemb)Power spectral density of the responsec)Mean square value of the response

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-77-

14.13 Response Due to Stationary Random Excitations

Example 14.5Mean Square Value of ResponseSolution

a)Substitute input as eiωt and corresponding response as y(t)=H(ω)eiωt

kicm

H

eeHkicm

txkyycymtiti

2

2

1

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-78-

14.13 Response Due to Stationary Random Excitations

Example 14.5Mean Square Value of ResponseSolution

b) We have

c) Mean square value

2

20

2 1

kicmSSHS xy

kc

Sd

kicmS

dSyE y

0

2

20

2

_

1

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-79-

14.13 Response Due to Stationary Random Excitations

Example 14.6Design of the Columns of a Building

A single-storey building is modeled by 4 identical columns of Young’s modulus E and height h and a rigid floor of weight W. The columns act as cantilevers fixed at the ground. The damping in the structure can be approximated by a constant spectrum S0. If each column has a

tubular cross section with mean diameter d and wall thickness t=d/10, find the mean diameter of the columns such that the standard deviation of the displacement of the floor relative to the ground does not exceed a specified value δ.

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-80-

14.13 Response Due to Stationary Random Excitations

Example 14.6Design of the Columns of a BuildingSolution

Model the building as a single DOF system.

4403 64

,3

4 , iddIh

EIkgWm

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-81-

14.13 Response Due to Stationary Random Excitations

Example 14.6Design of the Columns of a BuildingSolution

3

4

3

4

44

22

22

0044

0

10

47592.003966.012

03966.08000

101,10With

8

64

64

,

h

Ed

h

dEk

ddIdt

tddt

tdtdtdtdtdtd

ddddddI

tddtdd

iii

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-82-

14.13 Response Due to Stationary Random Excitations

Example 14.6Design of the Columns of a BuildingSolution

When the base moves, equation of motion:

titi

titi

eeHm

k

m

ci

eHtzex

xzm

kz

m

cz

xmkzzczm

2

and

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-83-

14.13 Response Due to Stationary Random Excitations

Example 14.6Design of the Columns of a BuildingSolution

kc

mSd

mk

mc

iSdSzE

mk

mc

iSSHS

mk

mc

iH

z

xz

2

02

02

2

20

2

2

1

1

1

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-84-

14.13 Response Due to Stationary Random Excitations

Example 14.6Design of the Columns of a BuildingSolution

42

3202

42

32

02

47592.0

47592.0

cEdg

hWSzE

Edcg

hWSzE

z

41

22

320

22

3204

242

320

47592.0

47592.0or

47592.0, Since

cEg

hWSd

cEg

hWSd

cEdg

hWSz

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-85-

14.14 Response of a Multi-DOF System

14.14

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-86-

14.14 Response of a Multi-DOF System

• Equation of motion:

• Physical and generalized coordinates are related as:

nitQtqtqtq iiiiiii ,,2,1 ;2 2

n

jj

jii tqXtxtqXtx

1

or

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-87-

14.14 Response of a Multi-DOF System

• Physical and generalized forces are related as:

tftF

tFXtQtFXtQ

jj

n

jj

jii

T

Let

or 1

ii

i

i

ii

ii

ti

n

jj

iji

i

n

jj

jii

i

H

tHN

tqet

fXN

tNtfXtQ

21

1 where

, Assume

where

2

2

1

1

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-88-

14.14 Response of a Multi-DOF System

• Mean square value of physical displacement:

21

222

1 1

222

2_______

2

21

2

1lim

2

1lim

rr

rr

irr

n

r

n

s

T

T srT

s

s

r

rsi

ri

T

T it

i

H

eHH

dttHHT

NNXX

dttxT

tx

r

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-89-

14.14 Response of a Multi-DOF System

T

T srT

T

T srT

r

rr

r

dttHHT

dttHHT

2

2

21

2

1lim

2

1lim

angles. phase eNeglect th

1

2

tan

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-90-

14.14 Response of a Multi-DOF System

• For stationary random process,

dSHH

dttHHT

dSdttT

t

sr

T

T srT

T

TT

2

2_______

2

2

1lim

2

1lim

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-91-

14.14 Response of a Multi-DOF System

• Mean square value of xi(t)

