演講者 : 黃仁鴻 指導老師 : 于淑君 博士

Post on 12-Jan-2016

213 views 0 download

description

Synthesis, Characterization and Catalytic Application of Gold Nanoparticles-Supported Ni(II) Complex Catalyst. 演講者 : 黃仁鴻 指導老師 : 于淑君 博士. Types of Catalysts. Polystyrene-Supported Catalysts. Chem. Rev. 2002, 102, 3275-3300. Silica-Supported Catalysts. - PowerPoint PPT Presentation

Transcript of 演講者 : 黃仁鴻 指導老師 : 于淑君 博士

Synthesis, Characterization and CaSynthesis, Characterization and Catalytic Application of Gold Nanoparttalytic Application of Gold Nanoparticles-Supported Ni(II) Complex Cataicles-Supported Ni(II) Complex Cata

lystlyst

演講者 : 黃仁鴻

指導老師 : 于淑君 博士

2

Characteristics of catalysts Homogenous Heterogeneous Hybrid

Cat. structure Known Unknown Known

Catalyst modification Easy Difficult Easy

Activity High Low High

Selectivity High Low High

Conditions of catalysis Mild Harsh Mild

Poisoning of cat. High risk Low risk Low risk

Mechanical strength Low High High

Cat. stabilities Low High High

Separation & recycle of cat. Difficult Easy Easy

Industrialization Difficult Accessible Accessible

Types of CatalystsTypes of Catalysts

3Chem. Rev. 2002, 102, 3275-3300.

Polystyrene-Supported CatalystsPolystyrene-Supported Catalysts

4

Silica-Supported CatalystsSilica-Supported Catalysts

Chem. Rev. 2002, 102, 3495-3524.

5

Nanoparticles-Supported CatalystsNanoparticles-Supported Catalysts

Pfaltz, A. J. Am. Chem. Soc. 2005, 127, 8720-8731.

6

(EtO)3SiN

PPh2

PPh2

NC

O

H

O2

Oxidation

(EtO)3SiN

PPh2

PPh2

NC

O

HO

O

SiN

PPh2

PPh2

NC

O

H

OO

OEt

+RhL2

SiN

PPh2

PPh2

NC

O

H

OO

OEt

RhL2

O2 O

O

Metal Leaching

a. Oxidation

b. Metal Leaching

The Limitation of Phosphine LigandThe Limitation of Phosphine Ligand

Kinzel, E. J. Chem. Soc. Chem. Commun. 1986 1098.

7

Bipyridine LigandBipyridine Ligand

CMe2Ph

CMe2Ph

O N

N

N

O

N N N

H2PdCl4m

m

n

n

interior

surface

CMe2Ph

CMe2Ph

ON

N

N

O

N N

N

Pd2+

Pd2+

m

m

n

n

Buchmeiser, F. M. R. J. Am. Chem. Soc. 1998, 120, 2790.

Poly(N,N-bipyridyl-endo-norborn-2-ene-5-carbamide)10

8

MotivationMotivation

► Nickel is less expensive than other transition metal.

► To study the immobilization of molecular Ni(II) complexes on the surfaces of Au NPs by using the covalent techniques via a specially designed bipyridine ligand as spacer linkers.

► To investigate the reactivity of hybrid catalyst of this type and look into any possibility of reactivity changes due to the process of immobilization.

9

nanoparticleswith controllable solubility

soluble metal complex

functional groups

coordinationl ligands

spacer linker

Catalyst DesignCatalyst Design

catalyst

Au NPs have been known not only to possess solid surfaces resembling the (1 1 1) surface of bulk gold but also to behave like soluble molecules for their dissolvability, precipitability, and redissolvability.

Lin, Y.-Y; Tsai, S.-C.; Yu, S. J. J. Org. Chem. 2008, 73, 4920-4928.

10

Comparison of MComparison of M2+2+(d(d8 8 species)species)Square Planar vs. Tetrahedral ComplexesSquare Planar vs. Tetrahedral Complexes

Greenwood, Chemistry of the elements, Elsevier Science, 1997; p. 1347

• Ni => small Δt => tetrahedral & square planar Pd & Pt => large Δsp => square planar

• Ligands => large , weak-field => tetrahedral Ligands => small, strong-field => square planar

11R. G. Hayter, F. S. Humiec. Inorg. Chem. 1965, 12, 1701-1706.