n

r

n

ssr

s

s

r

rsi

rii dSHH

NNXXtx

1 122

_______2

dSHN

Xtx r

n

r r

rrii

2

14

22

_______2

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-92-

14.14 Response of a Multi-DOF System

• For lightly damped systems,

r

rr

rrr

S

dHSdSH

2

22

r

rrn

r r

rrii

SNXtx

214

22

_______2

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-93-

14.14 Response of a Multi-DOF System

Example 14.7Response of a Building Frame Under an Earthquake

A 3-storey building is subjected to an earthquake. The ground acceleration during the earthquake can be assumed to be a stationary random process with a power spectral density S(y)=0.05(m2/s4)/(rad/s). Assuming a modal damping ratio of 0.02 in each mode, determine the mean square values of the responses of the various floors of the building frame under the earthquake.

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-94-

14.14 Response of a Multi-DOF System

Example 14.7Response of a Building Frame Under an EarthquakeSolution

100

010

001

110

121

012

mm

kk

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-95-

14.14 Response of a Multi-DOF System

Example 14.7Response of a Building Frame Under an EarthquakeSolution

Compute eigenvalues and eigenvectors using k=106N/m and m=1000kg

rad/s 0001.578025.1

rad/s 4368.392471.1

rad/s 0734.1444504.0

3

2

1

m

k

m

k

m

k

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-96-

14.14 Response of a Multi-DOF System

Example 14.7Response of a Building Frame Under an EarthquakeSolution

01036.0

02330.0

01869.0

5544.0

2468.1

0000.15991.0

01869.0

01037.0

02331.0

8020.0

4450.0

0000.17370.0

02330.0

01869.0

01037.0

2470.2

8019.1

0000.13280.0

3

2

1

mZ

mZ

mZ

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-97-

14.14 Response of a Multi-DOF System

Example 14.7Response of a Building Frame Under an EarthquakeSolution

Relative displacements of the floors: zi(t)=xi(t)-y(t), i=1,2,3

Equation of motion:

where [Z] denotes the modal matrix.

qZz

ymzkzczm

zkzcxm

0

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-98-

14.14 Response of a Multi-DOF System

Example 14.7Response of a Building Frame Under an EarthquakeSolution

Assume damping ratio ζi = 0.02

Uncoupled equations of motion:

tytmmf

tftymtymtF

tFZQ

iqq

jj

jjj

n

jj

iji

iiiii

,

and

where

3,2,1 ;Q2

1

i2

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-99-

14.14 Response of a Multi-DOF System

Example 14.7Response of a Building Frame Under an EarthquakeSolution

Mean square values

35.5205235.01000

37.5205237.01000

36.5205236.01000

2

3

1

33

1

33

3

1

23

1

22

3

1

13

1

11

3

13

22

_______2

ji

jji

ji

jji

ji

jji

rrr r

rrii

ZmfZN

ZmfZN

ZmfZN

SN

Ztz

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-100-

14.14 Response of a Multi-DOF System

Example 14.7Response of a Building Frame Under an EarthquakeSolution

Mean square values of relative displacements of various floors of the building frame:

2_______

23

2_______

22

2_______

21

m 00216455.0

m 00139957.0

m 00053132.0

tz

tz

tz

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-101-

14.14 Response of a Multi-DOF System

Example 14.8Probability of Relative Displacement Exceeding a Specified Value

Find the probability of the magnitude of the relative displacement of the various floors exceeding 1,2,3, and 4 standard deviations of the corresponding relative displacement for the building frame of Example 14.7

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-102-

14.14 Response of a Multi-DOF System

Example 14.8Probability of Relative Displacement Exceeding a Specified Value Solution

Assume ground acceleration to be normally distributed random process with zero mean.

Relative displacements of various floors can also be assumed to be normally distributed.

台灣師範大學機電科技學系

C. R. Yang, NTNU MT

-103-

14.14 Response of a Multi-DOF System

Example 14.8Probability of Relative Displacement Exceeding a Specified Value Solution

4for 00006.0

3for 00270.0

2for 04550.0

1for 31732.0

3,2,1 ;_______

21

p

p

p

p

ptzP

itz

zii

zi