Square Planar-Tetrahedral Isomerism of Square Planar-Tetrahedral Isomerism of Nickel Halide Complexes of Ni(PPhNickel Halide Complexes of Ni(PPh22R)R)22XX22

The tetrahedral structure is increasingly favored in the orders

P(C2H5)3 < P(C2H5)2C6H5 < PC2H5(C6H5)2 < P(C6H5)3

-Steric effect

SCN < Cl < Br < I -Due to the crystal field strength of the ligand decreases

12

Square Planar and Tetrahedral Structures Square Planar and Tetrahedral Structures of Ni[P(CHof Ni[P(CH22Ph)PhPh)Ph22]]22BrBr22

Kilbourn. B. T.; Powell. H. M. J. Chem. Soc. (A), 1970, 1688-1693.

Tetrahedral Square-Planar

13

NaN3 / DMF

rt / 6hr1

Br OH N3 OH

PBr3 / ether

rt / 3hr2

N3 Br

91 %

55 %

3

1. CS(NH2)2 / ethanol

2.reflux , 16 hr

3. NaOH / 5 min

4. HCl /20 min

HS N3

50 %

4

P(2-py)3

H2O / CH3CN

80 oC / 16 h

NHS

H

P

O

N

N

75 %

Synthesis of Spacer-LinkerSynthesis of Spacer-Linker

14

Synthesis of the RS-Au-L-NiBrSynthesis of the RS-Au-L-NiBr22 ( (77))

HAuCl4SS

SSSSSS

HS(CH2)11N(H) P(2-py)2

O

4

SS

Py2

SS

Py2

SS

Py2

SS

Py2

NiBr2(DME) / dry CHCl3SS

Py2NiBr2

SS

Py2NiBr2

SS

Br2NiPy2

SS

Br2NiPy2

4H2OCH3(CH2)7SH /CHCl3

NaBH4 / H2O

62 oC / 16 hr / CHCl3

CHCl3

rt / 12 hr

[CH3(CH2)7]4N+Br-

7

6

5

15

Synthesis of Molecular Ni(II)-CatalystSynthesis of Molecular Ni(II)-Catalyst

HO N3

P(2-py)3

H2O / CH3CN

80 oC / 16 h

NHO

H

P

O

NN

rt / 12h

NiBr2(DME)

dry CHCl3

NHO

H

P

O

NN

NiBr2

75 %

75 %

江柏誼碩士論文 2008

16

11H NMR Spectra of Au NPs H NMR Spectra of Au NPs 66 and and 77

*

*

#

#

d6-DMSO

RS-Au-L (6)

RS-Au-L-NiBr2 (7)

H2O

17

EPR Spectrum of RS-Au-L-NiBrEPR Spectrum of RS-Au-L-NiBr22 ((77))

0 2500 5000 7500-800

-600

-400

-200

0

200

400

600

inte

nsi

ty

[G]

RS-Au-L-NiBr2 (7)

RS-Au-L-NiBr2 (7) [Et4N]2[NiCl4]

Okada, K.; Matsushita, F.; Hayashi S. Clay Minerals 1997, 32, 299-305.

(powder, 77K, g = 2.55) g = 2.68

18

TEM Image of Octanethiol Protected TEM Image of Octanethiol Protected Au-SR Au-SR ((55))

Particle size distribution 4.4 ± 0.6 nm

SSSSSS

SS

5

19

TEM Image of RS-Au-L TEM Image of RS-Au-L ((66))

SS

Py2

SS

Py2

SS

Py2

SS

Py2

6

Particle size distribution 4.6 ± 0.6 nm

20

TEM Image of RS-Au-L-NiBrTEM Image of RS-Au-L-NiBr22 ((77))

SS

Py2NiBr2

SS

Py2NiBr2

SS

Br2NiPy2

SS

Br2NiPy2

7

Particle size distribution 4.9 ± 0.6 nm

21

300 400 500 600 700 8000

1

2

3

4

ab

s

nm

HS(CH2)

11N(H)P(O)(2-py)

2 (4, L)

Au-SR (5) RS-Au-L (6) RS-Au-L-NiBr

2 (7)

UV-vis Spectra of Ligand UV-vis Spectra of Ligand 44, and , and Au Nanoparticles Au Nanoparticles 55, , 66 and and 77

257 nm

517 nm

22

3000 2500 2000 1500 1000Wavenumber (cm-1)

HS(CH2)

11N(H)P(O)(2-py)

2 (4, L)

RS-Au-L (6) RS-Au-L-NiBr

2 (7)

IR Spectra of IR Spectra of 44, , 66 and and 77

1576 cm-1

1590 cm-1

23

3000 2500Wavenumber (cm-1)

HS(CH2)

11N(H)P(O)(2-py)

2 (4, L)

RS-Au-L (6) RS-Au-L-NiBr

2 (7)

IR Spectra of IR Spectra of 44, , 66 and and 7 7 in the in the ννSHSH Region Region

24

XPS Data of RS-Au-L-NiBrXPS Data of RS-Au-L-NiBr22 ((77))

92 90 88 86 84 82 80

500

1000

1500

2000

2500

3000

3500

4000

inte

nsi

ty (

Co

un

ts/s

ec)

Binding Energy (eV)

Au83.9

87.6

4f5/2

4f7/2

900 890 880 870 860 850

7800

8000

8200

8400

8600

8800

9000

9200

9400

9600

9800

inte

nsity

(C

ount

s/se

c)

Binding Energy

Ni

855.2872.9

2p1/22p3/2

25

Acetalization and Thioacetalization of CaAcetalization and Thioacetalization of Carbonyl Compoundsrbonyl Compounds

O

R R'

O

R H

HOOH

HO OH

HSSH

HS SH

Or else R"SH

Or else R"OH

O

O

O

O OR"

OR"

O

O

O

O OR"

OR"

S

S

S

S SR"

SR"

S

S

S

S SR"

SR"

Acetalization

Thioacetalization

26

Corey-Seebach ReactionCorey-Seebach Reaction

Seebach, D.; Jones, N. R.; Corey, E. J. J. Org. Chem. 1968, 33, 300-105.

n=2-6 n=2-6

Base

R

O

H

HS SH

Lewis Acid (cat.)S S

R H

BuLi

THF, -30oCS S

R Li

S S

R

normal reactivity:

R

O

H Nu:

masked acyl anion

E+

S S

R E

HgO

H2O/THF R

O

E

" "O

R

E+

27

Lewis Acid Catalyzed ThioacetalizationLewis Acid Catalyzed Thioacetalization

Conventional Lewis Acids BF3-Et2O 、 ZnCl2 、 AlCl3 、 SiCl4 、 LiOTf 、 InCl3

Nakata, T. et. al., Tetrahedron Lett. 1985, 26, 6461-6464.Evans, D. V. et. al., J. Am. Chem. Soc. 1977, 99, 5009-5017.Firouzabadi, H. et. al., Bull. Chem. Soc. Jpn. 2001, 74, 2401-2406.

Transition Metal Lewis AcidsTiCl4 、 WCl6 、 CoCl2 、 Sc(OTf)3 、 MoCl5 、 NiCl2Kumar, V. et. al., Tetrahedron Lett. 1983, 24, 1289-1292.Firouzabadi, H. et., al. Synlett 1998, 739-741.Goswami, S. et. al., Tetrahedron Lett. 2008, 49, 3092-3096.

Lanthanide Metal Lewis AcidsLu(OTf)3 、 Nd(OTf)3Kanta, D. S. J. Chem. Res. Synop. 2004,230-231.Kanta, D. S. Synth. Commun. 2004, 34, 230-231.

28

Nickel(II) Chloride Catalyzed Nickel(II) Chloride Catalyzed ThioacetalizationThioacetalization

O

H + HS SH S

S

2.5 hour

96 %

A. T. Khan et al., Tetrahedron Lett. 2003, 44, 919–922.

One use only

10 mole % NiCl2

29

Entry Time Yield(%)

1 2 min >99

2 40 min 96

3 10 min 98

4 2 hr 88

R

O

H

O

H

HO

O

H

OH

O

H

MeO

O

H

OMe

Entry Time Yield(%)

5 5 hr 92

6 15 hr 80

7 3 hr 92

8 1.5 hr 89

R

O

HO

H

O2N

O

H

NO2

O

H

NO2

R

O

H CH2Cl2 / MeOH, 25 oC R S

SHS

HS

RS-Au-L-NiBr2 (7) (10 mol%)

O

H

30

Entry Time Yield(%)

9 2 hr 89

10 60 min 98

11 4.5 hr 86

12 60 min 89

R

O

HEntry

Time Yield(%)

13 4.5 hr 70

14 60 min 94

R

O

H

H

O

O

H

H

O

O

H

O

H

H

O

R

O

H CH2Cl2 / MeOH, 25 oC R S

SHS

HS

RS-Au-L-NiBr2 (7) (10 mol%)

31

Entry Time Yield(%)

15 5 min >99

16 2.5 hr 97

17 30 min 93

18 4.5 hr 84

R

O

H

O

H

HO

O

H

OH

O

H

MeO

O

H

OMe

Entry Time Yield(%)

19 15 hr 88

20 18 hr 60

21 6.5 hr 83

22 2.5 hr 88

R

O

HO

H

O2N

O

H

NO2

O

H

NO2

R

O

H CH2Cl2 / MeOH, 25 oC R S

SHS SH

RS-Au-L-NiBr2 (7) (10 mol%)

O

H

32

Entry Time Yield(%)

23 2 hr 88

24 30 min 90

25 4.5 hr 75

26 30 min 88

R

O

HEntry

Time Yield(%)

27 5.5 hr 80

28 30 min 92

R

O

H

H

O

O

H

H

O

O

H

O

H

H

O

R

O

H CH2Cl2 / MeOH, 25 oC R S

SHS SH

RS-Au-L-NiBr2 (7) (10 mol%)

33

Entry Thiol Time Yield(%)

29 30 min 99

30 60 min 93

31 5 min 96

32 10 min 95

R

O

H

O

H

O

H

R

O

H

RS-Au-L-NiBr2 (7)

10 mol%

CH2Cl2 / MeOH, 25 oC

HS(CH2)nSH

n = 2, 3 RS

(CH2)nS

n = 2, 3aldehyde thiol

HS

HS

HS

HS

O

H

O

HHS SH

HS SH

34

Entry Time Yield (%)

Paper Reported cat. (NiCl2)

Time Yield (%)

8 1.5 hr 89 2.75 hr 96

1 2 min >99 8 min 96

3 10 min 98 45 min 90

5 5 hr 93 20 hr 82

R

O

H

O

H

O

H

HO

O

H

MeOO

H

O2N

R

O

H CH2Cl2 / MeOH, 25 oC R S

SHS

HS

Cat. (10 mole %)

35

Entry Time Yield (%)

Paper Reported cat. (NiCl2)

Time Yield (%)

22 2.5 hr 88 2.5 hr 94

15 5 min >99 30 min 93

17 30 min 93 1.15 hr 89

19 15 hr 88

R

O

H

O

H

O

H

HO

O

H

MeO

O

H

O2N

R

O

H CH2Cl2 / MeOH, 25 oC R S

SHS SH

Cat. (10 mole %)

36

Comparison of Catalytic Activity AmounComparison of Catalytic Activity Amoung Various Different Catalystsg Various Different Catalysts

+CH2Cl2 / MeOH, 25oC

Cat. (10 mole %)

O

H

HO HO

S

S

HS SH

Entry Cat. Time Yield (%)

A literature ( NiCl2 anhydrous) 30 min 93

B NONE 24 hr 96

C [HO(CH2)11N(H)P(O)(2-py)2]NiBr2 5 min >99

D RS-Au-L-NiBr2 (7) 5 min >99

37

Recycling Tests on Cat. Recycling Tests on Cat. 77 for T for Thioacetalization of Aldehydehioacetalization of Aldehyde

No metal leaching !!

+

RS-Au-L-NiBr2 (7)

CH2Cl2, 25 oC

20 mol%

O

H

HO HO

S

S

HS SH

Recycling NO.

Time(hr)

Yield (%)

1 1 94

2 1 96

3 1 97

4 1 96

5 1 96

6 1 97

7 1 96

8 1 96

9 1 93

10 1 93

11 1 92

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12Recycling NO.

Yie

ld (%

)

Filtrate no further reactivity

AA has no signal

38

Proposed Mechanism of ThiProposed Mechanism of Thioacetalizationoacetalization

O

HR

N

N Ni

Br

Br

O

R H

S SH

R

O

HS

SH

R

O

H

Ni

SSH

R S

SN

N NiBr

Br

R S

S

H

O

Ni

H

£_ +

HH

H2O

HO NH

P

O

NN

NiBr

Br

H

N

N Ni

Br

Br

39

Sythesis of Sythesis of αα-Aminonitrile-Aminonitrile

+ R3NH2 + HCN

NHR3

CNR2

O

R2R1

R1 + H2O

+ R3NH2 + TMSCN

CH3CN, 25 oC

NHR3

CNR2

O

R2R1

R1

NiCl25 mol%

De, S. K. J. Mol. Catal. A: Chem. 2005, 225, 169-171.

6 ~ 18 hr, 73% ~ 92%

40

The Various Modes of The Various Modes of αα-Aminonitrile -Aminonitrile ReactivityReactivity

Enders, D.; Shilvock, J. P. Chem. Soc. Rev. 2000, 29, 359-373.

41

Lewis Acid Catalyzed αLewis Acid Catalyzed α-Aminonitrile-Aminonitrile

Lewis acid catalysts Et3N 、 InCl3 、 Ga(OTf)3 、 BiCl3

Paraskar, A. S.; Sudalai, A. Tetrahedron Lett. 2006, 47, 5759-5762. Ranu, B. C.; Dey, S. S.; Hajra, A. Tetrahedron 2002, 58, 2529-2532. Surya Prakash, G. K.; Mathew, T. ; Panja, C.; Alconcel, S.; Vaghoo, H.; Do, C.; Olah, G. A. PNAS 2007, 104, 3703-3706. De, S. K. ; Gibbs, R. A. Tetrahedron Lett. 2004, 45, 7407-7408.

Transition metal Lewis acid catalysts RuCl3 、 NiCl2 、 Sc(OTf)3 、 Cu(OTf)2 De, S. K. Synth. Commun. 2005, 35, 653-656. De, S. K. J. Mol. Catal. A: Chem. 2005, 225, 169-171.

Lanthanide Lewis acid catalysts Pr(OTf)3 、 La(O-i-Pr) 、 Yb(OTf)3 De, S. K. Synth. Commun. 2005, 35, 961-966.

OthersKSF 、 I2 Yadav, J. S.; Subba Reddy, B. V.; Eeshwaraiah B.; Srinivas, M. Tetrahedron 2004, 60, 1767-1771. Royer, L.; De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2005, 46, 4595-4597.

42

R-CHO + R1NH2 + TMSCN

RS-Au-L-NiBr2 5 mol%

CH3CN, 25 oC

NHR1

CNR

R

O

H

O

H

NH2

O

H

Cl

NH2

O

H

NH2

O

H

OMe

NH2

H

O NH2

>99105

88104

95153

97152

98151

Yield (%)Time(min)

R1NH2Entry

43

Proposed Mechanism of Proposed Mechanism of

αα-Aminonitrile-Aminonitrile

O

HR

N

N Ni

Br

Br

O

R H

NH

R

O

HNH R

O

H

Ni

NH

N

N NiBr

Br

O

Ni

H

£_ +

HH

S NH

P

O

NN

NiBr

Br

H

N

N Ni

Br

Br

Au

7

R1

R1 R1

R HN

HR1

Si CN

Si

OH

R CN

NHR1

44

ConclusionsConclusions

1. We have successfully synthesized an air- and water-stable and efficient interphase catalyst {Au NPs-S(CH2)11N(H)P(O)(2-py)2NiBr2}.

2. We use NMR 、 TEM 、 UV 、 IR 、 EPR and XPS for structural characterization of The Au NPs-Ni(II) catalyst.

3. The Au NPs-Ni(II) catalyst can be quantitatively recovered and effectively recycled for more than 11 times without any loss of reactivity.